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ABSTRACT

An overview of the theory and parameterization of the wave boundary layer (WBL), which is central to
small-scale ocean-atmosphere dynamical interactions, is presented. Surface boundary conditions and the form
for the local tangential law are then suggested. The corresponding structure of the WBL above a wave field is
illustrated using the JONSWAP spectrum as an example. An analytical model of the stationary boundary layer
is constructed. It is shown that close to the surface the wind speed profile is nonlogarithmic, and the mean shear
stress is not a quadratic function of wind speed. The roughness parameter has its sense only outside of the WBL.
The partitioning of momentum flux between turbulence and wave-induced motions is strongly dependent on
the assumed upper frequency bound for the wave spectrum. Finally, an algorithm for the parameterization of
the WBL in coupled atmosphere-ocean and atmosphere~wave models is suggested.

1. Introduction

Until recently, investigations of the marine boundary
layer were based on the usual theory of a boundary
layer above an infinite, flat, rigid surface. In fact, the
presence of waves was considered only a minor incon-
venience forcing one to modify the roughness param-
eter. No one was puzzled that the roughness parameter
is about four orders of magnitude smaller than the
height of waves, and no one discussed the treatment
of the wind profile at low heights in the presence of
finite amplitude waves. Generalizations of the exper-
imental data on the roughness parameter and the drag
coeflicient were made based on different qualitative
hypotheses. The most sophisticated scheme was sug-
gested by Kitaigorodskii (1962), who assumed that
roughness may be treated as a spectral decomposition
of moving wave obstacles whose contribution depends
on the relation of their phase velocity to the wind speed.
The problem with this scheme is that it represents the
concept of roughness too literally. In reality, this quan-
tity characterizes something that does not exist, namely
a parameter introduced into the wind profile to obtain
the needed wind velocity. Close to the surface this rep-
resentation is not valid and a roughness parameter is
not meaningful. Essentially, the use of a roughness pa-
rameter is only possible at heights much larger than
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the roughness elements themselves. [ See also a discus-
sion of this problem in Chalikov (1993).]

The wave boundary layer (WBL.) is the lower part
of the atmospheric boundary layer above the sea, whose
structure is influenced directly by surface waves. Within
the WBL, some portion of momentum transfer results
from wave-produced fluctuations of pressure, velocity,
and stresses. We call this constituent the wave-produced
momentum flux (WPMF). The typical height of the
WBL is

(1.1)

where k, and w, are the peak wavenumber and fre-
quency of the wave spectrum and g is the gravitational
acceleration. Estimate (1.1) for Awg; was obtained di-
rectly from numerical modeling of wave-produced
motions based on the two-dimensional Reynolds
equations (Chalikov 1986). Using the Pierson-Mos-
kowitz spectrum for estimation of significant wave
height H,, it follows that

-1 _ -2
hwey, =~ kp = 8gwp”,

hwaL
L= 37
H, :

so the WBL height Awp, is several times larger than the
characteristic wave height. Moreover, the main dynamic
atmosphere-ocean interaction takes place in the lowest
part of the WBL. within a height of about H,, and the
structure of the WBL cannot be described in Cartesian
coordinates. The most important conclusion of our pre-
vious investigation is that all 2D and 3D models of the
WBL have to be constructed in a curvilinear coordinate
system (also denoted “surface following™ coordinates in
this paper). The 1D parameterized models of the WBL

(1.2)
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should be derived from 3D Reynolds equation in a sur-
face-following coordinate system.

A rigorous verification of numerical simulations of
the lowest part of the WBL above the wave surface is
only possible using measurements made in surface-fol-
fowing coordinates {. Unfortunately, such measure-
ments are very complicated even in wind-wave tun-
nels. Therefore, in practical terms, 2D and, of course,
3D modeling remains the main source of information
on the fine structure of the WBL just above the water
surface. However, this does not mean that WBL theory
is completely unsupported by experimental data. We
have previously shown that, due to the fast attenuation
of correlations between geometrical characteristics of
the surface and fluctuations in the air flow, the differ-
ences between { and z coordinates disappear with in-
creasing distance from the interface (see Fig. 10 in
Chalikov and Belevich 1993, hereafter ChB93). Con-
sequently, the usual experimental data on wind profile
and wind stress outside the lowest part of the WBL are
appropriate for verifying the integral properties of drag
formation. In this paper we formally use a z notation
for the vertical axis, assuming that the surface-following
coordinate { quickly approaches the usual height above
the mean water level.

The most important dynamical characteristic of air-
sea interaction is the drag coefficient C

_ 17
ful®’
where 7 is the turbulent stress divided by air density
and u is the wind velocity at some reference height. In
practice, the reference height is often z = 10 m.

