
Version 1.2, Jan. 2013 Subversion 1/64 WW Winter School 2013

Subversion: A True

Community Modeling Paradigm

Jose-Henrique Alves

The WAVEWATCH III Team + friends

Marine Modeling and Analysis Branch

NOAA / NWS / NCEP / EMC

NCEP.list.WAVEWATCH@NOAA.gov

NCEP.list.waves@NOAA.gov

Version 1.2, Jan. 2013 Subversion 2/64 WW Winter School 2013

Overview

 Developers’ Best Practices

 Model development paradigms: why use Subversion

 How Subversion works

 How we use Subversion

Version 1.2, Jan. 2013 Subversion 3/64 WW Winter School 2013

Best practices

 For those who want to modify / contribute to WAVEWATCH

III, a best practices guide is available.

 Note that as a part of the license, additions made to the

model have to be offered to NCEP for inclusion in future

model distributions.

 Best practices cover :

 Programming style

 Adding to the model.

 Manual and documentation.

 Subversion repository.

 Regression testing.

Best practices guide

Version 1.2, Jan. 2013 Subversion 4/64 WW Winter School 2013

Best practices

Programming style:

 Use WAVEWATCH III documentation style (see templates).

 Use coding style:

 Free format but layout as in old fixed format.

 Upper case for permanent code, lower case for

temporarily code. Latter can be included as permanent

testing using !/Tn switches.

 Maintain update log at header for documentation.

 Embed all subroutines in modules or main programs, using

naming convention outlined before.

 Follow FORTRAN 90 standard, with best practices as

outlined in section 2 of the guide.

 Provide appropriate documentation in LaTeX format for

inclusion in the manual.

Version 1.2, Jan. 2013 Subversion 5/64 WW Winter School 2013

Best practices

Adding to the model

(with NCEP subversion access)

 Same rules apply as for those without svn access with

following exceptions:

 NCEP code managers will assign switches to new

sources and propagation scheme to be used instead of

the ‘X’ switches.

 Developers will be responsible for integration in the data

structure:

Do this only after rigorous testing of self-contained

system.

 NCEP code managers will add new code to the TRUNK

of the repository. Changes to be provided relative to

most recent TRUNK, not to most recent distributed

version

Version 1.2, Jan. 2013 Subversion 6/64 WW Winter School 2013

Best practices

Manual and documentation.

 Provide full LaTeX documentation for inclusion in the

manual:

 NCEP svn users have access to manual, and are

expected to add to it directly.

NCEP will provide editing.

 Others provide separate files.

NCEP will integrate.

 Use BibTEX.

 Use dynamic references to equations, figures and tables

only.

Version 1.2, Jan. 2013 Subversion 7/64 WW Winter School 2013

Best practices

Testing

 Regression testing are based on previous WAVEWATCH III

tests and new materials and tools provided by Erick Rogers

and Tim Campbell from NRL Stennis.

 nrltest, will replace current test directory in near future

Version 1.2, Jan. 2013 Subversion 8/64 WW Winter School 2013

Model Development Framework

Developer’s Universe

 Development work involves including new features to the

wave model, upgrading existing features, as well as bug

fixing, clean up etc

 Modifying the code will lead to changes in the whole system

 Developers should be aware of what all the components are

and what needs to be changed

 Approach changes as a system, looking at all components:

 .ftn files

 Pre-compiler (ww3_make and associated programs)

 FORTRAN compiler specifics (comp and link scripts)

 Regression tests (make new friends, but keep the old)

 Integrating a lot of developers, developing a complex

system: communication + centralized repository = SVN!

