
Version 1.2, Feb. 2013 Modular structure 1/22 WW Winter School 2013

Modular structure of WAVEWATCH III

and general features

Arun Chawla

The WAVEWATCH III Team + friends

Marine Modeling and Analysis Branch

NOAA / NWS / NCEP / EMC

NCEP.list.WAVEWATCH@NOAA.gov

NCEP.list.waves@NOAA.gov

Version 1.2, Feb. 2013 Modular structure 2/22 WW Winter School 2013

Outline

 Covered in this lecture:

 Modifying code.

 Internal data structure.

 Best practices.

Version 1.2, Feb. 2013 Modular structure 3/22 WW Winter School 2013

Modifying code

 Code may need to be updated for bug fixes,

 or as part of systematic model development.

 For simple edits our preferred way to work is:

 Use ln3 to make a link to the file in the ./work directory

under the main wave model directory.

 Edit the link in the ./work directory, and test there with

w3_make and by running standard tests.

 Note: there is a link to the switch file in this directory to

modify the model configuration.

 After the modification is satisfactory, remove the links

from the ./work directory.

 HINT: use arc_wwatch3 to make archive files before and

after code modification, if no other management tool like

subversion is used. The resulting .tar files can be re-

installed with install_wwatch3.

Manual section 5.5

Version 1.2, Feb. 2013 Modular structure 4/22 WW Winter School 2013

Modifying code

 If systematic modifications or additions to the code are

made, there will likely be a need for:

 Adding subroutines in existing modules.

 Adding subroutines in new modules.

 Adding old switches to existing subroutines.

 Adding new switches to the model.

 These actions will be discussed in the following slides, and

are also described in section 5.5 of the manual.

 Note that if a new module with new switches is included,

instructions for both modifications need to be followed.

 See HINT on previous slide …..

Manual section 5.5

Version 1.2, Feb. 2013 Modular structure 5/22 WW Winter School 2013

Modifying code

 Adding subroutines in existing modules.

 This is in principle simple. Add the code and recompile

using w3_make.

 A complication may occur if the subroutine is used by other

modules. In that case, the proper “use” statement needs to

be added to the calling module.

 This may modify relations between files in the makefile

and make commands.

 Run make_makefile.sh manually to assure that the

makefile is updated, before w3_make is run.

 This only needs to be done if “use” statements are

modified.

Manual section 5.5

Version 1.2, Feb. 2013 Modular structure 6/22 WW Winter School 2013

Modifying code

 Adding subroutines in new modules.

 This typically adds a new file like w3coolmd.ftn or

mypackage.f90 to the model files.

 To assure that the new files are included in the compilation,

make_makefile.sh needs to be modified as follows:

 Add module name to sections 2.b and 2.c to assure

inclusion in the makefile under proper conditions.

 Add module name and object file names to section 3.b

to assure proper dependencies in makefile.

 Run make_makefile.sh manually and check makefile in

./ftn directory for proper inclusion of new file.

 NOTE: make_makefile.sh checks use statements in .f90

(preprocessed) files to determine file dependencies.

 Manual section 5.5

Version 1.2, Feb. 2013 Modular structure 7/22 WW Winter School 2013

Modifying code

 Adding old switches to existing subroutines.

 Relationships of switches to model files are maintained in

the w3_new script.

 If old switches are added to new files the following actions

are needed:

 Add the new file to the lists of files to be touched in

section 2 of w3_new.

 If the switches include use statements, interactively run

make_makefile.sh to assure that the makefile is

updated as needed.

Manual section 5.5

Version 1.2, Feb. 2013 Modular structure 8/22 WW Winter School 2013

Modifying code

 Adding new switches to the model.

 After a new switch is added to an existing file, the following

action is required.

 If the switch is part of a new group of switches of which

one is to be selected, add a new ‘keyword’ ($key) to

section 2 of w3_new.

 Update files to be touched in section 2 of w3_new as

necessary.

 Add ‘keyword’ and/or switches to section 2 of

make_makefile.sh.

 Run make_makefile.sh and check consistency of

./ftn/makefile.

Manual section 5.5

Version 1.2, Feb. 2013 Modular structure 9/22 WW Winter School 2013

Data structures

 When adding to the wave model, it is essential

 to understand how data is stored.

 Model version 1.18 (1999)

 FORTRAN 77

 COMMON data structure

 Single static data

structure.

