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Session Overview

● Talk 1: Python: What it is and What it is Not.
– Sam Trahan

● Talk 2: Reading Scientific Datasets in Python
– Todd Spindler

● Talk 3: Graphical Diagnostic Tools
– Hyun-Sook Kim

● Talk 4: Time Series Data Analysis in Python
– Deanna Spindler
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What is Python and What is it Not?

● From python.org website.  This is half true:

Python is an interpreted, object-oriented, high-level 
programming language with dynamic semantics. Its 
high-level built in data structures, combined with dynamic 
typing and dynamic binding, make it very attractive for Rapid 
Application Development, as well as for use as a scripting or 
glue language to connect existing components together... 
more text … 

● This is half true:
– Python is used for numerical computing, machine learning, 

data visualization, and much more.  It is an ecosystem.
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“Python is”
“Language XYZ is”

● Formal, international, standards:
– C++ – ISO/IEC 14882:2014

– Fortran – ISO/IEC 1539-1:2010

– C – ISO/IEC 9899:2018

● Proprietary standards:
– Bash – GNU Project

– Visual Basic – Microsoft

– Matlab – MathWorks
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“Python is”
Pythons are

● A list of recommendations (PEP) with a reference 
implementation (CPython) and no standard.

● Pythons are.
– CPython – reference implementation from python.org

– PyPy – Just In Time (JIT) compiler; usually faster than CPython

– Jython – compiles to Java bytecode; usually faster than CPython

– Cython – compiles Python to C; compatible with CPython

– Numba – JIT compiler using LLVM, sits within CPython

– IronPython – integrates Python into Visual Studio

● Similar language, different set of supported libraries.
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Languages: High vs Low
Low-Level Languages

● Low-level Fortran

do j=1,m

  do i=1,n

    c(i,j) = a(i,j) + b(i,j)

  enddo

enddo

● Low-level C

for(j=0;j<m;j++)

  for(i=0;i<n;i++)

    c[j][i]=a[j][i]+b[j][i]

A B C
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Languages: High vs Low
High-Level Languages

● High-level Fortran

C = A + B

● High-level C++

C = A + B;

● Python with numpy

C = A + B

● High-level R

C <- A + B

A B C
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Compiled, Interpreted, and JIT
Compiled Languages

Compiled Languages

mov AX,I
mov CX,3

mul CX

I = I * 3;

Assemble

Compile
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Interpreted Languages

Compiled, Interpreted, and JIT
Interpreted Languages

I = I * 3;

Compile to Byte Code

Dynamically Interpret Byte Code

Virtual Machine

… tens or hundreds of instructions …

Compiled Languages

mov AX,I
mov CX,3

mul CX

I = I * 3;

Assemble

Compile
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Interpreted Languages

Compiled, Interpreted, and JIT
Just In Time (JIT) Compiled

I = I * 3;

Compile to Byte Code

Dynamically Interpret Byte Code

Virtual Machine

… tens or hundreds of instructions …

Just In Time (JIT) Compiled

I = I * 3;

Compile to Byte Code

Dynamically Interpret Byte Code

Virtual Machine

… tens or hundreds of instructions …

Compile Some Routines
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JIT+InterpretedInterpreted Compiled
● Numba
● Jython

● Uses Java Virtual 
Machine

● PyPy

Compiled, Interpreted, and JIT
Pythons are

Interpreted
I = I * 3;

to Byte Code

Dynamically Interpret

Virtual Machine
… tens or hundreds

of instructions …

JIT
I = I * 3;

to Byte Code

Dynamically Interpret

Virtual Machine
… tens or hundreds

of instructions …

Compile Some

Compiled

mov AX,I
mov CX,3

mul CX

I = I * 3;

Assemble

Compile

● Cython
● Python to C 

converter

● CPython
● Reference 

implementation



16
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Dynamic vs. Static
Example Python Program

A=1

B=1

print(“I will add 1 and 1”)

def print_x_plus_y(x, y):

    result = x + y

    print(f“{result}={x+y}”)

print_x_plus_y(A,B)

● Will print:

I will add 1 and 1

2=2
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Dynamic vs. Static
Dynamic Typing

A=1

B=“apple”

print(“I will add 1 and 1”)

def print_x_plus_y(x, y):

    result = x + y

    print(f“{result}={x+y}”)

print_x_plus_y(A,B)

● Will fail!
– “1 + apple” is 

meaningless

● CPython does not 
know this until the 
program reaches:

result = x + y



19

Dynamic vs. Static
Static Typing

A=1

B=“apple”

print(“I will add 1 and 1”)

def print_x_plus_y(

        x: int, y: int):

    result = x + y

    print(f“{result}={x+y}”)

print_x_plus_y(A,B)