Version 1.2, Jan. 2013 Subversion 9/64 WW Winter School 2013

Model Evolution

Communication: the big leap forward

 We asked our top model to pose beside the SD model

Version 1.2, Jan. 2013 Subversion 10/64 WW Winter School 2013

The “Usual” Development Model

A Self Disgruntling Model

 Individual development

 Each one comes up with a different solution

 Each one has his/her own code writing standards

 End up with a set of many versions, diverging = diversions

 Clunky communication

 Open loops: difficult to debug, reconcile

 Time consuming

Version 1.2, Jan. 2013 Subversion 11/64 WW Winter School 2013

NO

OK

mod .ftn files make .f90

The Usual Development Model

make exe tests

w3_make Your favorite

FORTRAN

compiler

Your favorite

tests
Your WW3 version User 2

NO

OK

mod .ftn files make .f90 make exe tests

Her WW3 version

w3_make Her favorite

FORTRAN

compiler

Her favorite

tests

Version 1.2, Jan. 2013 Subversion 12/64 WW Winter School 2013

Version 1

Version 2

Version 3

Version 4

Version 5

The Usual Development Model

Version 1.2, Jan. 2013 Subversion 13/64 WW Winter School 2013

The Community Development Model

A Self Sufficient Model

 Collective, simultaneous development

 Each one comes up with a different solution

 Solutions are integrated and reconciled

 All should follow same code writing standards

 Subversion: a single version, with many options =

convergence

 Streamlined communication

 Consistent codes, easy to debug and reconcile

 Time saving

Version 1.2, Jan. 2013 Subversion 14/64 WW Winter School 2013

The Community Development Model

w3_make Your favorite

FORTRAN

compiler

Shared tests

WW3

trunk

mod .ftn files

function

branch

NO

OK

make .f90 make exe tests

Stable cut

Reintegration

Version 1.2, Jan. 2013 Subversion 15/64 WW Winter School 2013

The Community Development Model

w3_make Your favorite

FORTRAN

compiler

Shared tests

WW3

trunk

mod .ftn files

function

branch

NO

OK

make .f90 make exe tests

Stable cut
Reintegration

NO

OK

mod .ftn files make .f90 make exe tests

w3_make Her favorite

compiler Shared tests

other

branch

Sync

Version 1.2, Jan. 2013 Subversion 16/64 WW Winter School 2013

Context: What is Subversion?

 Subversion is an open source centralised version control

system (i.e. accesses a central repository) that allows one or
more users to easily share and maintain collections of files.

 IOW: it’s a database that keeps track of changes made to files

What it is not.
 Magic.

 It is not a substitute for management.

 It is not a substitute for developer communication.

There is nothing inherently special about subversion. Many
other revision control systems exist.

 Git, Mercurial, CVS, Bazaar, darcs, etc

Reference: http://svnbook.red-bean.com

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

Version 1.2, Jan. 2013 Subversion 17/64 WW Winter School 2013

EMC and NCO Subversion Servers

NCEP repository

 URL:
https://svnemc.ncep.noaa.gov/projects/ww3

Version 1.2, Jan. 2013 Subversion 18/64 WW Winter School 2013

Repository organisation (1)

Project ww3 has four main directories:

trunk

 The main line of development.

 Typically in an “almost ready for
release” state.

branches

 Where development is done.

 Experimental development branches

sandbox

 Are available for developers to store
branches that are kept out of sync
on purpose

tags

 Snapshots and releases

 No development

ww3/

trunk/

branches/

ST4/

curvilinear/

REL-2.0.2/

projX directories,

source files, fix files,

scripts, etc

tags/

playroom/

sandbox/

Version 1.2, Jan. 2013 Subversion 19/64 WW Winter School 2013

Repository organisation (2)

trunk/, branches/,tags/ , and sandbox/ are just

directories. Subversion has no concept of a “branch”

or “tag”. When the trunk is copied, it is a branch or tag

only because we attach that meaning to it.

Repository copies (i.e. branches and tags) are “cheap”.
That is, you are not actually copying all of the
source/data - you are just creating a reference to a
particular revision.

Subversion stores only the diff content when changes are
made, still referencing to the originating files.

Version 1.2, Jan. 2013 Subversion 20/64 WW Winter School 2013

Repository revision numbering

When subversion repo is created, starts at revision 0.

Each subsequent commit to the repository increments the
revision number by 1.

The revision number is repository-wide so any commit in
any project increments the revision number

NCEP, currently has 69 registered projects, all share
revision numbers
 Typically, don’t need to worry about a revision number

value

 But need to be aware of the numbers related to your codes

 The trac source browser provides easily navigable
information about what was done at which revision.

Version 1.2, Jan. 2013 Subversion 21/64 WW Winter School 2013

Checking out files

Two ways of getting repository content:

1. Grabbing an unversioned copy: svn export

2. Checking out a versioned copy: create local workcopy

$ cd $HOME/workcopy

$ svn checkout URL[@rev][wcPATH]

The repository URL of

the project you want

to checkout

The revision number

of the project you

want to checkout.

