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WW3 Tutorial 2.1: Grid Generation 

Purpose 

The purpose of this exercise is to introduce users to a grid generation software called GRIDGEN (Chawla 

and Tolman, 2007) that has been developed specifically for generating grids that can be used for 

WAVEWATCH III applications. Please note: The grid generation software is a series of MATLAB 

routines that are used to create ASCII grid files that are then provided to ww3_grid to generate the 

specific model definition files. Some limited proficiency in MATLAB would be helpful in following along 

with the exercises but is not necessary  

 

Software 

 

The GRIDGEN software is distributed as a tar compressed file.  

 

 gridgen.tar.gz 

 

The first step is to change to home directory  and move this file there. Uncompress and untar the file 

using the following commands 

 

  gunzip gridgen.tar.gz 

  tar –xf gridgen.tar 

 

When uncompressed and untarred a gridgen directory should be created. This consists of three directories.  

 

reference_data/ 

This directory contains the reference data that is used to create the grid. It consists of two types of 

data – the high resolution bathymetric data that are stored in netcdf format and the coastal 

boundary polygons that are stored (at different resolutions) as MATLAB binary files (.mat 

format).(Note: The codes assume that the MATLAB version used has the ability to read netcdf 

files. This is part of the internal capability of MATLAB since v2009 (I think). If the particular 

version of MATLAB cannot read netcdf files then external programs for reading netcdf files can 

be found. Also the boundary polygons are currently limited to the ocean domain. Grids for lakes 

will have to be generated manually).  

bin/ 

This directory contains the individual matlab functions that make up the gridgen software 

package. See the manual and/or documentation in each of the functions to learn more about what 

each individual function does. 

examples/ 

This directory contains example matlab template files that show how the functions can be used to 

create the necessary grid files. Detailed comments are provided with the template files. These can 

be used as the starting points for creating grids. For the first exercise we shall step through the 

individual files for creating a grid.  
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The reference bathymetric data provided with this package are the global ETOPO1 and ETOPO2 data 

files in netcdf format. Users can use their own bathymetric data sets but will have to do one of two things. 

Either store the data in the same format as the provided netcdf bathymetric files, or change the algorithm 

of the bathymetry generating subroutine to accurately read the reference bathymetry. The coastal 

boundaries are stored Matlab binary files in a data structure form (loading any one of these files will 

provide the user with the form of the data structure). Users can use their own coastal polygons with this 

package as long as they are stored using the same format. For each boundary the coastal polygon is 

defined in an anti-clockwise pattern with the first and last points being the same (to effectively close the 

boundary).  

 

Generating a grid 

 

From the home directory create a working directory where the grids for this exercise shall be generated. 

Change to this directory and launch matlab 

 

  mkdir test_grid 

  cd test_grid 

  matlab & 

 

From here on the commands will be in the matlab environment. Most of the commands that we will go 

through step by step in this exercise are provided as template scripts in the examples directory. 

Step 1 Defining the parameters for generating a grid 

In all of the following steps $HOME shall refer to the users home directory. Individual users should 

replace $HOME with their full path. Set up the variables /path as follows 

 

 >> bin_dir = '$HOME/gridgen/bin'; 

   >> ref_dir = '$HOME/gridgen/reference_data'; 

   >> out_dir = pwd;  

   >> grid_box = [0 260 50 300]; 

 >> dx = 0.5; 

>> dy = 0.5; 

 

The array grid_box identifies the lower left corner (in lat, lon) and upper right corners of the desired 

grid. In GRIDGEN the coordinate system for longitudes goes from 0 to 360 to comply with the way the 

coastal boundary polygons are defined. The variables dx and dy refer to the grid resolution in longitude 

and latitude respectively. All units are in degrees.  

