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The Time Dependent Ray Method for
Calculation of Wave Transformation

on Water of Varying Depth and Current !

Yung Y. Chao *

Abstract

This paper focuses on an aspect of the numerical calculation of wave refraction
using the ray tracing or the semi-Lagrangian app roach. The conventional ray method
for steady state depth and current fields is extended to the unsteady situation. It
-« shown that a factor which characterizes the unsteadiness of the medium can be
included explicitly in the calculation of the wave energy amplification. The contri-
bution associated with this factor on wave energy is ¢,2/(Cg + U)?, where Cg and
U are the wave group velocity and current velocity, respectively, and ¢, is the phase
velocity of the wave-like fluctuation of currents and depth (e.g., caused by tides) in
the direction of the ray path, i.e., in the direction of wave energy propagation.

Introduction

Efforts to include the effects of wave refraction due to spatially and/or tem-
porally varied current and water depth in a numerical wave prediction model have
been made by a number of researchers (see, e.g., Collins, 1972; Cavaleri and Rizzoli,
1981; Chen and Wang, 1983; Tolman, 1989,1991; Hubbert and Wolf, 1991). Nu-
merical schemes for wave propagation and refraction calculations employed by these
researchers can be conveniently classified into two types of approach. The Eulerian
approach applies a finite difference scheme to obtain solutions at each grid point over
the area of interest simultaneously. The Lagrangian approach uses the ray tracing
technique to derive solutions at each specified point independently.
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The advantage of the Eulerian approach is that it provides a synoptic view of the
wave pattern involving all frequency and directional components over the entire ares
and allows addition of the various source and sink terms including nonlinear wave.
wave interactions. However, finite difference schemes for the convective transport
equation have a common problem - the solution always involves unavoidable numericg)
errors (numerical dispersion and diffusion). As a result, the physical significance of
their solutions is obscured.

In contrast, the Lagrangian approach (or what comes to the same thing: t}e
method of characteristics or the ray method) follows a wave packet along the waye
ray, thus avoiding the troublesome convective term and providing a strong physic
realization of wave propagation. It provides a true path and time for any chojce
of wave parameters arriving at a specific point. Consequently, the loss of spatial
generality is compensated by an increase in temporal accuracy.

There are limitations to this approach. It does not provide the synoptic view of
the wave field over the entire area of interest at each computational time step. It js
incapable of modeling the effects of source terms which involve all spectral components
at each time step, such as nonlinear wave-wave interactions and white capping. It is
also difficult to specify quantitatively the energy amplification factor in the vicinity
of ray crossings and caustics which may occur if waves propagate over a complicated
bottom topography or current field.

An early effort to combine the strengths and eliminate the shortcomings of
both the finite difference and ray tracing techniques has been made by Barnett et al.
(1969, also see, Allender et al.,1985). They developed a scheme which constructed
a set of parallel rays over the ocean for each specified wave direction. Along each
ray, the distance between ray points is determined according to the group velocity
of the given frequency and time interval. The wave energy, considered as particles,
hop from ray point to ray point at appropriate multiples of the time step. The wind
field is provided on a net of grid points defined over the area of interest. At each
given time step, the wave spectrum at any grid point is accumulated from the nearest
ray point for each frequency and direction. After the spectrum is constructed, the
processes of wave growth, dissipation and wave-wave energy transfer are executed.
The spectral components are then re-distributed back to the appropriate ray points.
Their approach can be applied only in deep water without currents and under steady
state conditions since it assumes the constancy of wave direction along the rays.

It is of interest to note that the so-called semi-Lagrangian technique, which has
gained widespread recognition as an efficient way to integrate the primitive equations
of numerical weather prediction, also has been applied to the numerical prediction of
ocean waves in recent years. Basically, it is an extension of the classical treatment
of the refraction problem at a given site using the backward ray tracing technique
(Dorrestein, 1960). With this approach, each grid point of a grid mesh covered the
entire area of concern is considered to be a target point to receive the wave energy of
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all spectral components in a specified time step from various source locations. The
source location of each component (the departure point) is determined by the method
of ray back-tracing for the given time step. The localized physical processes such as
wave growth by wind, dissipation due to whitecapping and wave-wave energy transfer
are calculated at each grid point. The calculated spectral energy densities at all grid
points serve to provide information for deriving the spectral energy density at each
source location. Since it is impossible to have the departure point always coincide
with a certain grid point, an appropriate interpolation procedure is performed to
obtain the energy content at the departure point based on the values at neighboring
grid points. A feasibility study of this approach along with different methods for
spatial interpolation as a part of this system, has been studied by Ryabinin (1991).

The scheme is potentially attractive because of its high accuracy and efficiency in
computation by allowing large time intervals and low spectral resolutions. In shallow
water, the energy dissipation due to bottom friction can be computed along the
rays. The effect of sub-grid irregularity in bottom topography and/or surface currents
on the wave energy amplification can be calculated explicitly, and the problem of
crossing rays and caustics can be avoided as the wave propagation distance is relatively
short in a given time step. In addition, the underlying grid mesh can be arranged
irregularly depending on the accuracy of the input data and the requirements for
wave information in the area of interest.

