
NOAA Modeling Fair
Python Session

 – September 11, 2018 –

Sam Trahan
Todd Spindler

Hyun-Sook Kim
Deanna Spindler

NOAA NCEP EMC / IM Systems Group

2

Session Overview

● Talk 1: Python: What it is and What it is Not.
– Sam Trahan

● Talk 2: Reading Scientific Datasets in Python
– Todd Spindler

● Talk 3: Graphical Diagnostic Tools
– Hyun-Sook Kim

● Talk 4: Time Series Data Analysis in Python
– Deanna Spindler

3

What is Python and What is it Not?

● From python.org website. This is half true:

Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics. Its
high-level built in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid
Application Development, as well as for use as a scripting or
glue language to connect existing components together...
more text …

● This is half true:
– Python is used for numerical computing, machine learning,

data visualization, and much more. It is an ecosystem.

4

What is Python and What is it Not?

Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics. Its
high-level built in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid
Application Development, as well as for use as a scripting or
glue language to connect existing components together...
more text …

Python is used for numerical computing, machine learning,
data visualization, and much more. It is an ecosystem.

5

What is Python and What is it Not?

Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics. Its
high-level built in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid
Application Development, as well as for use as a scripting or
glue language to connect existing components together...
more text …

Python is used for numerical computing, machine learning,
data visualization, and many more. It is an ecosystem.

6

“Python is”
“Language XYZ is”

● Formal, international, standards:
– C++ – ISO/IEC 14882:2014

– Fortran – ISO/IEC 1539-1:2010

– C – ISO/IEC 9899:2018

● Proprietary standards:
– Bash – GNU Project

– Visual Basic – Microsoft

– Matlab – MathWorks

7

“Python is”
Pythons are

● A list of recommendations (PEP) with a reference
implementation (CPython) and no standard.

● Pythons are.
– CPython – reference implementation from python.org

– PyPy – Just In Time (JIT) compiler; usually faster than CPython

– Jython – compiles to Java bytecode; usually faster than CPython

– Cython – compiles Python to C; compatible with CPython

– Numba – JIT compiler using LLVM, sits within CPython

– IronPython – integrates Python into Visual Studio

● Similar language, different set of supported libraries.

8

What is Python and What is it Not?

Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics. Its
high-level built in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid
Application Development, as well as for use as a scripting or
glue language to connect existing components together...
more text …

Python is used for numerical computing, machine learning,
data visualization, and many more. It is an ecosystem.

9

Languages: High vs Low
Low-Level Languages

● Low-level Fortran

do j=1,m

 do i=1,n

 c(i,j) = a(i,j) + b(i,j)

 enddo

enddo

● Low-level C

for(j=0;j<m;j++)

 for(i=0;i<n;i++)

 c[j][i]=a[j][i]+b[j][i]

A B C

10

Languages: High vs Low
High-Level Languages

● High-level Fortran

C = A + B

● High-level C++

C = A + B;

● Python with numpy

C = A + B

● High-level R

C <- A + B

A B C

11

What is Python and What is it Not?

Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics. Its
high-level built in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid
Application Development, as well as for use as a scripting or
glue language to connect existing components together...
more text …

Python is used for numerical computing, machine learning,
data visualization, and many more. It is an ecosystem.

12

Compiled, Interpreted, and JIT
Compiled Languages

Compiled Languages

mov AX,I
mov CX,3

mul CX

I = I * 3;

Assemble

Compile

13

Interpreted Languages

Compiled, Interpreted, and JIT
Interpreted Languages

I = I * 3;

Compile to Byte Code

Dynamically Interpret Byte Code

Virtual Machine

… tens or hundreds of instructions …

Compiled Languages

mov AX,I
mov CX,3

mul CX

I = I * 3;

Assemble

Compile

14

Interpreted Languages

Compiled, Interpreted, and JIT
Just In Time (JIT) Compiled

I = I * 3;

Compile to Byte Code

Dynamically Interpret Byte Code

Virtual Machine

… tens or hundreds of instructions …

Just In Time (JIT) Compiled

I = I * 3;