 

To allow for the GRIDGEN functions to be called from anywhere, add them to the path 

 

 >>  addpath(bin_dir,'-END'); 

 

Load the boundary mat file. The user has the option of choosing from several resolutions, with the grids 

being generated faster with the coarser boundaries. To facilitate faster computations we shall use coastal 



  Version 1.1, Jan. 10, 2013 

2.1.3 
 

boundaries with intermediate resolution in this exercise. (Best practice is to build grids with the full 

resolution boundaries) 

 

 >> load([ref_dir,'/coastal_bound_inter.mat']);  
 

Loading this boundary file should have generated a data structure array called bound. You can check 

the nature of the structure and the size of the array by typing bound without the semicolon at the end  

 

 >> bound 

 

The total number of polygons and the size of individual polygons will depend on the resolution set 

chosen. To get an idea of what this particular set looks like plot the polygons on a figure 

 

 >> figure(1);clf; 
>> for i = 1:41518 

   plot(bound(i).x,bound(i).y); 

   hold on; 
   end; 

 

The plot should look like Figure 1 

 
Figure 1: Boundary Polygons 

Step 2 Generating a bathymetry grid 

This is done using the function generate_grid. The raw bathymetric data is read from netcdf files in 

reference_data directory. The package comes with two sources of bathymetric data – etopo1.nc and 

etopo2.nc  

 

 >> prop=0.1; 

>> cut_off=0; 
>> dry_val=999; 

>>[lon,lat,depth]=generate_grid(ref_dir,'etopo1',grid_box,dx,dy,p

rop,cut_off,dry_val); 
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Bathymetry data has been generated here using the etopo1.nc dataset. The variable prop identifies the 

proportion of reference cells that should be ‘wet’ to identify the bathymetric cell as ‘wet’ (and hence 

compute their depths). The variable cut_off identifies the water depth below which the cells should be 

identified as ‘wet’ and the variable dry_val identifies the bathymetric value assigned to all the dry cells. 

The function returns two one dimensional arrays with the longitudes (lon) and latitudes (lat) and one 

two dimensional array with the depth values (depth). The bathymetric data is in m and everything else is 

in degrees.   

 

 >> figure(1);clf; 

>> d=depth;d(d==999)=nan;pcolor(lon,lat,d);shading flat;colorbar 

 

Plotting the bathymetric data should look like Figure 2. For aesthetic purposes dry cells have been 

marked as NaNs, which are not plotted in matlab. The negative values refer to depth below Mean Sea 

Level (MSL) 

 
Figure 2: Initial Bathymetry 

Step 3 Computing boundaries  

The boundaries now need to be identified within the computational domain, properly accounting for 

boundary closure and splitting of boundaries. We start with identifying a domain that is a little bigger 

than the actual domain (to account for the cells at the edges of the domain).  

 

 >> lon_start = lon(1)-dx; 

   >> lon_end = lon(end)+dx; 

   >> lat_start = lat(1)-dy; 

   >> lat_end = lat(end)+dy; 

>> coord = [lat_start lon_start lat_end lon_end];  

 

Now we compute the subset of boundaries within the domain using the command compute_boundary 

 

 [b,N] = compute_boundary(coord,bound); 
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Here b returns a data structure array of  the subset of boundaries that are generated using N and are the 

total number of boundaries generated. Note that bound are the original boundary polygons that have been 

loaded from the reference directory. Plotting the boundaries should yield a plot like Figure 3 

 

 >> figure(1);clf; 

>> for i = 1:N 
   plot(b(i).x,b(i).y); 

   hold on; 

   end; 

 

 
Figure 3: Coastal polygons within the boundary domain 

Step 4 Computing the mask 

The next step is to setup the land – sea mask. We start by using the bathymetry data set to identify the 

initial set of wet and dry cells.  

 

 >> m = ones(size(depth)); 

   >> loc = depth == 999; 

   >> m(loc) = 0; 

 

Plotting the initial mask should look like Figure 4 

 

 >> figure(1);clf; 

>> pcolor(lon,lat,m);shading flat;caxis([0 3]);colorbar 
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Figure 4: Initial Land - Sea mask 

This initial set is not used as the final land – sea mask because the reference bathymetry and the coastal 

boundaries are not always consistent. That is why when we build the bathymetric data set we over 

emphasize the wet cells (determined by the variable prop in the bathymetric generation section). At this 

stage we clean up the land – sea mask using the coastal boundaries b. This is done using the 

clean_mask function. This function checks all the wet cells that lie inside a coastal boundary and 

determines if it should be switched from wet to dry. The function works only for switching the wet cells 

to dry and not the other way around since for each wet cell a corresponding depth would have to be 

determined as well. It is important to note that this part of the grid generation routine should be skipped if 

building inundation grids, since then the users deliberately want cells that lie within the coastal polygons 

to be marked wet.  