Defaults to HEAD, i.e.

the latest version.

The path where you

want to create your

working copy.

Defaults to the

basename of URL.

Version 1.2, Jan. 2013 Subversion 22/64 WW Winter School 2013

Editing existing files

Once you have created a working copy of your project(s),

edit, compile, debug, and test as usual

The files are the same as when they were unversioned

To avoid creating junk (compiled code, output etc) in your

svn folder, a good practice is to create symbolic links

Changes made to linked files are propagated to svn area.

Compiled codes and outputs etc are kept out of svn area.

$ cd $HOME/workcopy

$ mkdir svn; cd svn

$ svn checkout URL[@rev][wcPATH]
$ cd ..; ln –s ./svn/* .

Version 1.2, Jan. 2013 Subversion 23/64 WW Winter School 2013

Adding new files

When you create a new file – for svn means creating from

scratch or copying from outside the versioned workcopy – it

remains local until you commit.

If adding an entire directory, this will work recursively on all its

contents.

$ touch newfile.txt

$ cp outsider.txt

$ svn status

? newfile.txt

? outsider.txt

$ svn add newfile.txt outsider.txt

A newfile.txt

A outsider.txt

$ svn commit –m “1st commit” newfile.txt outsider.txt
Adding new_script.sh

Transmitting file data

Committed revision 12083.

Version 1.2, Jan. 2013 Subversion 24/64 WW Winter School 2013

Deleting files

Deleting using local command has no effect to versioning.

Versioning requires svn command, which also deletes the

file from your working copy.

Local delete does not affect repository: commit required!

$ rm old_script.sh

$ svn status

! old_script.sh

$ svn delete old_script.sh

D old_script.sh

$ svn commit –m “Removed file”
old_script.sh

Deleting old_script.sh

Transmitting file data

Committed revision 12084.

Version 1.2, Jan. 2013 Subversion 25/64 WW Winter School 2013

But I didn’t want to delete it!

If you svn deleted now want it back to have it available in

future revisions/checkouts, need to undo the commit.

This can be done using svn merge but specifying the

revision numbers in reverse order (reverse merge).

$ svn merge –r12084:12083 .

--- Reverse-merging r12084 into '.':

A old_script.sh

$ svn status

A + old_script.sh

$ svn commit –m “undoing deletion in r12084”
Adding old_script.sh

Transmitting file data

Committed revision r12087.

Version 1.2, Jan. 2013 Subversion 26/64 WW Winter School 2013

Undoing local changes

If you haven’t committed changes: svn revert

If there are no targets, svn revert will do nothing.

IOW: revert will make you lose any local changes you
have made.

$ svn status changed_script.sh

added_script.sh

A added_script.sh

M changed_script.sh

$ svn revert changed_script.sh

added_script.sh

Reverted ‘changed_script.sh’
Reverted ‘added_script.sh’

Version 1.2, Jan. 2013 Subversion 27/64 WW Winter School 2013

Checking file status

svn status check the status of a file in your working copy:

 Check if you have made any local changes.

 Check for new changes in the repository (-u flag)

Local-changes case:

$ svn status

? SensorInfo

! source.comment

M osrf__load_viirs.pro

D viirs-i_npp-S1-04.inp

A viirs-iS1

A + viirs-iS1/viirs-i_npp-04.inp

The “?” indicates this is an

unversioned file in your

working copy.

The “!” indicates this is a

versioned file that is missing

from your working copy.

The “M” indicates this file has

been locally modified.

The “D” and “A” indicate

these are versioned files that

have been scheduled for

deletion and addition

respectively.

The “A” with the “+” in the 4th column indicates this

file has been scheduled for addition with history.

Version 1.2, Jan. 2013 Subversion 28/64 WW Winter School 2013

Checking file status

Use svn status to check for changes in the repository:

$ svn status --show-updates #or -u

M 10564 CRTM_Fastem4.f90

? Reflection_Correction.f90

 * 9675 SensorInfo/SensorInfo

 * 9675 MW_SensorData/MW_SensorData_Define.f90

 * Create_SpcCoeff/Create_SpcCoeff.f90

 * Create_SpcCoeff/Makefile

 * Create_SpcCoeff/make.dependencies

Status against revision: 10738

28

With a trailing revision number, the

8th column ‘*’ indicates the local file

is outdated (there’s a newer version

in the repository).