● Python will find the 
error as soon as it 
compiles the file!
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Dynamic vs. Static
The Power of Dynamic Typing

def print_x_plus_y(x, y):

    result = x + y

● Same code for different types:
– “abc” + “def” = “abcdef”

– 1 + 1 = 2

– [1,2,3] + [4,5,6] = [1,2,3,4,5,6]

– … and many more … 

– All from: result = x + y
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programming language with dynamic semantics. Its 
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typing and dynamic binding, make it very attractive for Rapid 
Application Development, as well as for use as a scripting or 
glue language to connect existing components together... 
more text … 

Python is used for numerical computing, machine learning, 
data visualization, and many more.  It is an ecosystem.
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Python is
an Ecosystem

● Python does:
– Machine learning

– Graphics

– Numerics

– etc.

● Python is an 
ecosystem
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Python is
Glue

Python does:

Machine learning

Graphics

Numerics

etc.

● Python is an 
ecosystem

● Many “Python” 
packages are 
wrappers around C, 
CUDA, Fortran, C++, 
etc.
– Cython facilitates this.

● Python is glue



24
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Object-Oriented Programming
Without

float x

float y

float r

float red

float green

float blue

float x

float y

float r

float red

float green

float blue

area(r)

brightness_temperature(
red,green,blue)

distance(
x1,y1,r1,x2,y2,r2)

hue(
red,green,blue)

saturation(
red,green,blue)

intersection(
x1,y1,r1,x2,y2,r2)

 minimum_covering_circle(
x1,y1,r1,x2,y2,r2)
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Object-Oriented Programming
Implementation – Object’s Class

float x

float y

float r

float red

float green

float blue

area(r)

brightness_
temperature()

distance(circle2)

hue()

saturation()

intersection(circle2)

 minimum_covering_
circle(circle2)

Circle
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Object-Oriented Programming
Interface – Object’s Instance

area(r)

brightness_
temperature()

distance(circle2)

hue()

saturation()

intersection(circle2)

 minimum_covering_
circle(circle2)

area(r)

brightness_
temperature()

distance(circle2)

hue()

saturation()

intersection(circle2)

 minimum_covering_
circle(circle2)



28

Running Python

● Note to self:
– ssh to jet-rsa.rdhpcs.noaa.gov

– Use the screen session on fe4

– See windows #3 (interactive) and #4 (script)

– Interactive commands are in script test.py.
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programming language with dynamic semantics. Its 
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typing and dynamic binding, make it very attractive for Rapid 
Application Development, as well as for use as a scripting or 
glue language to connect existing components together... 
more text … 

Python is used for numerical computing, machine learning, 
data visualization, and much more.  It is an ecosystem.
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Conclusion
Python is...

● An ever-changing ecosystem:
– Multiple implementations.

– Peer-reviewed recommendation process.

– Numerous, redundant, actively-developed, libraries.

● Flexible:
– Compiled, interpreted, or just-in-time.

– A high-level language, low-level if needed.

– Dynamically typed, scoped, etc. but can be static (to some extent).

– Object-oriented, or not, as desired

● Glue
– Easy to plug other languages into Python.

– Easy to pass data between many libraries.
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End.
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Backup Slides

● Assembly: A Lower Level than Low-Level 
Languages

● NCEP Language Review, Unified Workflow 
Project
– Python 2 vs. 3

– Language Choices

– Issues in csh

– Other Languages
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Assembly

A Lower Level than
Low-Level Languages
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What is Python and What is it Not?
High-Level vs. Low-Level Languages

A B C



35

What is Python and What is it Not?
High-Level vs. Low-Level Languages

A B C

R

main memory
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What is Python and What is it Not?
High-Level vs. Low-Level Languages

A B C

R R R R R R

main memory

     

 

Time
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What is Python and What is it Not?
High-Level vs. Low-Level Languages

● Assembly
– mov RAX,n

– mov RDX,m

– mul RDX
– push RAX # n * m

– mov RBX, array_a_start

– mov RSI, array_b_start

– mov RDI, array_c_start
– mov RCX,0

 

– loop_top:

– mov RAX, [RBX,RCX,8]
– mov RDX, [RSI,RCX,8]

– add RAX,RDX

– mov [RDI,RCX,8],RAX

– inc RCX
– mov RAX,[RSP]

– cmp RAX,RCX

– jnz loop_top

A B C



38

Languages: High vs Low
Low-Level Languages

● Low-level Fortran

do j=1,m

  do i=1,n

    c(i,j) = a(i,j) + b(i,j)

  enddo

enddo

● Low-level C

for(j=0;j<m;j++)

  for(i=0;i<n;i++)

    c[j][i]=a[j][i]+b[j][i]