A problem in applying this semi-Lagrangian approach, however, remains to
be solved. In connection with the study of wave-current interaction problem in the
southern North Sea, Tolman (1990) pointed out that for the large scale continental
shelf unsteadiness of current and water depth induced by tides must be considered
if the time scale of variation in current and depth (typically 12 hours) is not large
compared to the travel time of the waves through the area of interest. The wave energy
amplification factor derived from the conventional ray method is derived based on the
assumption of steady state water depth and flow conditions. Therefore the effect of
unsteadiness in depth and currents cannot be evaluated. In this paper, the time
dependent ray method is derived to express explicitly factors involved in calculating
the change of wave spectrum due to the existence of unsteady and irrelegular depth
and current fields.

Basic Equations

The change of wave field due to the presence of varying currents and bathymetry
can be specified based on the dynamic conservation of wave action and the kine-
matic conservation of wave number or wave crests along characteristic curves or rays
(Bretherton and Garrett, 1969; Phillips, 1977). The path of a ray is determined by
simultaneous solution of the following set of equations:
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Here the wave-number vector k = (ky, k), group velocity Cg = (¢, , ¢4, ), flow velocity
U = (u1,u2), and the horizontal cartesian coordinates x = (r1,z2). The apparent
frequency, w, is given by w(k,A) = ¢ + k- U, where o, the intrinsic frequency of
waves in a frame of reference moving with flow velocity U(x,t), obeys the dispersion
relationship, o = (gk tanh kh)!/2, where g is the gravitaional acceleration, k =| k I
and h(x,t) is water depth. A(x,?) represents local properties of the medium, i.e, 4
and U. Equation 3 indicates that if water depth and current velocity do not vary
with time, w remains constant along the rays.

Conservation of wave action for a slowly varying wavetrain of small amplitude
can be expressed in terms of rays as

d {E E
E is the local wave energy per unit area (proportional to the square of the wave
amplitude). The wave action is defined as F/o. For a continuous spectrum, the

energy density of a group of waves whose wave-numbers lie in the element of area 64
of the wave-number plane, specified by the vectors k, k + &', and k+ &" is given by

SE(k) = pgF(k) 84, (6)

in which
6A = |8 x &'"|. (7

F(k) is the spectral density and p the water density. By applying the kinematic
conservation principle, Phillips (1977) has shown that

d
A+ AV (Cg+U) =0. (8)

Therefore by substituting eqs.(6) and (8) into eq.(5) we have

@ (R o

Equation 9 expresses the conservation of spectral wave action density along the ray.
In the absence of a current, F(k) remains constant along the ray. This result was
first demonstrated by Longuet-Higgins (1957).



TIME DEPENDENT RAY METHOD 675

Time Dependent Ray Method

Equation 8 cannot be directly integrated along a ray because knowledge of
neighboring solutions is required to determine the divergence of velocity. Further
complications arise if variations of currents and/or water depth with time cannot be
jgnored. Under these conditions, w and Cg + U are not independent of time. In
order to solve this problem in a general manner without making a usual assumption
that w is independent of time, the approach of Shen and Keller (1975) is employed.
We begin by defining z

t
Ty (10)
Here p(t,z,y) is an arbitrary but non-zero proportionality function. The choice of u
determines the nature of the parameter v; as we shall see. Equations 1, 2, 3 and 8
consequently can be expressed, respectively, as

dz;

o = A, + ), (1)
dk‘,‘ = 60 Bh ‘c‘?uj
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and i
W BA+ AV - (Cg + U) =0, (14)
where i
d _ d w 0
Tm:“{at+%a_q}' (49)

We now introduce the Jacobian

d(zi;%, %) e (%

J(71}72773)— 67
J

- == ) ia | = 1a213- 16
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Here, for convenience, we have set r = (x,¢,t) = (z;,2%2,23), where ¢, is a constant
reference speed associated with the ambient medium, and (7yy,72,73), is a set of
parameters describing a point on a particular ray. -y; is the running parameter which
varies along the ray and 72 and v3 are labeling parameters specifying a particular ray
and are constants on each ray of the family of rays. In terms of these parameters, a
point on a ray of a family can be respresented by r = r(v1,72,73). For fixed values
of v and 73, this represents the equation of a ray.

We observe that the determinant can be expanded in terms of the cofactors

such that :
al‘m 31‘.’
cof — = Jbim. 17
2 55, (17)

=1
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Here &;y, is the Kronecker symbol and cof denotes the cofactor. If i = m, 6 = 1 ang
equation 17 follows from the rule for the expansion of a determinant by cofactors, [f
i # m, it follows from the fact that a determinant with two identical rows vanishes.
We now differentiate equation 16 with respect to -;, observing that the derivative of
a determinant is the sum of the derivatives of all its elements, each multiplied by
cofactor. Then we write 8/dv; = 3 _,(82,,/8v;)8/02,, and obtain

its

oJ 3. B Oz, LI (31,) dz;
I ‘-;1 070 w'f@%‘ B ,',; 8v; \om /) 5,
3. 8z, 8 ox; oz, 3 a oz;
= —— T — T o |t
b3 =l 3‘7,‘ 0z, (B‘Tt) COfa'Yj ;‘,;1 Ozm (371)
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Here we have used equation 17 in equation 18 and evaluate the sum over j and then
the sum over m. Finally we use equations 10 and 11 and find

a8 8 [ dt & (dz\ 8 (dy
P J{az(a)w—x(a)*a—y(a)}

)
J{6—¢+v-u(cg+U)}

d
J{£+pv-(cg+U)}. (19)