With no trailing revision number,

the ‘*’ in 8th column indicates a

file was added to the repository,

but never existed in the working

copy.

Version 1.2, Jan. 2013 Subversion 29/64 WW Winter School 2013

Updating files

After changes are done, you want to commit them to the

repository, but what if another user has changed and

committed the same file(s)?

 Communication between developers is important

 Use of svn status helps the process

Subversion handles this potential “overlap” by requiring you

to update your working copy to the current repository

version before you can commit.

This merges changes (assuming no conflicts) found in the

repository (only run_modelX.sh) into your working copy.

$ svn update run_modelX.sh

U run_modelX.sh

Updated to revision 12034

Version 1.2, Jan. 2013 Subversion 30/64 WW Winter School 2013

Updating files: solving conflicts

What if your svn update subcommand produces the following:

Look at the svn status output:

$ svn update run_modelX.sh

C run_modelX.sh

Updated to revision 12034

$ svn status

? run_modelX.sh.mine

? run_modelX.sh.r11987

? run_modelX.sh.r12034

C run_modelX.sh

The file as it existed in your working

copy prior to the update

This is the file that was the BASE

revision before the update. That is,

the file that was checked out before

the latest edits.

This is the file that the Subversion

client just received from the server

due to the update. This file

corresponds to the HEAD revision of

the repository.

The merged file containing the

conflict between conflict markers:

>>>>>

=====

<<<<<

Version 1.2, Jan. 2013 Subversion 31/64 WW Winter School 2013

Updating files
What if there is a conflict?

To resolve conflicts we use svn resolve with --accept

1. To keep the version that you last checked out before your
edits (in example the .r11987 file), use base argument

2. To keep the version that contains only your edits (the
.mine file), use the mine-full argument

3. To keep version update pulled from the server (.r12034

file, discards all your edits), use theirs-full

4. To edit the conflicted text “by hand” (follow conflict
markers) and use working

$ svn resolve --accept base run_modelX.sh

Resolved conflicted state of run_modelX.sh

$ svn resolve --accept theirs-full run_modelX.sh

$ svn resolve --accept mine-full run_modelX.sh

$ svn resolve --accept working run_modelX.sh

Version 1.2, Jan. 2013 Subversion 32/64 WW Winter School 2013

Updating files
What if there is a conflict?

Another option is to throw out your changes and start your
edits over again, run svn revert

If you choose to revert to avoid the conflict, you do not
have to run the svn resolve subcommand.

Remember though: Using svn revert will discard all

your local edits!

$ svn revert run_modelX.sh

Reverted ‘run_modelX.sh’

Version 1.2, Jan. 2013 Subversion 33/64 WW Winter School 2013

Committing files

When working copy is up to date, commit changes to the
repository using svn commit

Subversion will start an editor allowing you to enter a log

message that describes the change.

 Briefly describe changes and why they were made.

 Shared format allows logs to become ChangeLog files.

Exiting the editor, Subversion will commit changes to the

repository, where they will become the latest version of the

shared code, visible to all users.

$ svn commit run_modelX.sh

 <enter log message>
Sending run_modelX.sh

Transmitting file data

Committed revision 12078.

Version 1.2, Jan. 2013 Subversion 34/64 WW Winter School 2013

Trunk to branch merges: Why?

Best Practice: Frequent updates on branches minimize
the likelihood of conflicts (the branch will be merged
back into the trunk someday, right?)

 Usually referred to as “sync” [with the trunk]

 Also makes available to the branch any updates or bug-
fixes that have been implemented in the trunk (or merged
into the trunk from a different branch.)

 Each development team needs to determine the “best”
frequency of regular trunkbranch updates. Once a week?

First merges may be a painful experience, but persistence
pays off for all!
 Next: Zen & the Art of Merging (or, How is it done, now?!)

Version 1.2, Jan. 2013 Subversion 35/64 WW Winter School 2013

What is merging? (1)

From the Subversion manual:

 Subversion’s differencing algorithms work on text

(including non-English, non-Roman alphabet languages

apparently) as well as binary files.

 Even though subversion’s diff subcommand only provides

output for textual differences, internally subversion can

handle binary file differences efficiently between versions.

The main source of confusion is the name of the

command. The term “merge” somehow denotes that

branches are combined together, or that there's some sort

of mysterious blending of data going on. That's not the

case. A better name for the command might have been

 svn diff-and-apply

because that's all that happens: two repository trees are

compared, and the diffs are applied to a working copy.