A B C
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Languages: High vs Low
High-Level Languages

● High-level Fortran

C = A + B

● High-level C++

C = A + B;

● Python with numpy

C = A + B

● High-level R

C <- A + B

A B C



40

Python 2 vs. 3

Taken, with 
permission, from 
NCEP language 

evaluation
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CPython 2.7 vs. CPython 3.6 (by NCEP priorities)

– Better exception handling → better logging

– Improved to prevent stupid mistakes

– Native ASCII becomes native Unicode

– Concise, clear, code (~1.5-5x fewer lines)

– Python 2.7 end-of-life date 2020

– Installation – trivial for either

– Training – usually python 3 these days

Totals

Python 2: +0 Python 3: +3

Python 2: +0 Python 3: +1

Python 2: +2 Python 3: +0

Python 2: +0 Python 3: +2

Python 3: +0

Python 2: +0

Python 2: +0 Python 3: +2

Python 2 vs. 3
Language Evaluation for NCEP, 2017

Python 2: +0

Python 3: +1

Python 2: +2 Python 3: +9
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Python 3 Improvements
A few short examples

● Simple container classes 
trivial to declare:
– Point=namedtuple(

    ‘Point’,[“x”,”y”,”z”])

● vs Python 2:

class Point(object):

    def __init__(self,x,y,z):

        super(Point,self).__init__(self)

        self._x,self._y,self._z = (x,y,z)

    def getx(self): return self._x

    def setx(self,x): self._x=x

    def delx(self,x): self._x=None

– Python 2 example continued
    x=property(getx,setx,delx)

    def gety(self): return self._y

    def sety(self,y):

        self._y=y

    def dely(self,y):

        self._y=None

    y=property(gety,sety,dely)

    def getz(self): return self._z

    def setz(self,z):

        self._z=z

    def delz(self,z):

        self._z=None

    z=property(getz,setz,delz)
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Python 3 Improvements
A few short examples

● Prevent common errors:
– Indentation tabs are parse-time syntax errors

– super() and new/old style classes improved
● Python 2: have to derive from “object” and pass class, self to superclass 

constructor

class Point(object):

    def __init__(self,x,y,z):

        super(Point,self).__init__(self)
● Python 3: all classes are new style, simpler super()

class Point:

    def __init__(self,x,y,z):

        super().__init__()
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Python 3 Improvements
A few short examples

● Python 3.6 added literal string interpolation
– critical functionality present in all other scripting languages

– Major flaw in python until 3.6

● Trivial example:
– shells: var=(expression) ; echo “$var”

– Ruby: var=(expression) ; puts “#{var}”

– Perl: var=(expression) ; print “$var\n”

● And now in python 3.6:
– Python 3.6: var=(expression) ; print(f’{var}\n’)

● Note:
– In more complex code, this functionality dramatically reduces code complexity

– In this trivial example, it doesn’t; this is just to demonstrate the feature.
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Language Choices

Taken, with 
permission, from 
NCEP language 

evaluation
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Capability Comparison
Categories

● Raking: DANGER - LOW – MED – HIGH

                  -2             -1        +0        +1
● Portability – will my code work everywhere?
● Learning curve – for people with no knowledge
● NCEP Knowledge– what NCEP knows
● Outside Knowledge – in CS and geosciences
● Versatile – Can it simplify development and maintenance?

– Core – standard distribution only

– All – with common, high-reliability packages

– (core+all) / 2

● Other – considerations specific to that language
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Capability Comparison
Special Notes

● bash, ksh: advanced language extensions beyond sh
● sh = 100% POSIX-compliant sh
● csh lacks basic language functionality

– Not versatile: Large parts of production suite would need to 
be re-implemented in executables, or call bash/ksh scripts

● python, ruby, perl – can replace many small 
executables with simple functions (“versatile”)

● ruby “versatile” category
– “Versatile core” is for ISO/IEC-compliant Ruby (1.8.7)

– “Versatile all” - common extensions
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 Portability Learning
Curve

Existing
Knowledge

Versatile
(core+all)/2

Other Total
NCEP Outside core all

advanced
ksh

Conflicting 
implementations

Steep ample minimal med med -3

csh Conflicting 
implementations

Medium some some near
zero

near
zero

-4

advanced
bash

Major version 
variance

Steep ample minimal med med -2

POSIX sh ISO Standard
(POSIX)