The function checks what portion of each wet cell lies within the boundary polygons. This is one of the 

more computationally intensive parts of the software and the time taken for any search depends upon the 

number of points making up a particular polygon (the more the points the longer the search). To avoid 

that a boundary splitting routine has been developed that splits up the boundary polygons to more 

manageable levels 

 

 >> b_split = split_boundary(b,2); 

 

Where the second argument in split_boundary determines the width (or height) cut off limit (in 

degrees) above which the boundaries are split up into smaller chunks. Typical rule of thumb is to use a cut 

off limit that is at least 3 – 4 times the grid resolution. The split up boundary polygons should look like 

Figure 5..  

 

 >> Nb = length(b_split); 

>> figure(1);clf; 

>> for i = 1:Nb 
   plot(b_split(i).x,b_split(i).y); 

   hold on; 

      end; 
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Figure 5: Split up boundary polygons 

Now we are ready to run the clean up routine using the initial land – sea mask and the split boundary 

polygons. Once again like in  generate_grid the function uses a variable to identify a cut-off below 

which if the cell domain lies inside the polygon it is marked dry.  

 

 >> prop = 0.5; 

>> m2 = clean_mask(lon,lat,m,b_split,prop); 

 

Plotting this cleaned up version of the mask looks like Figure 6. Note that compared to the initial mask ( 

Figure 4) the cleaned up mask gets rid of the water bodies that make up the Great Lakes. This is because 

the Great Lakes are inside one of the coastal boundary polygons. Thus, one needs to be careful in trying 

to use this software for creating grids for lakes (such as Lake Victoria in the day 1 exercises).  

 

 >> figure(1);clf; 
>> pcolor(lon,lat,m2);shading flat;caxis([0 3]);colorbar 
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Figure 6: Mask after clean up 

To get an idea of how much faster it is to generate the clean up routine using the split boundaries try to 

generate the mask using the original boundaries. (You can either take this time to catch up on e-mail, or 

after waiting for 10 minutes use CTRL-C to quit and proceed to the next step). 

 

 m3 = clean_mask(lon,lat,m,b,prop); 

 

Step 5 Remove artificially generated lakes 

The mask clean up is still not complete. Note that in Figure 6 we have artificially generated lakes 

(isolated wet cell(s) that are not connected to the main body of water). These typically arise because either 

the grid resolution is not fine enough to adequately resolve land-sea margin, or the domain includes other 

water bodies (in this case part of the Pacific Ocean).  To remove these we use a function called  

 

 >> cell_limit = -1; 

>> glo = 0; 

>> [m3,mask_map] = remove_lake(m2,cell_limit,glo); 

 

This function finds all the different water bodies, and then uses the value of the variable cell_limit 

to determine what to do to the different water bodies. If cell_limit is a negative number then all but 

the largest water body are marked dry. If on the other hand it is a positive number then all water bodies 

with cells less than this are marked dry. The glo variable determines if the mask array is global (cells 

wrap around). A value of 0 indicates it is not. The  function returns two arrays, a modified mask and a two 

dimensional array with unique ids for the different water bodies.  After running through this function the 

new mask looks like Figure 7 

 

 >> figure(1);clf; 

>> pcolor(lon,lat,m3);shading flat;caxis([0 3]);colorbar 
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Figure 7: Land - Sea mask after clean up of separate water bodies 

In this case by removing all but the largest water body, the Pacific Ocean has also been removed. This is 

not a problem if the focus of the computation is the Atlantic Ocean. However, there may be applications 

where both basins are desired (for example, if this grid is nested with a global grid). You can then use the 

water bodies identified in mask_map to turn specific ones back to water. Plotting the mask_map 

yields Figure 8 

 