Version 1.2, Jan. 2013 Subversion 36/64 WW Winter School 2013

Merge command syntax (v1.4)

Examples of svn merge:

 Specifying all three arguments explicitly

 Shorthand (comparing two different revisions of same URL)

 Working-copy argument optional (defaults to current directory)

$ svn merge \

 http://svnemc.ncep.noaa.gov/projects/modelX/trunk@100 \

 http://svnemc.ncep.noaa.gov/projects/modelX/trunk@200 \

 my-branch-working-copy

$ svn merge -r 100:200 \

 http://svnemc.ncep.noaa.gov/projects/trunk

$ svn merge -r 100:200 \

 http://svnemc.ncep.noaa.gov/projects/trunk \

 my-branch-working-copy

We’ll be discussing this form for the trunk-to-branch merging

Version 1.2, Jan. 2013 Subversion 37/64 WW Winter School 2013

Merging the first time (1)

1. Determine the trunk revision from which the branch
was created; let’s say it was 1000.

2. Determine the current trunk revision in repository; say it
is 1050 (svn also recognises HEAD for this case).

3. Test the merge subcommand with --dry-run switch,

 This will list all the changes that will occur, without

actually doing anything to your branch working copy, so

you can see if there are any conflicts.

$ svn merge --dry-run \

 -r 1001:1050 \

 https://.../projects/modelX/trunk .

Version 1.2, Jan. 2013 Subversion 38/64 WW Winter School 2013

Merging the first time (2)

4. If there are no conflicts, or their number is reasonable
(more later), reissue merge without the --dry-run

switch to perform the merge in your branch working copy.

5. Deal with any files in conflict and resolve them.

6. Commit the merge changes with a useful log message.

$ svn commit -m \

“Synced EXP-TestX branch with latest trunk r1001:1050”

Version 1.2, Jan. 2013 Subversion 39/64 WW Winter School 2013

r1001

EXP-TestX

Merging the first time (3)

Trunk
r1000

r1010 r1021

r1015 r1050

r1054

$ svn merge –r 1000:1050 https://.../trunk .

$ svn commit –m “EXP-TestX branch. Merged trunk r1001:1050”

The Art of Merging (or, how was that done, now?!)

Work copy (local)

commit
svn commit

svn merge

svn co

svn cp

Version 1.2, Jan. 2013 Subversion 40/64 WW Winter School 2013

Trunk to branch merges: Next time

1. Determine the end revision of the last trunk merge into

the branch by looking at the log message for the branch,

 In our example that was 1050.

2. Follow the same procedure as for the first time.

Without manually tracking the merged revisions in the

commit log message, there is no simple way to determine

which revisions from the trunk have been merged!

If you remerge previously merged revisions, you will typically

get many, many conflicts. If this happens, it’s a clue that

the merge revision range is probably incorrect.

$ svn log | more

40

v1.4

Version 1.2, Jan. 2013 Subversion 41/64 WW Winter School 2013

Handling merge conflicts (1)

What if your svn merge produces the following:

Look at the svn status output:

41

$ svn status

? run_modelX.sh.working

? run_modelX.sh.merge-left.r1001

? run_modelX.sh.merge-right.r1050

C run_modelX.sh

The file as it existed in

your working copy prior

to the merge.

This is the initial, or

“left”, side of the double

tree comparison.

This is the final, or

“right”, side of the

double tree comparison.

Merged file with the conflict

between conflict markers:

>>>>>

=====

<<<<<

$ svn merge -r 1001:1050 \

 https://.../projects/modelX/trunk .

C run_modelX.sh

Version 1.2, Jan. 2013 Subversion 42/64 WW Winter School 2013

Handling merge conflicts (2)

To resolve the conflict svn resolve with --accept

1. To keep the version that exists in your branch, use
the mine-full or mine-conflict argument

2. To keep the version that was pulled from the trunk,
use theirs-full or theirs-conflict

3. To edit the conflicted text “by hand” (follow conflict
markers) and use working

4. Typically, you never want to use the base argument

in this case.