Medium ample some med med Always 
installed

+3

Python 2 Uniform across 
platforms

Teaching 
Language

some ample high high
later +2

Python 3 slide +4
perl Uniform across 

platforms
Steep some some high high cryptic

concise
-1

ruby ISO Standard
ISO/IEC 30170:2012

Teaching 
Language

minimal ample med high +2.5

Capability Comparison
Operational Languages



49

 Portability Learning
Curve

Existing
Knowledge

Versatile
(core+all)/2

Other Total
NCEP Outside core all

advanced
ksh

Conflicting 
implementations

Steep ample minimal med med -3

csh Conflicting 
implementations

Medium With 
training some near

zero
near
zero

-3

advanced
bash

Major version 
variance

Steep ample minimal med med -2

POSIX sh ISO Standard
(POSIX)

Medium ample some med med Always 
installed

+3

Python 2 Uniform across 
platforms

Teaching 
Language

With
training ample high high

later +3
Python 3 slide +5
perl Uniform across 

platforms
Steep With 

training some high high cryptic
concise

0

ruby ISO Standard
ISO/IEC 30170:2012

Teaching 
Language

With 
training ample med high +4.5

Capability Comparison
What if we trained NCEP in a new language?
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Final python 2 vs. current release python 3

– Better exception handling → better logging

– Improved to prevent stupid mistakes

– Stuck with 7-bit ASCII (good for NCEP)

– Concise, clear, code (~1.5-5x fewer lines)

– Python 2.7 end-of-life date 2020

– Installation – trivial for either

– Training – usually python 3 these days

Totals

Python 2: +0 Python 3: +3

Python 2: +0 Python 3: +1

Python 2: +2 Python 3: +0

Python 2: +0 Python 3: +2

Python 3: +0

Python 2: +0

Python 2: +0 Python 3: +2

Capability Comparison
Python 2.7 vs. 3.6

Python 2: +0

Python 3: +1

Python 2: +2 Python 3: +9
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Issues in csh

Taken, with 
permission, from 
NCEP language 

evaluation
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Issues in csh
Missing Basic Functionality

● Extremely abridged version.
– No signal handlers

● Cannot clean up after failed job
● Cannot contact ecFlow server to report failed job

– Inconsistent handling of strings with spaces
● Special syntax needed to handle strings; syntax varies 

depending on context
● Effectively, this makes it unusable for such strings

– Cannot redirect stdout and stderr to different files
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Issues in csh
Major Design Flaws

● Extremely abridged version.
– Ad-hoc parser – must execute statements to parse 

them
● More on later slides

– Inefficient syntax for complicated expressions
● More on later slides

– No functions
● Aliases are simply pasted code; they lack most capabilities 

of functions such as arguments, nested scopes, separate 
return values
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Issues in csh
Ad-hoc Parser

● Inconsistent syntax – makes it error-prone
– Excellent example from wikipedia:

● Makes an empty file:
if ( ! -e myfile ) echo mytext > myfile

● Puts “mytext” in a file
if ( ! -e myfile ) then

   echo mytext > myfile

endif
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Issues in csh
Ad-hoc Parser

● Inconsistent syntax – makes it error-prone
– From Berret, et.al. 2009

● Suppose $A is undefined.
● Statement has no effect, as it should:

– if ( $?A ) echo A is defined
● Statement fails because $A is undefined

– if ( $?A ) set B = $A
● $A is evaluated even though that statement should not be 

executed.
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Issues in csh
Ad-hoc Parser

● From Berret, et.al. 2009
– Error: “Variable name must contain alphanumeric characters”

● grep "$var$" < file
● grep "$var\$" <file

– \ is not quoting the $

– Works:
● grep "$var"'$' < file
● set dollar='$'
● grep "$var$dollar" < file

– Trivial in sh-like shells:
● grep "$var\$" < file

– Or:
● grep "$var$" < file
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Other Languages

Taken, with 
permission, from 
NCEP language 

evaluation
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BASH

● GNU Bash project – only one implementation
● Generally backward-compatible, but:

– Major syntactic additions make version dependence 
problems hard to detect

– Built-in commands vary from version to version

– Built-in commands added in later versions
● Prior bash version used /bin program
● Now it doesn’t!  Functionality changed, maybe not 

backward-compatible
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ksh

● Originated in AT&T but has multiple 
implementations now.
– Significant syntactic differences

– Differences in handling datatypes.
● Is 013=11 or 13?

– Built-in commands differ between versions
● (See bash slides for details.)
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Ruby

● Slower than other scripting systems, but
– Can compile to JVM byte code for faster execution

● Fewer books and forums than Python
● More limited standard library than Python, but 

similar to Perl
● String processing speed comparable to Perl
● Less usage in AMS, AGU community
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Perl

● Extremely concise language.
– Great for rapid prototyping.

– Tremendous reduction in code length for many tasks.

– String processing speed comparable to compiled 
languages

● Example.  Calculate pi in Perl 5:
$.=".$]";

$\=2/$.++-$\ for $...1e6;

print
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