 Model version 2.22 (2002)

 FORTRAN 90

 Modular

 Object oriented, static

data structure bundled

with code

code
data

(COMMON)

code
code
code
code

code

data

code

data

code

data

code

data

code

data

Version 1.2, Feb. 2013 Modular structure 10/22 WW Winter School 2013

Data structure

 Model version 3.06 (2005)

 Modular FORTRAN 90

 Dynamic / multiple data

structure (modular)

 Small overhead (7% on

Linux, 2% on IBM SP)

code data

(module,

“model”)

code
code
code
code

data

(module,

“model”)

data

(module,

“model”)

data

(module,

“model”)

data

(module,

“model”)

 Present status :

 F77 and COMMON data

structures are obsolete.

 Exceptions are aux

codes like w3adc.f.

 Data embedded in

modules largely obsolete.

 Use in model

development, see

best practices.

 Data in data modules now

the norm in 3.14.

 Exception: file

constants.ftn.

Version 1.2, Feb. 2013 Modular structure 11/22 WW Winter School 2013

Data structures

 How is this done?

 Inside the code variables look

like they are defined for a single

grid, for instance, the grid

dimensions NX,NY, and a bottom

depth array ZB.

 However, these variables are

declared as pointers.

 The actual data is stored in a

user-defined type GRID.

 An array of GRIDS of this type

allows for data of multiple grids

to be stored simultaneously.

 The pointers are then set to

represent values of the grid

currently under consideration.

!/

!/ data structure

!/

 TYPE GRID

 INTEGER :: NX, NY

 REAL, POINTER :: ZB(:,:)

 END TYPE GRID

!/

!/ Data storage

!/

 TYPE(GRID), TARGET, &

 ALLOCATABLE :: GRIDS(:)

!/

!/ Pointers

!/

 INTEGER, POINTER :: NX, NY

 REAL, POINTER :: ZB(:,:)

!/ ***********************************

 NX => GRIDS(I)%NX

 NY => GRIDS(I)%NY

 ZB => GRIDS(I)%ZB

Version 1.2, Feb. 2013 Modular structure 12/22 WW Winter School 2013

Data structures

 There are many data structures defined in the model.

 All essential model data for model setup as well as dynamic

wave conditions is stored in five data modules:

 Each module contains data for as many grids as identified

in the mosaic (including model input and spectral point

output grids).

w3gdatmd.ftn Grid and model setup data.

w3adatmd.ftn Auxiliary data used and stored internal to

the model only.

w3idatmd.ftn Model input data.

w3wdatmd.ftn Basic wave model state.

w3odatmd.ftn Model output data.

Manual sections 6.5 & 6.6

Version 1.2, Feb. 2013 Modular structure 13/22 WW Winter School 2013

Best practices

 For those who want to modify / contribute to WAVEWATCH

III, a best practices guide is available.

 Note that as a part of the license, additions made to the

model have to be offered to NCEP for inclusion in future

model distributions.

 Best practices cover :

 Programming style

 Adding to the model.

 Manual and documentation.

 Subversion repository.

 Regression testing.

 These issue will be touched upon briefly here, but the guide

will be the authoritative source.

Best practices guide

Version 1.2, Feb. 2013 Modular structure 14/22 WW Winter School 2013

Best practices

 Programming style:

 Use WAVEWATCH III documentation style (see templates).

 Use coding style:

 Free format but layout as in old fixed format.

 Upper case for permanent code, lower case for

temporarily code. Latter can be included as permanent

testing using !/Tn switches.

 Maintain updated log at header of documentation.

 Embed all subroutines in modules or main programs, using

naming convention outlined before.

 Follow FORTRAN 90 standard, with best practices as

outlined in section 2 of the guide.

 Provide appropriate documentation in LaTeX format for

inclusion in the manual.

Version 1.2, Feb. 2013 Modular structure 15/22 WW Winter School 2013

Best practices
!/ --- /

 SUBROUTINE W3XXXX

!/

!/ +-----------------------------------+

!/ | WAVEWATCH III NOAA/NCEP |

!/ | John Doe |

!/ | FORTRAN 90 |

!/ | Last update : 01-Jan-2010 |

!/ +-----------------------------------+

!/

!/ 01-Jan-2010 : Origination. (version 4.xx)

!/

! 1. Purpose :

! 2. Method :

! 3. Parameters :

!

! Parameter list

! --

! --

!

! 4. Subroutines used :

!

! Name Type Module Description

! --

! STRACE Subr. W3SERVMD Subroutine tracing.

! --

!

! 5. Called by :

!

! Name Type Module Description

! --

! --

!

! 6. Error messages :

! 7. Remarks

! 8. Structure :

! 9. Switches :

!

! !/S Enable subroutine tracing.

!

! 10. Source code :

!