 >> pcolor(lon,lat,mask_map);shading flat;colorbar 

  

 
Figure 8: Different water bodies with unique ids 

Here the Pacific Ocean has a value of 1. The Pacific Ocean can then be switched back to 1 (However for 

this application we shall keep the Pacific Ocean masked out) 

 

 >> m3(mask_map == 1) = 1; 
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Step 6 Generating obstruction grids 

Obstruction grids are needed to remove energy from unresolved islands (Tolman, 2003). Once the land – 

sea mask has been adequately defined, together with the bathymetric data, the obstruction grid(s) can be 

determined for all the wet points. This is done using an algorithm that combines the land – sea mask with 

the boundary polygons (Chawla and Tolman, 2008). From the morning lectures we know that the 

obstruction grids can be generated by either   just considering the obstructions in the cell itself, 

considering obstructions in one neighbor, or considering obstructions in both neighbors.  

 

 >> left = 1; 

>> right = 1; 

>> [sx1,sy1] = create_obstr(lon,lat,b,m3,left,right);  

 

Here we have built the obstruction grids using both neighbors. Setting the variables (left, right) to 

0 ignores the respective neighbors. The obstruction grids are given by Figure 9 

 

 
Figure 9: Obstruction grids along x (left panel) and y (right panel) 

 

 

Step 7 Saving files 

Once the grids have been generated, they need to be saved in ascii files, that will later be read by 

ww3_grid to generate binary model definition files. Since ww3_grid allows for a scaling factor, we save 

these variables as integers. Typically we round bathymetric data to the third decimal place and the 

obstruction values to the second decimal place.  

 

 >> fname='watl_s'; 

 >> depth_scale = 1000; 

   >> obstr_scale = 100; 
   >> d = round((depth)*depth_scale); 

>> write_ww3file([out_dir,'/',fname,'.depth_ascii'],d);  

>> write_ww3file([out_dir,'/',fname,'.maskorig_ascii'],m3);  
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>> d1 = round((sx1)*obstr_scale); 

   >> d2 = round((sy1)*obstr_scale); 
   >> write_ww3obstr([out_dir,'/',fname,'.obstr_lev1'],d1,d2);  

>> write_ww3meta([out_dir,'/',fname],lon,lat,1/depth_scale,... 

                                            1/obstr_scale); 

 

There should now be 3 ascii data files for bathymetry, obstruction grids and mask. And one ascii meta file 

that shall be used to provide information to ww3_grid.inp file later. If you are building only a single grid 

model then this is the end of the GRIDGEN part. However, if you are building multiple grids then you 

will repeat this operation for each grid, and if the grids are communicating with each other, an additional 

step for boundary information. 

 

Building another grid using the template script 

 

Depending upon the application you are designing, you may have multiple grids that you need to work 

with (our operational global model uses 9 grids). Repeating the individual steps of the previous section 

can be a cumbersome task. Thus, GRIDGEN comes with example scripts to help do this in a convenient 

manner. For this exercise copy the create_grid_regional.m script from the examples directory 

to the working directory. We shall use this script to make a Northern Atlantic grid. Make the following 

changes to the script 

 Change the path names to the appropriate directories 

 Change the grid resolutions to 1 degree 

 Change the boundary type to ‘inter’ (if you prefer you can experiment with different resolution 

types) 

 Set the domain from (-10,250) to (75,355) 

 Change the boundary splitting resolution to an appropriate number 

 Change the file name prefix to ‘natl_1d’ (this will set the names for all saved files) 

 

Run the script and sit back for the grid to be generated. You can try different boundary types, set the 

domain differently, make the Pacific basin wet, etc. Figure 10 shows the land – sea mask for the natl_1d 

grid that was generated using create_grid_regional.m 
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Figure 10: Mask for natl_1d 

Setting up boundary conditions for multiple grids 

 

In the multi-grid approach, the inner nest grids need the mask files changed to appropriately set up the 

boundary cells (where the data from the coarser grids is obtained). Till now we have been working with 

mask values of 0 (land) and 1 (water). However, there are two additional values for the mask file that can 

be set – 2 (boundary points) and 3 (excluded points). [Note : The excluded points options are available 

only from version 3 and higher].At this point the user working directory should have two sets of grid files 

– natl_1d.* and watl_s.*. 