42

$ svn resolve --accept theirs-full run_modelX.sh

$ svn resolve --accept mine-full run_modelX.sh

$ svn resolve --accept working run_modelX.sh

Version 1.2, Jan. 2013 Subversion 43/64 WW Winter School 2013

The TRAC Wiki

 The TRAC wiki: using your new friend to help out understanding

what’s going on

 Directly linked with svn repository change log

 Real-time availability of information about repository dynamics

 Major features

 General information page (wiki)

 Timeline

 Roadmap: milestones, model versions

 Browse source

View repository structure

View change sets and logs

 Tickets

Viewing

Opening new

Version 1.2, Jan. 2013 Subversion 44/64 WW Winter School 2013

Best practices

 For those who want to modify / contribute to WAVEWATCH

III, a best practices guide is available.

 Link via the wiki page of the SVN TRAC

 Note that as a part of the license, additions made to the

model have to be offered to NCEP for inclusion in future

model distributions.

 Best practices cover :

 Programming style

 Adding to the model.

 Manual and documentation.

 Subversion repository.

 Regression testing.

Best practices guide

Version 1.2, Jan. 2013 Subversion 45/64 WW Winter School 2013

Best practices

Common SVN Server Practice

 Server will follow the structure:

 trunk – will contain the “developed” WW3 version

 branches – contain the under-development codes

 tags – contain relevant static copies, snapshots of the

trunk (before branch reintegrations etc)

 sandbox – area for development that may diverge from

trunk

 released – area for tags pointing to release versions

Version 1.2, Jan. 2013 Subversion 46/64 WW Winter School 2013

Best practices

Common SVN Server Practice

 Branch philosophy

 Active development areas

 Should remain in sync with the trunk

Regular sync

Sync after new trunk is announced

 Should only be created by admins

 Will be full copies of the trunk

 Contain preferably only one development item (ie, ST4,

BT4, nonlinear interactions, multigrid, esmf, nrltest etc)

Branch names will reflect such “function”

If changes require new switch: request to admins

 Recommend: local copies should be full branch copies

Use the install_ww3_svn_trunk script

Version 1.2, Jan. 2013 Subversion 47/64 WW Winter School 2013

Best practices

Stable version complete: back to trunk

 Before reintegration

 Branch is fully tested

 Branch is in sync with the latest trunk

 Communicate to admins that a branch reintegration is

needed/imminent with some notice (at least a few days)

Branch reintegration can only be done by svn admins

 After reintegration

 Any conflicts should be solved by the admins

 But these will not exist since you will have tested, right?

 The clean new trunk on a local admin copy will be

regression tested

 All good, the new local trunk is committed (we go out for

beers and one ginger ale)

 All branches are synced with the new trunk

Version 1.2, Jan. 2013 Subversion 48/64 WW Winter School 2013

Best practices

Common SVN Server Practice

 Bugfixes

 Special case of changes to code

 Developers should communicate bugs that are common

to other parts of the code

 A Ticket will be created

 A branch will be created for fixing that bug

 The branch will be reintegrated to trunk

 The bugfix will be propagated to all branches via regular

synchronizations

Version 1.2, Jan. 2013 Subversion 49/64 WW Winter School 2013

Best practices

Programming style:

 Use WAVEWATCH III documentation style (see templates).

 Developers, responsible for integration in the data structure:

do only after rigorous testing of self-contained system.

 Use coding style:

 Free format but layout as in old fixed format.

 Upper case for permanent code, lower case for

temporarily code.

 Maintain update log at header for documentation.

 Embed all subroutines in modules or main programs, using

naming convention outlined before.

 Follow FORTRAN 90 standard, with best practices as

outlined in section 2 of the guide.

Version 1.2, Jan. 2013 Subversion 50/64 WW Winter School 2013

Best practices

Manual and documentation.

 Provide full LaTeX documentation for inclusion in the

manual:

 NCEP svn users have access to manual, and are

expected to add to it directly.

NCEP will provide editing.

 Others provide separate files.

NCEP will integrate.

 Use BibTEX.

 Use dynamic references to equations, figures and tables

only.

Version 1.2, Jan. 2013 Subversion 51/64 WW Winter School 2013

Best practices

Testing

 Regression testing are based on previous WAVEWATCH III

tests and new materials and tools provided by Erick Rogers

and Tim Campbell from NRL Stennis.

 nrltest, will replace current test directory in near future

Version 1.2, Jan. 2013 Subversion 52/64 WW Winter School 2013

The end

End of lecture