Compile to Byte Code

Dynamically Interpret Byte Code

Virtual Machine

… tens or hundreds of instructions …

Compile Some Routines

15

JIT+InterpretedInterpreted Compiled
● Numba
● Jython

● Uses Java Virtual
Machine

● PyPy

Compiled, Interpreted, and JIT
Pythons are

Interpreted
I = I * 3;

to Byte Code

Dynamically Interpret

Virtual Machine
… tens or hundreds

of instructions …

JIT
I = I * 3;

to Byte Code

Dynamically Interpret

Virtual Machine
… tens or hundreds

of instructions …

Compile Some

Compiled

mov AX,I
mov CX,3

mul CX

I = I * 3;

Assemble

Compile

● Cython
● Python to C

converter

● CPython
● Reference

implementation

16

What is Python and What is it Not?

Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics. Its
high-level built in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid
Application Development, as well as for use as a scripting or
glue language to connect existing components together...
more text …

Python is used for numerical computing, machine learning,
data visualization, and many more. It is an ecosystem.

17

Dynamic vs. Static
Example Python Program

A=1

B=1

print(“I will add 1 and 1”)

def print_x_plus_y(x, y):

 result = x + y

 print(f“{result}={x+y}”)

print_x_plus_y(A,B)

● Will print:

I will add 1 and 1

2=2

18

Dynamic vs. Static
Dynamic Typing

A=1

B=“apple”

print(“I will add 1 and 1”)

def print_x_plus_y(x, y):

 result = x + y

 print(f“{result}={x+y}”)

print_x_plus_y(A,B)

● Will fail!
– “1 + apple” is

meaningless

● CPython does not
know this until the
program reaches:

result = x + y

19

Dynamic vs. Static
Static Typing

A=1

B=“apple”

print(“I will add 1 and 1”)

def print_x_plus_y(

 x: int, y: int):

 result = x + y

 print(f“{result}={x+y}”)

print_x_plus_y(A,B)

● Python will find the
error as soon as it
compiles the file!

20

Dynamic vs. Static
The Power of Dynamic Typing

def print_x_plus_y(x, y):

 result = x + y

● Same code for different types:
– “abc” + “def” = “abcdef”

– 1 + 1 = 2

– [1,2,3] + [4,5,6] = [1,2,3,4,5,6]

– … and many more …

– All from: result = x + y

21

What is Python and What is it Not?

Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics. Its
high-level built in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid
Application Development, as well as for use as a scripting or
glue language to connect existing components together...
more text …

Python is used for numerical computing, machine learning,
data visualization, and many more. It is an ecosystem.

22

Python is
an Ecosystem

● Python does:
– Machine learning

– Graphics

– Numerics

– etc.

● Python is an
ecosystem

23

Python is
Glue

Python does:

Machine learning

Graphics

Numerics

etc.

● Python is an
ecosystem

● Many “Python”
packages are
wrappers around C,
CUDA, Fortran, C++,
etc.
– Cython facilitates this.

● Python is glue

24

What is Python and What is it Not?

Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics. Its
high-level built in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid
Application Development, as well as for use as a scripting or
glue language to connect existing components together...
more text …

Python is used for numerical computing, machine learning,
data visualization, and many more. It is an ecosystem.

25

Object-Oriented Programming
Without

float x

float y

float r

float red

float green

float blue

float x

float y

float r

float red

float green

float blue

area(r)

brightness_temperature(
red,green,blue)

distance(
x1,y1,r1,x2,y2,r2)

hue(
red,green,blue)

saturation(
red,green,blue)

intersection(
x1,y1,r1,x2,y2,r2)

 minimum_covering_circle(
x1,y1,r1,x2,y2,r2)

26

Object-Oriented Programming
Implementation – Object’s Class

float x

float y

float r

float red

float green

float blue

area(r)

brightness_
temperature()

distance(circle2)

hue()

saturation()

intersection(circle2)

 minimum_covering_
circle(circle2)

Circle

27

Object-Oriented Programming
Interface – Object’s Instance

area(r)

brightness_
temperature()

distance(circle2)

hue()

saturation()

intersection(circle2)

 minimum_covering_
circle(circle2)

area(r)

brightness_
temperature()

distance(circle2)

hue()

saturation()

intersection(circle2)

 minimum_covering_
circle(circle2)

28

Running Python

● Note to self:
– ssh to jet-rsa.rdhpcs.noaa.gov

– Use the screen session on fe4

– See windows #3 (interactive) and #4 (script)

– Interactive commands are in script test.py.