Let us suppose for simplicity that the wave field in
deep water is produced by a uniform stationary wind
velocity u# and stress 7 outside the WBL. In this case,
Kitaigorodskii’s (1962) similarity approach is valid,
and the drag coefhicient C at height z should be a func-
tion of z, wind velocity u(z), gravitational acceleration
g and the nondimensional parameters that character-
ize wave maturity, for example, the nondimensional
time 7 = g/ u. Alternately, the time-independent vari-
ation of sea state as a function of fetch under the action
of wind blowing perpendicularly to a shoreline may
also be (0n51dered In this case, dimensionless fetch X
= xg/u*, rather than dimensionless time 1, character-
1zes spec,tral wave maturity. Finally, a parameterized
spectrum, such as the JONSWAP form of Hasselmann
et al. (1973), requires other parameters such as the
nondimensional peak frequency &, = w,v,/g, where
v, = | T|"/? is the friction velocity. From dimensional
considerations and ( 1.3) we obtain that

_1T(2)] gz
~ (2] f(P’SW)’

where s,, represents a dimensionless parameter char-
acterizing spectral wave maturity.

(1.3)

(1.4)
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Equation ( 1.4) implies that for a given s, the drag
coefficient C should be a universal function of non-
dimensional height Z = gz/u?. Unfortunately, exper-
imental data stratified over wave age are rare. Excep-
tions are Donelan (1982) and the recent HEXOS data
of Smith et al. (1992). These observations have a large
associated scatter. Of course, the most important rea-
sons for this scatter are the nonstationarity and non-
homogeneity of the flow and the density stratification,
which create deviations in the self-similar structure
outside the WBL. Inside the WBL, deviations also arise
due to the generation of wave-produced momentum
flux (WPMF), which affects the logarithmic profile
and, strickly speaking, makes the roughness parameter
meaningless. Nevertheless, the HEXOS data exhibits
certain regularities: the drag coefficient increases with
wind velocity and decreases with wave age. Specifically,
the drag coefficient C,y may vary in a range (1.0-3.0)
X 1073, and young sea is much “rougher” than old
sea. This may be explained by the strong dependence
of the wind—-wave interaction parameter 3 on frequency
and on the overshoot effect, which therefore provides
the much larger level of energy at high frequencies for
young waves than for old ones. Moreover, fast waves,
which have wave age c¢/u close to 1.0, do not create
drag, whereas the drag due to slowly moving waves is
similar to that resulting from stationary obstacles and
is thus very effective. Therefore, the main part of the
momentum flux is concentrated at high frequencies
and strongly depends on the level of energy there.

In the case of arbitrary two-dimensional directional
spectra containing wind waves and swell, the drag coef-
ficient depends on the entire spectrum

_ Ty
" ul?
An alternate and more convenient representation of
sea surface roughness is found in the nondimensional

roughness parameter Z,, which formally is connected
to C by the relation

f(I l2,S(u.a 0)) (1.5)

Zo= —!Zﬁgl— = Zexp(—kC™17?),
where Z is any height normalized by Charnock’s scale
L =|T|/g, and k is the von Karméan constant.

Outside the WBL where the WPMF is absent, the
stress 7" is a constant with respect to height, and the
roughness parameter z, approaches a constant, which
we call fotal roughness parameter zo,. This quantity
reflects the complete mechanism of drag formation
arising above the surface. For a fully developed sea,
(1.5) then gives the Charnock (1955) relation

2o = mL, (1.7)

where a commonly accepted value for m is 0.0144
(Garrat 1977). In general, parameter m depends on

(1.6)
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the entire spectrum and, in more simple situations, on
the parameter s,,. In fact, use of the Charnock scale £
allows us to exclude the direct influence of the wind
velocity and to stratify the nondimensional roughness
in terms of wave state characteristics.

The question often arises as to what part of the mo-
mentum is transferred to the waves and what part goes
directly to currents. [See Janssen (1989) and discussion
in Chalikov (1993).] An answer to this question is pos-
sible only when the wave spectrum goes to zero at low
frequencies, for example, when only swell is present
and the wind is weak. In this situation, the surface is
smooth below some frequency and some portion of
momentum transfers through the viscous sublayer di-
rectly to the horizontal flow of the water. In all other
cases, the wind and the nonlinear interactions create
a continuous wave spectrum that reaches very high
frequencies. In the latter situation, consideration of the
relation between wave-form stress and tangential stress
is useless because this relation depends only on an ar-
bitrary cutoff frequency w, that separates the modeled
waves themselves and subgrid disturbances, which we
proclaim to be the “roughness elements.” If the wave
energy density is large and the cutoff frequency w, is
high enough, the WPMF is close to the total momen-
tum flux in the vicinity of the surface, and the mean
tangential stress is very small. However, there is still
momentum transfer to currents because the waves dis-
sipate, break, and transfer their momentum to currents.
Certainly the timescale of this transition depends im-
plicitly on the spectral wave dissipation timescale.