!/ --- /

!/S USE W3SERVMD, ONLY: STRACE

!/

 IMPLICIT NONE

!/

!/ --- /

!/ Parameter list

!/

!/ --- /

!/ Local parameters

!/

!/S INTEGER, SAVE :: IENT = 0

!/

!/ --- /

!/

!/S CALL STRACE (IENT, 'W3XXXX')

....

!/

!/ End of W3XXXX --- /

!/

 END SUBROUTINE INSBTX

subroutine template

Version 1.2, Feb. 2013 Modular structure 16/22 WW Winter School 2013

Best practices
!/ --- /

 MODULE W3XXXXMD

!/ +-----------------------------------+

!/ | WAVEWATCH III NOAA/NCEP |

!/ | John Doe |

!/ | FORTRAN 90 |

!/ | Last update : 01-Jan-2010 |

!/ +-----------------------------------+

!/

!/ 01-Jan-2010 : Origination. (version 4.xx)

!/

!/ Copyright 2010 National Weather Service (NWS),

!/ National Oceanic and Atmospheric Administration. All rights

!/ reserved. WAVEWATCH III is a trademark of the NWS.

!/ No unauthorized use without permission.

!/

! 1. Purpose :

! 2. Variables and types :

!

! Name Type Scope Description

! --

! --

!

! 3. Subroutines and functions :

!

! Name Type Scope Description

! --

! W3XXXX Subr. Public

! --

!

! 4. Subroutines and functions used :

!

! Name Type Module Description

! --

! STRACE Subr. W3SERVMD Subroutine tracing.

! --

!

! 5. Remarks :

!

module template

!

! 6. Switches :

!

! !/S Enable subroutine tracing.

!

! 7. Source code :

!/

!/ --- /

!/

 PRIVATE

!/

 CONTAINS

!/ --- /

 SUBROUTINE W3XXXX

.....

!/

!/ End of W3XXXX --- /

!/

 END SUBROUTINE W3XXXX

!/

!/ End of module W3XXXXMD -- /

!/

 END MODULE W3XXXXMD

Version 1.2, Feb. 2013 Modular structure 17/22 WW Winter School 2013

Best practices

 Programming style cont’ed:

 If existing packages are added to the wave model, then

such packages do not need to be re-coded to conform to

our standards.

 Such packages will require interface routines, which are

expected to confirm to the standards.

 Copyright of NWS may extend to interface routines, but

obviously not to linked in packages.

Version 1.2, Feb. 2013 Modular structure 18/22 WW Winter School 2013

Best practices

 Adding to the model

 (no NCEP subversion access)

 Propagation schemes and source terms:

 Use available “user-defined” dummy modules.

 Follow coding guidelines.

 Provide file with necessary modifications to

w3srcemd.ftn, w3wavemd.ftn, and all other model files

that need to be updated.

 Provide (previous) test cases with expected results.

 Make each module self-contained.

Define all variables in the module header. We will

integrate them in the full data structure.

Separate initialization and computation as outlined

in the dummy modules.

Version 1.2, Feb. 2013 Modular structure 19/22 WW Winter School 2013

Best practices

 Adding to the model

 (no NCEP subversion access)

 For more intricate modifications to the code, consult with

NCEP code managers on how to do this and on how to

provide this to NCEP.

 New pre- or postprocessors should be provided in their

entirety, included in the compile and link system.

 HINT: when developing new source terms, include and test

them in the postprocessors ww3_outp and gx_outp first,

before including/testing them in actual wave model

integration.

Version 1.2, Feb. 2013 Modular structure 20/22 WW Winter School 2013

Best practices

 Adding to the model

 (with NCEP subversion access)

 Same rules apply as for those without svn access with

following exceptions:

 NCEP code managers will assign switches to new

sources and propagation scheme to be used instead of

the ‘X’ switches.

 Developers will integrate the data structure:

Only after rigorous testing of self-contained system.

 Changes to be provided relative to most recent TRUNK.

 NCEP code managers will add new code to the TRUNK

of the repository.

E-mail notification to co-developers.

Version 1.2, Feb. 2013 Modular structure 21/22 WW Winter School 2013

Best practices

 Manual and documentation.

 Provide full LaTeX documentation for inclusion in the

manual:

 NCEP svn users have access to manual, and are

expected to add to it directly.

NCEP will provide editing.

 Others provide separate files.

NCEP will integrate.

 Use BibTEX.

 Use dynamic references to equations, figures and tables

only.

Version 1.2, Feb. 2013 Modular structure 22/22 WW Winter School 2013

The end

End of supplemental material