 

Our aim is to develop appropriate points where boundary data from the coarser outer grid is provided to 

the finer inner grid. (Remember, that for the feedback from the finer grids to the coarser grids, the coarser 

grid values are overwritten by the corresponding inner grid values averaged over the whole coarser grid 

cell). Since version 3, WW3 allows for boundary points (for the finer grid) to be defined inside the grid, 

thus allowing for features such as coast line following grids even though we are using regular grids. 

GRIDGEN provides a wrapper script in the examples/ directory (maskmod.m). However, we shall 

proceed step by step in this exercise. In this section the target grid is defined as the fine resolution grid 

whose mask values shall be changed to determine boundary and excluded points, while the base grid is 

defined as the coarser grid from which the target grid is going to get information. 

 

We can use the *.meta files to get information of the different grids and a function called read_mask 

to read in the actual mask arrays 

 

   >> [lon,lat] = read_ww3meta('watl_s.meta'); 
 >> Nx = length(lon); 

    >> Ny = length(lat); 

    >> m = read_mask('watl_s.maskorig_ascii',Nx,Ny); 

 >> [lonb,latb] = read_ww3meta('natl_1d.meta'); 
 >> Nxb = length(lonb); 

    >> Nyb = length(latb); 

 >> mb = read_mask('natl_1d.maskorig_ascii',Nxb,Nyb); 
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We now need to define the polynomial in the target grid along which the boundary information needs to 

be passed. If the aim is to use the entire grid then the polynomial can be defined outside the grid, in which 

case the boundary values shall be assigned to the edges of the grid. The polynomials can be complex to 

follow along the coastline or simple shapes. Here, we are going to define the polynomial such that the 

boundary points are defined at an angle inside the grid (there is no particular reason to do this, other than 

why not. You are more than welcome to try a different polygon if you so prefer). 

 

 >>  px = [260 290 300 300 260 260]; 
 >> py = [5 5 25 50 50 5]; 

 

Note that the only criterion is that the polygon be defined in a counter clockwise direction and be closed 

(this allows us to easily identify points inside, on and outside the polygon). We now use a function called 

modify_mask that sets all the mask values outside the polygon to undefined in the target grid (these 

cells are not used in the computation) and follows along the polygon to make sure that for every potential 

boundary cell in the target grid there are active (wet) cells in the base grid from which data can be 

received.  

 

 >> glo = 0; 

 >> m_new = modify_mask(m,lon,lat,px,py,mb,lonb,latb,glo); 

 

Where the glo flag is set to 1 if the base grid is global. For the polygon considered in this example the 

final mask is given by Figure 11. Note that the active cells along the eastern edge of the grid above 25 N 

are also 2 but cannot be seen because of the way the colors have been rendered in MATLAB. Compare 

this mask with Figure 7. You can now save this mask data using the function write_ww3file and saving 

the mask data to a new file name watl_s.mask (see previous section).  

 
Figure 11: Final Mask with boundary points 

 

Building overlapping grids of similar resolution 
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Till now we have learnt how to build individual grids and (for nested grids) how to set boundary 

conditions using the GRIDGEN software. WAVEWATCH also provides the capability of exchanging 

information across grids of the same (or similar) resolution. However, this is slightly more tricky than 

building the traditional set of outer (coarser) and inner (finer) grids. Since numerical computations inside 

the domain are third order and first order at the edge of the domain, for grids of the same resolution it is 

vital that boundary data from one grid do not overwrite the inner solution of the other grid. Thus, 

WAVEWATCH requires that in areas where grids of the same resolution are exchanging information, 

there is enough overlap to preclude that from occurring (otherwise the model will crash). In this section 

we shall determine how to compute the required overlap width.  