29

What is Python and What is it Not?

Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics. Its
high-level built in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid
Application Development, as well as for use as a scripting or
glue language to connect existing components together...
more text …

Python is used for numerical computing, machine learning,
data visualization, and much more. It is an ecosystem.

30

Conclusion
Python is...

● An ever-changing ecosystem:
– Multiple implementations.

– Peer-reviewed recommendation process.

– Numerous, redundant, actively-developed, libraries.

● Flexible:
– Compiled, interpreted, or just-in-time.

– A high-level language, low-level if needed.

– Dynamically typed, scoped, etc. but can be static (to some extent).

– Object-oriented, or not, as desired

● Glue
– Easy to plug other languages into Python.

– Easy to pass data between many libraries.

31

End.

32

Backup Slides

● Assembly: A Lower Level than Low-Level
Languages

● NCEP Language Review, Unified Workflow
Project
– Python 2 vs. 3

– Language Choices

– Issues in csh

– Other Languages

33

Assembly

A Lower Level than
Low-Level Languages

34

What is Python and What is it Not?
High-Level vs. Low-Level Languages

A B C

35

What is Python and What is it Not?
High-Level vs. Low-Level Languages

A B C

R

main memory

36

What is Python and What is it Not?
High-Level vs. Low-Level Languages

A B C

R R R R R R

main memory

Time

37

What is Python and What is it Not?
High-Level vs. Low-Level Languages

● Assembly
– mov RAX,n

– mov RDX,m

– mul RDX
– push RAX # n * m

– mov RBX, array_a_start

– mov RSI, array_b_start

– mov RDI, array_c_start
– mov RCX,0

– loop_top:

– mov RAX, [RBX,RCX,8]
– mov RDX, [RSI,RCX,8]

– add RAX,RDX

– mov [RDI,RCX,8],RAX

– inc RCX
– mov RAX,[RSP]

– cmp RAX,RCX

– jnz loop_top

A B C

38

Languages: High vs Low
Low-Level Languages

● Low-level Fortran

do j=1,m

 do i=1,n

 c(i,j) = a(i,j) + b(i,j)

 enddo

enddo

● Low-level C

for(j=0;j<m;j++)

 for(i=0;i<n;i++)

 c[j][i]=a[j][i]+b[j][i]

A B C

39

Languages: High vs Low
High-Level Languages

● High-level Fortran

C = A + B

● High-level C++

C = A + B;

● Python with numpy

C = A + B

● High-level R

C <- A + B

A B C

40

Python 2 vs. 3

Taken, with
permission, from
NCEP language

evaluation

41

CPython 2.7 vs. CPython 3.6 (by NCEP priorities)

– Better exception handling → better logging

– Improved to prevent stupid mistakes

– Native ASCII becomes native Unicode

– Concise, clear, code (~1.5-5x fewer lines)

– Python 2.7 end-of-life date 2020

– Installation – trivial for either

– Training – usually python 3 these days

Totals

Python 2: +0 Python 3: +3

Python 2: +0 Python 3: +1

Python 2: +2 Python 3: +0

Python 2: +0 Python 3: +2

Python 3: +0

Python 2: +0

Python 2: +0 Python 3: +2

Python 2 vs. 3
Language Evaluation for NCEP, 2017

Python 2: +0

Python 3: +1

Python 2: +2 Python 3: +9

42

Python 3 Improvements
A few short examples

● Simple container classes
trivial to declare:
– Point=namedtuple(

 ‘Point’,[“x”,”y”,”z”])

