Irregular grids

W. Erick Rogers
Oceanography Division
Naval Research Laboratory
Stennis Space Center, MS

The WAVEWATCH III Team + friends
Marine Modeling and Analysis Branch
NOAA / NWS / NCEP / EMC

NCEP.list.WAVEWATCH@NOAA.gov
NCEP.list.waves@NOAA.gov
Outline

Covered in this lecture:

- Introduction to grid types, with focus on irregular grids
- Documentation
- User input
- Calculation method
- Example applications
 - Cartesian (meters) grids
 - Spherical (degrees) grids
- Multi-grid implementation
 - Methods
 - Example application: Arctic grids
Grid types: introduction

- **regular grids**
 - WW3 v3.14 is limited to these types
 - user specifies x0,y0,dx,dy,nx,ny
 - this describes x(i) and y(j)

- **irregular grids**
 - new in v4.01 (in development trunk)
 - user specifies x(i,j) and y(i,j)

- **unstructured grids**
 - new in v4.xx (in development trunk)
 - user specifies a “GMESH” grid file containing node and element lists.

All three can be applied with spherical (degrees lat/lon) or Cartesian (meters) coordinate system.
Grid methods: overview

NCEP (NWS): multi-grid modeling

NCEP (NWS): regular grids w/irregular boundaries (coastal domains)

NRL: ESMF integration

NRL: irregular (e.g. curvilinear) grids

Ifremer (France): unstructured grids

version control
Grid types: introduction

- regular grids
 - most primitive type of grid
 - traditionally this type of grid is wasteful, e.g. high resolution where it isn’t required
 - …but with WW3, this isn’t actually the case (example shown of coastal grid)
Grid types: introduction

- irregular grids
 - common type: coastline following grid.
 - effective for simple coastlines
 - not as effective with islands in grid
 - another common type: larger scale grids designed so that grid spacing is roughly uniform in real distances (example shown)
 - commonly used by meteorologists
Grid types: introduction

- unstructured grids
 - highly effective in cases with islands etc. scattered around the grid
 - better resolution in shallow water
 - not uncommon w/circulation models
 - specialized software used to create grids
 - mass conservation is often a special difficulty (though not necessarily in WW3 implementation)
Irregular grids: introduction

Logically rectangular \((i,j)\)

- user specifies \(x(i,j)\) and \(y(i,j)\), \(i=1..ni, j=1..nj\)
- “i-axis” can be oriented in any direction at various points of the grids, and similar for “j-axis” (not tied to x or y). Formally, these are the “p” and “q” axes.
Irregular grids: documentation

Rogers and Campbell (NRL Memorandum Report, 2009)

Other documentation:
1) WW3 manual, section on “curvilinear grids”
2) WW3 manual, section on the “grid preprocessor”
3) /inp/ww3_grid.inp
User input

Within `ww3_grid.inp`,

- regular grids are referred to here as “rectilinear grids” (RECT)
- irregular grids are referred to as “curvilinear grids” (CURV)
Basic mathematical approach

Method taken from Petit, van Vledder, as used in “PHIDIAS” model

\[
\frac{\partial x}{\partial p} \approx 0.5(x_{i+1,j} - x_{i-1,j}) \\
\frac{\partial y}{\partial p} \approx 0.5(y_{i+1,j} - y_{i-1,j}) \\
\frac{\partial x}{\partial q} \approx 0.5(x_{i,j+1} - x_{i,j-1}) \\
\frac{\partial y}{\partial q} \approx 0.5(y_{i,j+1} - y_{i,j-1})
\]

Recall that:
- \(p \) corresponds to \(i \)
- \(q \) corresponds to \(j \)

\[
\sqrt{G} = \frac{\partial x}{\partial p} \frac{\partial y}{\partial q} - \frac{\partial x}{\partial q} \frac{\partial y}{\partial p}
\]

This is the Jacobian used to modify wave action density and wave propagation velocity in the propagation routine.

For the special case of a regular grid, these derivatives become:

\[
\left(\frac{\partial p}{\partial x} \right)_{\text{rect}} = \frac{1}{\Delta x} ; \quad \left(\frac{\partial p}{\partial y} \right)_{\text{rect}} = 0 ; \quad \left(\frac{\partial q}{\partial x} \right)_{\text{rect}} = 0 ; \quad \text{and} \quad \left(\frac{\partial q}{\partial y} \right)_{\text{rect}} = \frac{1}{\Delta y}
\]
Irregular grids: introduction

Logically rectangular \((i,j)\)

- user specifies \(x(i,j)\) and \(y(i,j)\), \(i=1..ni, j=1..nj\)
- “\(i\)-axis” can be oriented in any direction at various points of the grids, and similar for “\(j\)-axis” (not tied to \(x\) or \(y\)). Formally, these are the “\(p\)” and “\(q\)” axes.
example applications

Cartesian (meters) grid example

Animation: WW3 result without GSE correction (PR2 diffusion strength=0)
Cartesian (meters) grid example

Δt=90 s

WW3 result without GSE correction (PR2 diffusion strength=0.5 hrs)
Example applications

Cartesian (meters) grid example

\[\Delta t = 90 \text{ s} \]

WW3 result without GSE correction (PR2 diffusion strength=1 hrs)
example applications

Cartesian (meters) grid example

Δt=90 s

WW3 result without GSE correction (PR2 diffusion strength=2 hrs)
Cartesian (meters) grid example

WW3 result without GSE correction (PR2 diffusion strength=4 hrs)

$\Delta t=90\ s$
Cartesian (meters) grid example

WW3 result without GSE correction (PR2 diffusion strength=24 hrs)

Δt=10 s
Lambert Conformal grid example

Grid here corresponds to COAMPS (atmospheric model) grid

Resolution ~ 0.2°
One-way nesting (ww3_shel) with irregular grid

Animation: WW3 propagation (boundary forcing only) on Lambert Conformal EPAC grid. Waveheight in meters.

