
Version 1.3, Feb. 11, 2013

4.1.1

WW3 Tutorial 4.1: compile and run with MPI

Purpose

In this tutorial exercise we will go through the steps of compiling WAVEWATCH III
®
 for both single-

and multi-processor (MPI) compute environments. It expands on the day 1 exercise where the code is

compiled for single-processor applications only. We will then go through some interactive model runs

to see how the code works in the different environments.

Tutorial material

Part of this exercise will be run from the standard work directory of WW3. If the code is installed in the

directory ~/wwatch3, then this work directory is ~/wwatch3/work. In this directory, links to the

comp and link scripts are already available. Also used are the w3_make and make_MPI scripts

from the wwatch3/bin directory. Links to these scripts in the work directory can easily be made by

executing

 cd ~/wwatch3/work

 ln3 w3_make

 ln3 make_MPI

Additional test are using the example input files in this directory. For convenience, copies of these files

are provided in the directory day_4/tutorial_MPI. These files represent standard input files, as

well as a script to clean up the directory, and comp and link scipts for MPI on the machine available

for the winter school.

 clean.sh

 switch

 ww3_grid.inp

 ww3_prep.inp

 ww3_strt.inp

 ww3_shel.inp

 ww3_outf.inp

 ww3_outp.inp

 comp.UMD

 link.UMD

Basic compilation

The basic compilation of WW3 has already been addressed in the tutorials of day 1. Whenever a

version of WW3 is installed, the comp and link scripts need to be adapted to the actual compiler, and

the switch file identifies compile-time model options, including switches for shared and distributed

memory options. As a preparation for setting up the model for distributed computations using MPI, we

will first compile and test all codes in a shared-memory environment. In the switch file, the shared

memory environment is identified using the SHRD switch (see switch file contents on the following

lines).

F90 NOGRB LRB4 SHRD NOPA PR3 FLX2 LN1 ST2 STAB2 NL1 BT1 DB1 MLIM

TR0 BS0 XX0 WNX1 WNT1 CRX1 CRT1 O0 O1 O2 O3 O4 O5 O6 O7 O11 O14

Version 1.3, Feb. 11, 2013

4.1.2

After copying the file to the proper location expected by the compile scripts, the standard compile

command

cp switch ~/wwatch3/bin/.

w3_make

will compile all WW3 executables for shared-memory execution. After all codes have been compiled

correctly (output not reproduced here again), go to the day_4/tutorial_MPI directory to test the

codes and to generate some benchmark results to test the MPI implementation against. Program outputs

are not reproduced here, and the output post-processors are run twice, once to see the output on the

screen, and once to generate a baseline results file that can be used for later comparison with the results

from the MPI model run. Similarly, the log file from ww3_shel is saved.

 cd ~/day_4/tutorial_MPI

 ww3_grid

 ww3_prep

 ww3_strt

 ww3_shel

 cp log.ww3 log.tst

 ww3_outp

 ww3_outp > ww3_outp.tst

 ww3_outf

 ww3_outf > ww3_outf.tst

MPI basics

MPI is a standard way to communicate between processors in a distributed memory compute

environment. Whereas MPI as a `language’ is highly standardized, MPI implementations on various

computers are not. Compiling with MPI and executing MPI codes is, therefore, unfortunately rather

system dependent. Here we will cover the three basic steps needed to compile and run using MPI:

1) Let WW3 know that you want to use MPI.

2) Compile with the proper MPI libraries.

3) Execute WW3 in the proper parallel compute environment.

The first step is simple and independent of the compute environment. In the switch file, the switch

SHRD for “shared” needs to be replaced by two switched, DIST for “distributed”, and MPI for using

standard MPI coded. The default switch file thus needs to be modified as follows (in the

~/wwatch3/bin or ~/wwatch3/work directory):

F90 NOGRB LRB4 DIST MPI NOPA PR3 FLX2 LN1 ST2 STAB2 NL1 BT1 DB1

MLIM TR0 BS0 XX0 WNX1 WNT1 CRX1 CRT1 O0 O1 O2 O3 O4 O5 O6 O7 O11

O14

The second step is depending on the way in which MPI is implemented on your computer, and

generally requires modifications to the comp and link scripts. In these scripts, and environment

variable $mpi_mod is set and used to point to the proper compiler wrappers, is such wrappers are

available. An example of a small piece of code from the comp script using Portland and a MPI compile

wrapper looks like this (this is the way it works at the UMD cluster)

Version 1.3, Feb. 11, 2013

4.1.3

 if ["$mpi_mod" = 'yes']
 then

 comp=mpif90

 else

 comp=pgf90

 fi

If such a wrapper is not available, you will generally have to link the proper libraries “manually”. An

example is given here for the Lahey compiler on NOAA’s Zeus R&D SGI cluster. Note that $opt

represents the compiler options used in the comp script.

 if ["$mpi_mod" = 'yes']

 then

 comp=lf95

 opt=”$opt –L${MPI_ROOT}/lib –lmpi –I${MPI_ROOT}/include”

 else

 comp=lf95

 fi

Fortunately once you have figured this out, you will not have to update it, unless compilers and libraries

are updated. The final step is to execute these codes in the proper parallel compute environment. This

typically involves compute resource management, and is often done through batch processing. Many

Linux implementations (like on UMD cluster) use a command like (sometimes needing full that on

executable)

 mpirun –np 12 ww3_shel

to execute the ww3_shel program under MPI, in this case using 12 processors. There are, however,

many different syntaxes for many different implementations, so you will have to learn the proper way

of doing this on your own hardware.