● vs Python 2:

class Point(object):

 def __init__(self,x,y,z):

 super(Point,self).__init__(self)

 self._x,self._y,self._z = (x,y,z)

 def getx(self): return self._x

 def setx(self,x): self._x=x

 def delx(self,x): self._x=None

– Python 2 example continued
 x=property(getx,setx,delx)

 def gety(self): return self._y

 def sety(self,y):

 self._y=y

 def dely(self,y):

 self._y=None

 y=property(gety,sety,dely)

 def getz(self): return self._z

 def setz(self,z):

 self._z=z

 def delz(self,z):

 self._z=None

 z=property(getz,setz,delz)

43

Python 3 Improvements
A few short examples

● Prevent common errors:
– Indentation tabs are parse-time syntax errors

– super() and new/old style classes improved
● Python 2: have to derive from “object” and pass class, self to superclass

constructor

class Point(object):

 def __init__(self,x,y,z):

 super(Point,self).__init__(self)
● Python 3: all classes are new style, simpler super()

class Point:

 def __init__(self,x,y,z):

 super().__init__()

44

Python 3 Improvements
A few short examples

● Python 3.6 added literal string interpolation
– critical functionality present in all other scripting languages

– Major flaw in python until 3.6

● Trivial example:
– shells: var=(expression) ; echo “$var”

– Ruby: var=(expression) ; puts “#{var}”

– Perl: var=(expression) ; print “$var\n”

● And now in python 3.6:
– Python 3.6: var=(expression) ; print(f’{var}\n’)

● Note:
– In more complex code, this functionality dramatically reduces code complexity

– In this trivial example, it doesn’t; this is just to demonstrate the feature.

45

Language Choices

Taken, with
permission, from
NCEP language

evaluation

46

Capability Comparison
Categories

● Raking: DANGER - LOW – MED – HIGH

 -2 -1 +0 +1
● Portability – will my code work everywhere?
● Learning curve – for people with no knowledge
● NCEP Knowledge– what NCEP knows
● Outside Knowledge – in CS and geosciences
● Versatile – Can it simplify development and maintenance?

– Core – standard distribution only

– All – with common, high-reliability packages

– (core+all) / 2

● Other – considerations specific to that language

47

Capability Comparison
Special Notes

● bash, ksh: advanced language extensions beyond sh
● sh = 100% POSIX-compliant sh
● csh lacks basic language functionality

– Not versatile: Large parts of production suite would need to
be re-implemented in executables, or call bash/ksh scripts

● python, ruby, perl – can replace many small
executables with simple functions (“versatile”)

● ruby “versatile” category
– “Versatile core” is for ISO/IEC-compliant Ruby (1.8.7)

– “Versatile all” - common extensions

48

 Portability Learning
Curve

Existing
Knowledge

Versatile
(core+all)/2

Other Total
NCEP Outside core all

advanced
ksh

Conflicting
implementations

Steep ample minimal med med -3

csh Conflicting
implementations

Medium some some near
zero

near
zero

-4

advanced
bash

Major version
variance

Steep ample minimal med med -2

POSIX sh ISO Standard
(POSIX)

Medium ample some med med Always
installed

+3

Python 2 Uniform across
platforms

Teaching
Language

some ample high high
later +2

Python 3 slide +4
perl Uniform across

platforms
Steep some some high high cryptic

concise
-1

ruby ISO Standard
ISO/IEC 30170:2012

Teaching
Language

minimal ample med high +2.5

Capability Comparison
Operational Languages

49

 Portability Learning
Curve

Existing
Knowledge

Versatile
(core+all)/2

Other Total
NCEP Outside core all

advanced
ksh

Conflicting
implementations

Steep ample minimal med med -3

csh Conflicting
implementations

Medium With
training some near

zero
near
zero

-3

advanced
bash

Major version
variance

Steep ample minimal med med -2

POSIX sh ISO Standard
(POSIX)

Medium ample some med med Always
installed

+3

Python 2 Uniform across
platforms

Teaching
Language

With
training ample high high

later +3
Python 3 slide +5
perl Uniform across

platforms
Steep With

training some high high cryptic
concise

0

ruby ISO Standard
ISO/IEC 30170:2012

Teaching
Language

With
training ample med high +4.5

Capability Comparison
What if we trained NCEP in a new language?