 

The WW3 model uses a fractional time stepping technique to march forward in time. There are 4 different 

time steps in the model – a global time step (for the over all solution), a time step for spatial propagation, 

a time step for spectral propagation, and finally, a time step for source term integration. Details about the 

different time steps and how they are set will be covered in day 4. They are being mentioned here because 

to determine the overlap area we need to know the first two time steps. Of these two, the spatial time step 

is limited by the CFL stability criteria. For regular lat-lon grids this means that the time step will be 

determined by the cells at the highest (or lowest) latitudes.  

 

Step 1 Deciding the grid parameters 

One of the grids was already generated in the previous section (watl_s). This grid extends to 50
o
 N and 

has a spatial resolution of 0.5
o
 . Assuming that the first frequency component (longest resolved wave) in 

our modeling simulations is 0.035 s
-1 

 (~ 30 sec wave period), and using the CFL stability criterion, yields 

that  

  Δt
p  
< 1392 s 

Where the subscript p has been used to denote time step for spatial propagation.  

We shall now design a second grid for the northern part of the Western Atlantic (watl_n), covering the 

Canadian waters. Since we want this grid also to be nested inside the natl_1d grid that was designed 

in the previous section, let us limit the Northern edge of the grid to 73
o 
N. Again using the same stability 

criterion yields for  

  Δt
p  
< 633 s 

 

Step 2 Determining the overlap region 

To determine the overlap region we need to set the time steps for the grids. The global time step is the 

time step at which the overall solution propagates and input forcings (wind/ice/water levels etc.) are 

updated . For this exercise we shall set  

  Δt
g  
= 1800 s 

for both the grids. And the spatial time step Δt
p  

for watl_s  and watl_n to 1200 s and 600 s 

respectively. Computing the number of grid cells the boundary solution will propagate in one global time 

step for watl_s we get 

   Δt
g 
/ Δt

p
 * stencil_width = 4.5 

and similarly for watl_n 

  Δt
g 
/ Δt

p
 * stencil_width = 9 
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where the stencil_width is 3 since we are using the third order propagation scheme in the model 

(see the manual). Thus the overlap width should include at least 9+4.5+1 (the additional cell is needed 

because we should have at least one common row/column for both grids where the solution from the two 

can be averaged).  

 

Step 3 Building the grid 

Since the overlap width needs to be at least 14.5 grid points, we shall set it at 16. This sets the bottom 

edge of watl_n at 42
o 

N. We can now use create_grid_regional.m again to create the grids. 

Figure 12 shows the mask for watl_n that was generated by setting the western and eastern limits of the 

grid at 260 and 330 respectively.  

 
Figure 12: Mask for watl_n 

A final check that needs to be done is that in the area of overlap the two grids should have similar masks 

(i.e. wet point in one should not be a dry point in the other). This matchup should be done before the 

boundary masks are set in the grids. In our exercise, we had already set the boundary masks for watl_s 

grid. Hopefully, the users saved the mask file to a different name so that they have the original mask file 

(if not then they can copy that from the tutorial section). Just like the previous section we can use the 

meta data and mask information to read array details.  

 

 >> [lon1, lat1] = read_ww3meta(‘watl_s.meta’); 

 >> m1= read_mask(‘watl_s.maskorig_ascii’,... 

length(lon1),length(lat1)); 

 >> [lon2, lat2] = read_ww3meta(‘watl_n.meta’); 

 >> m2= read_mask(‘watl_n.maskorig_ascii’,... 

length(lon2),length(lat2)); 

 >> [m1_out, m2_out] = reconcile_masks(m1,lon1,lat1,m2,lon2,lat2); 

 

You can now compare the reconciled masks with the earlier masks to see where they are different. Even 

though the same software is used masks sometime in one grid or the other can be different if the cells are 
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close to being marked wet or dry (in our case if almost half the cell lies inside the polygons). Save these 

masks to new names.  

 

 >> write_ww3file(‘watl_s.mask_reconcile’,m1_out); 

 >> write_ww3file(‘watl_n.mask_reconcile’,m2_out); 

 

At this point however the boundary information has to be generated again. You can either use the wrapper 

script maskmod.m from the examples directory, or repeat the steps in the section on boundary 

conditions. Just remember that the starting point for the mask files are the *.mask_reconcile files.  
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