There is no way that we can cover all possibilities here. Therefore, we have provided a comp and link

script that work on the test system available for the workshop. We will work from these focusing on

functionality and basic principles, but not on details of MPI implementations. Note that these script

were already used on day 1.

MPI compilation (setup)

Above, we have already compiled all code for shared memory (single processor) execution. To prepare

for compilation using MPI, we need to modify the switch, comp and link scripts in the WW3

directories. We will start with replacing the comp and link scripts with those provided with the

tutorial.

 cd ~/wwatch3/bin

 cp ~/day_4/tutorial_MPI/comp.UMD comp

 cp ~/day_4/tutorial_MPI/link.UMD link

 cd ../work

Version 1.3, Feb. 11, 2013

4.1.4

This sets up the compiler correctly.

MPI compilation (manual)

In the switch file in the ~/wwatch3/work directory, we now need to replace the SHRD switch with

the DIST and MPI switches, as shown above. With this, w3_make will automatically recompile all

subroutines used, as they may contain MPI code or includes. Here it is sufficient to cat the compile

command for a single code (ww3_shel) only. Other parallel codes cloud be ww3_multi,

ww3_strt and ww3_sbs1.

 w3_make ww3_shel

Part of the output of this command is duplicated below. Note the highlighted script output.

 *** compiling WAVEWATCH III ***

 Scratch directory :

 Save source codes : yes

 Save listings : yes

 Making makefile ...

 new shared / distributed memory

 new message passing protocol

 Checking all subroutines for modules (this may take a while) ...

 Processing ww3_shel

 ad3 : processing w3servmd

 ad3 : processing w3gsrumd

 ad3 : processing w3fldsmd

 ad3 : processing ww3_shel

 Linking ww3_shel

 *** end of compilation ***

MPI compilation (automated)

Because going back and forth between shared and distributed codes happens a lot during model

development, the MPI compilation has been automated in a single script

Version 1.3, Feb. 11, 2013

4.1.5

 make_MPI

This script manipulates the switch file, and uses w3_new and w3_make to get all codes compiled as

needed. Note that minor editing at the end of the script defied the status of the switch file at the end

of running this script. This is fairly short script. Edit it to take a look inside. Note the file lists, which we

regularly edit as needed for the development work we are doing. The output of this script is mainly

output from w3_make, and is not reproduced here.

Testing and MPI model setup

After having run make_MPI above, most codes are compiled for traditional execution, whereas

ww3_shel and ww3_multi are set up for MPI execution. We can now redo previous interactive

computations. First we will go to the proper directory, and clean up all files except for the benchmark

(.tst) files.

 cd day_4/tutorial_MPI

 clean.sh

Now we will run the same sequence of codes are run above to generate the benchmark data, with the

exception of running ww3_shel under MPI. As mentioned above, the syntax of executing the latter

program is high system dependent. The diff command should show that there are no differences in

results between running the code on 1 or more processors.

 ww3_grid

 ww3_prep

 ww3_strt

 mpirun –np 12 ww3_shel

 ww3_outf

 ww3_outf > ww3_outf.out

 diff ww3_outf.tst ww3_outf.out

 ww3_outp

 ww3_outp > ww3_outp.out

 diff ww3_outp.tst ww3_outp.out

It is also interesting to compere the log.ww3 and log.tst files. The files should be identical with

the exception of the elapsed time at the bottom. As this is a very small problem, do not be surprised if

running under MPI does not give much benefit here. After playing with this , the tutorial directory can

be cleaned up by executing

 clean.sh all

Pitfalls and common errors.

Running an MPI code without a parallel environment:

When attempting to run a code compiled for MPI without using a parallel environment usually leads to

a terminal error in MPI identifying that the parallel environment is not properly set. The error message

may have many different forms, often mentioning that node resource data is not available.

Version 1.3, Feb. 11, 2013

4.1.6

Running an single processor code in a parallel (MPI) environment:

This will not always give an error or program abort. The code will just run as slow as a single processor

code, or even much slower due to IO conflicts. The way in which this situation is easily identified, is

that it represents a case where the entire code is run on each processor individually, and hence produces

output for each processor individually. If this is done on 12 processors, each output line will be

reproduced 12 times, in a somewhat scrambled format. On some of the NOAA machines, this will not

execute at all, but give a convoluted error message.

Compile looks OK, but code does not run / freezes:

If this is a developmental code from the svn server, there may well be an error in the code. If this is a

well-tested distributed version of the code, it is also likely that there is a problem with the MPI

implementation on your machine. Case and point, several years ago IBM managed to break our

operational wave models with a “transparent” upgrade to MPI. Last moth, we needed a special MPI

environment set up to get our well established MPI codes to run on our new operational machines. If

something like this happens, contact both your IT support and us. It is good to try and debug, but it may

well be outside your (and our) capability to repair . . .

References

No references for this tutorial, other than the manual.

More information:

Hendrik Tolman (Hendrik.Tolman@NOAA.gov)

mailto:Hendrik.Tolman@NOAA.gov