50

Final python 2 vs. current release python 3

– Better exception handling → better logging

– Improved to prevent stupid mistakes

– Stuck with 7-bit ASCII (good for NCEP)

– Concise, clear, code (~1.5-5x fewer lines)

– Python 2.7 end-of-life date 2020

– Installation – trivial for either

– Training – usually python 3 these days

Totals

Python 2: +0 Python 3: +3

Python 2: +0 Python 3: +1

Python 2: +2 Python 3: +0

Python 2: +0 Python 3: +2

Python 3: +0

Python 2: +0

Python 2: +0 Python 3: +2

Capability Comparison
Python 2.7 vs. 3.6

Python 2: +0

Python 3: +1

Python 2: +2 Python 3: +9

51

Issues in csh

Taken, with
permission, from
NCEP language

evaluation

52

Issues in csh
Missing Basic Functionality

● Extremely abridged version.
– No signal handlers

● Cannot clean up after failed job
● Cannot contact ecFlow server to report failed job

– Inconsistent handling of strings with spaces
● Special syntax needed to handle strings; syntax varies

depending on context
● Effectively, this makes it unusable for such strings

– Cannot redirect stdout and stderr to different files

53

Issues in csh
Major Design Flaws

● Extremely abridged version.
– Ad-hoc parser – must execute statements to parse

them
● More on later slides

– Inefficient syntax for complicated expressions
● More on later slides

– No functions
● Aliases are simply pasted code; they lack most capabilities

of functions such as arguments, nested scopes, separate
return values

54

Issues in csh
Ad-hoc Parser

● Inconsistent syntax – makes it error-prone
– Excellent example from wikipedia:

● Makes an empty file:
if (! -e myfile) echo mytext > myfile

● Puts “mytext” in a file
if (! -e myfile) then

 echo mytext > myfile

endif

55

Issues in csh
Ad-hoc Parser

● Inconsistent syntax – makes it error-prone
– From Berret, et.al. 2009

● Suppose $A is undefined.
● Statement has no effect, as it should:

– if ($?A) echo A is defined
● Statement fails because $A is undefined

– if ($?A) set B = $A
● $A is evaluated even though that statement should not be

executed.

56

Issues in csh
Ad-hoc Parser

● From Berret, et.al. 2009
– Error: “Variable name must contain alphanumeric characters”

● grep "var" < file
● grep "$var\$" <file

– \ is not quoting the $

– Works:
● grep "$var"'$' < file
● set dollar='$'
● grep "vardollar" < file

– Trivial in sh-like shells:
● grep "$var\$" < file

– Or:
● grep "var" < file

57

Other Languages

Taken, with
permission, from
NCEP language

evaluation

58

BASH

● GNU Bash project – only one implementation
● Generally backward-compatible, but:

– Major syntactic additions make version dependence
problems hard to detect

– Built-in commands vary from version to version

– Built-in commands added in later versions
● Prior bash version used /bin program
● Now it doesn’t! Functionality changed, maybe not

backward-compatible

59

ksh

● Originated in AT&T but has multiple
implementations now.
– Significant syntactic differences

– Differences in handling datatypes.
● Is 013=11 or 13?

– Built-in commands differ between versions
● (See bash slides for details.)

60

Ruby

● Slower than other scripting systems, but
– Can compile to JVM byte code for faster execution

● Fewer books and forums than Python
● More limited standard library than Python, but

similar to Perl
● String processing speed comparable to Perl
● Less usage in AMS, AGU community

61

Perl

● Extremely concise language.
– Great for rapid prototyping.

– Tremendous reduction in code length for many tasks.

– String processing speed comparable to compiled
languages

● Example. Calculate pi in Perl 5:
$.=".$]";

$\=2/$.++-$\ for $...1e6;

print

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