Resolution ~ 0.2°
The standard operational FNMOC global WW3 model, Arctic view. This model is on a regular 0.5° grid. The model stops at 78° N because the convergence of the meridians implies that resolution in real space becomes higher near the poles; due to the conditionally stable propagation scheme of WW3, extending the grid further north would require that the model use a smaller time step for the entire global grid (i.e. significant waste of computational resources).
example applications

Polar stereographic grid example

Bathymetry for wave model mapped onto COAMPS polar stereographic (curvilinear) grid. Depths in meters.
Example applications

Polar stereographic grid example

Figure: Waveheight in meters. Initial condition for WW3 propagation test on same grid as used by FNMOC Arctic COAMPS \([nx=ny=361; \text{spacing} \sim 20 \text{ km}]\). Hypothetical scenario: Arctic is ice-free south of 88° N.
example applications

Polar stereographic grid example

Figure: WW3 propagation test after 17 hrs. Waveheight in meters.
example applications

Polar stereographic grid example

Convergence of meridians leads to stability problems for conventional (regular) grids. No such issues here.

Animation: WW3 propagation and source term test on COAMPS Arctic grid. Waveheight in meters.
Polar stereographic grid example

Unresolved singularity at North Pole. (Dev. team needs to generalize model equations to allow alternate references for directional distribution of wave spectra.)

Figure: WW3 propagation test after 8 hrs with relatively coarse directional resolution (30°). Waveheight in meters.
Model features: timeline

Multi-grid or “mosaic grid” feature in WAVEWATCH III
Available in the last public release (v3.14)

Irregular-grid feature in WAVEWATCH III
Implemented in code in 2008 (Rogers and Campbell, NRL report 2009).
Exists in NCEP WW3 development code trunk (v4.01)

Irregular-grid feature & multi-grid working simultaneously* (2011)
Exists in NCEP WW3 development code trunk (v4.10)

Unstructured grids & multi-grid working simultaneously*
Exists in NCEP WW3 development code branch (v4.11+)

*equal rank grids not permitted (not coded yet)
Simultaneous use of multi-grid and irregular grid features

- Primary challenge: conservative remapping
- Method used: Jones (MWR 1999)
- This exists as “SCRIP”, 3rd party software optionally compiled with (and called from) WW3
- SCRIP is serial-only: will likely be phased out as ESMF layer is fully implemented within WW3
- ESMF = Earth System Modeling Framework, has parallel conservative remapping routines

Figure: conservative remapping from Jones (MWR 1999)
Simultaneous use of multi-grid and irregular grid features

WAVEWATCH III: code adapted to allow use of curvilinear and multi-grid features simultaneously

Animation: WW3 two-way nesting test (propagation only) with COAMPS Arctic grid (~16 km resolution) and a simplified global grid. Waveheight in meters.
Simultaneous use of multi-grid and irregular grid features

New system: WW3 two-way nesting test (propagation + wind + ice) with COAMPS Arctic grid (~16 km resolution) and full (0.5°) global grid. Waveheight in meters. The regular (global) grid is plotted. Masked areas are shown in green and include: land, ice, and areas covered by the curvilinear grid. Thus, the global model is not computing in areas covered by the Arctic grid (read: increased efficiency).

Result at May 25 2009 12Z, after a 12 hour simulation (from cold start). The boundary of the Arctic grid is shown with a magenta line. Ice is taken from PIPS and winds are taken from NOGAPS. Thus, this setup is very similar to what it would be for an operational model.
Simultaneous use of multi-grid and irregular grid features

Figure: Results within the Arctic grid. Masked areas are denoted as either:
- land (green)
- or ice with concentration of 0.75 or greater (white).

Magenta line indicates 78 deg N, which is the upper limit of the operational global WW3 at FNMOC.

Wave energy propagates in both directions across the boundaries between the regional grid shown here and the global grid. The grids run simultaneously within the same machine executable.
warnings

Cautions, warnings, and things that won’t work:

- Irregular grids: traditional CFL limitations still apply.
- Arctic grids: as noted earlier, singularity a North Pole: user should mask region north of 88 or 89° until this is addressed.
- Multi-grid + irregular grids: exchanges between equal-rank grids not implemented yet; for forcing fields, “native grid” method should be used vs. “input grid” methods (latter still to be implemented).
- Multi-grid + unstructured grids: working in serial mode in dev branch but under quarantine since mpi hangs with this version.
- Pre-calculation of weights: in development.
The end

End of lecture