By using du/dt = (dp/dvy)(dy/dt) = (du/dvy)u~" in equation 19 and rearranging the
equation, we have

1(1dJ 1ldu
V-(Cg+U) = {1522 2
(Ce p\Jdy  pdy (20)
Therefore equation 14 becomes
d JoA
—In(—) =0, 21
(=) (2)

which states that the quantity Jé4/u is conserved along the space-time ray. Since
equation 5 has the same form as equation 8 we can conclude that

JFOA
uo

= constant (22)

along the space-time ray.
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[nterpretation of J(7)
Interpretatlo” == A 1/

The Jacobian J in equation 22 can be given a geometric interpretation. We
envisage a curved surface f(z,y,t) formed by a rectifiable wave action front as it
moves forward during time 6t. A point on this surface x can be-identified by the
cunning parameter 71 and the labeling parameters y2 and 3. The parameter v, gives
the location of the point on a ray whose initial position on a wave front is given by
parameter 72. This action front is specified by v; related to some initial time. This
wave action front resembles the so-called initial manifold in the context of solving
some initial value problems.

We note that the Jacobian defined by equation 16 can also be expressed as a
triple scalar product

dr dr or dr dr ar
yo (0 By B fds o de 2
dyr \0v2 073 dvs \dy1~ On (23)
Since
' dr |? ( dt)2 (dr>2 (dy>2 50 5 2
—| =lea—) +{7—) + =] =u"[c;+(Cg+ V)7, 24
dy dv1 dvy dy #[ ( - ) ] ( )
if we choose
p=[e2+(Cg + U2, (25)

then it follows from equation 24 that (dr/dy)? = 1. Therefore, dr/dy; = s is the
unit tangent vector to a ray, and the parameter 7; is the arclength of the space-time
ray. Since we are concerned with the change of wave characteristics associated with
this initial manifold as time passes by, we may choose the parameter 3 to coincide
with the time coordinate such that dr/dv; = (0,0,1) = n, i.e., the unit vector in the
direction of the time coordinate. Furthermore, the time coordinate can be considered,
without loss of generality, to be perpendicular to the horizontal plane formed by the
x and y coordinate, i.e., ¢,t represents the z-axis. In this way, n is the unit vector
normal to the horizontal plane. The term dx/d7; represents a vector tangent to the
action front from which a family of rays is spreading out. Thus the width between
two adjacent rays, dv, can be expressed as

B

dys |=| Jd72 | - 26
872)7”‘ 72 | (26)

dv=|n- (sx
Here dy; is the infinitesimal interval of length identifying two adjacent rays with
parameter values 72 and 2 + dv2 along the initial manifold. Since dv; is a constant,
it follows from Egs. ( 22) and ( 6) that
1/2
= constant. (27)

2

6 L e
|Cg + U|?

E
“dv|Cg+U|
a

A triple scalar product n - (A x B) represents an area of the orthogonal projection of the paral-
lelogram determined by vectors A and B onto a plane whose unit normal is n.
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The Unsteadiness Factor

The factor ¢,/(Cg + U) = ¥ in ( 27) can be considered as a contribution to the
wave height amplification due to the unsteadiness of the ambient medium. This factor
is equivalent to the one suggested by Tolman(1990) as a measure of the unsteadiness
of the depth or the current field. The major cause of unsteadiness in water depth
and current in the coastal region is tides and tidal currents. The value ¢, in thig
situation represents the phase speed of the tide in the direction of wave propagation,
ie., ¢, = Cycosa ~ /ghcosa, where a is the angle between the tide and the direction
of wave propagation . Since /gh >| Cg + U [, ¥ is in the order of one or larger.

To provide a rough idea about the magnitude of ¥, we consider a situation where
waves propagate in water of constant depth, say h = 25,m following the direction of
tide. We take the amplitude of tides to be A" = 0.5 m in the open ocean where
the depth is typically A’ = 4000 m, then ¢,' = 198 m/s and U’ = ¢,/A'/h' = 25
cmn/s (Bowden, 1983). The corresponding values in water of h = 25 m are 4 =
A'(R/RYS = 1.8 m, ¢, = ¢'(R/R)V/? = 15.7 m/s, U = U'(R'/R)Y* = 1.1 m/s. For
waves of period 15 seconds propagated in the water of 25 meter depths, the group
velocity is Cy = 12.4 m/s, we have ¥ = 1.2. For waves of period 10 seconds, C, = 9.4
m/s, ¥ = 1.5 and for 5 second waves, Cy = 3.9 m/s, ¥ = 3.1. Thus, the effect of
unsteadiness in the ambient medium on short waves can be substantial.
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