The most difficult problem of one-dimensional
modeling of the WBL is in assigning boundary con-
ditions at the water surface. We can accept the con-
dition of a velocity vector discontinuity at the interface
when high frequency waves are absent, But even in this
case this condition is difficult to model because the
grid has to be fine enough to resolve the viscous sub-
layer. More importantly, we are forced in this case to
speculate on the dynamics at heights on the order of
the roughness parameter. Thus, it is very convenient
to assume local homogeneity and stationarity for the
thin near-surface layer and to use the drag law for tan-
gential stress (Gent 1977; Chalikov 1976, 1978, 1986).
We note that the existence of a constant flux sublayer
in a case of smooth surface may be proven from the
two-dimensional equations of the WBL.

A continuous spectrum with a fully developed but
poorly known high-frequency region is much more
complicated. First, we cannot resolve all the waves be-
cause we do not know their spectrum or drag properties.
Second, the dynamic properties of these waves may be
very complicated. Yuen and Lake (1982) showed that
for a frequency 2-3 times larger than the peak fre-
quency w,, the linear dispersive relation is not valid.
A direct modeling of nonlinear wave dynamics by
Chalikov and Liberman (1991), based on the primitive
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equations for potential motion with a free surface, also
proves that the phase speed ¢ of high frequency waves
varies in time with a temporal variance that grows
quickly with increasing frequency. Probably this effect
may be explained by the presence of bound waves run-
ning with the same phase velocity as their “parent”
wave. In any case, the structure of high-frequency range
is too complicated to be taken directly into account in
the formulation of lower WBL boundary conditions.
Even the position of the surface is known only to an
accuracy of the order of the height of unresolved waves.
Therefore, a bulk parameterization of tangential stress
in the near-surface layer becomes unavoidable. In Gent
and Taylor (1976) and in our previous 2D and 1D
models, the quadratic drag law was used. We show
below that this approach is acceptable when the height
where boundary conditions are assigned is not too
small.

It is well known that each wave is associated with a
WPMF in a layer thickness of order g/w?. The near-
surface layer in the presence of a well-pronounced
spectral “tail” cannot be considered a constant tur-
bulent flux layer because, as the surface approached,
the new evolving waves are involved in drag formation.
Therefore, as the distance to the surface decreases, the
WPMF increases. To satisfy the momentum balance
condition, the turbulent stress also must be decreasing,.
Our previous calculations for the high-frequency region
of the spectrum (ChB93), based on results of two-di-
mensional modeling, showed that the WPMF increases
linearly with respect to the logarithm of height. ChB93
could not give an explanation for this result but simply
assigned a lower boundary condition in the form of a
quadratic drag law. The local roughness parameter was
chosen by estimating the characteristic height of subgrid
waves assuming a Phillips spectrum. A more careful
consideration of the near-surface dynamic structure is
shown in this paper to allow the establishment of a
nonlogarithmic wind profile and a drag relation that
is not quadratic. These results follow from assuming
that close to the surface not only does the spectrum
have a universal structure, but the form for the WPMF
and the wind profiles are also universal and not directly
dependent on the low-frequency region of the spec-
trum. Properties of the equilibrium range lead to the
specification of the local drag law, which connects wind
velocity, turbulent stress, and the vertical gradient of
the WPMF. The local drag law provides the lower
boundary conditions for one-dimensional models of
the WBL and upper boundary conditions for the cur-
rents in a mixed layer.

The modeling of WBL-waves-mixed layer system,
as a whole, is especially important in a coastal zone
where the mutual exchange of momentum and energy
between wind, waves, currents, and turbulence is very
extensive. The formulation of this approach has been
discussed in (ChB93). In this study we formulate a
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simple one-dimensional WBL model intended for
ocean-atmosphere coupling. In a forthcoming paper,
we consider the coupling of the WBL-model with a
third-generation wave prediction model and a simple
model of currents in a mixed layer.

2. Basic equations

The 1D structure of the nonstationary wave bound-
ary layer is governed by the equation

Y (2.1)

____('1(7"1__*_1,[), i=1:2’
dz

where z is a vertical coordinate; u; is the vector com-
ponents of wind velocity; and 7; and 7; are vector
components of vertical fluxes of momentum produced
by turbulence and wave-induced perturbations of
pressure, velocity, and stress fields (WPMF) as shown
by Chalikov (1978). Height z may be considered as a
water-surface-following coordinate (ChB93). Fluxes T;
and 7; may be expressed in the form
7= k2,

32 (2.2)

where K is the coefficient of turbulent viscosity.

Assume that 7 is a superposition of “elementary”
fluxes produced by all waves with frequencies w and
angles ¢ with respect to the wind:

T = gj;’f_ Fdbdw,

F = kiS(w, 0)8(&a, CVF(E, &4, G- (2.3)

Here ¥ describes the spectral density of WPMF as a
function of the nondimensional height ¢

£=2z/A (2.4)
nondimensional frequency
@, = wlu| cos(6)/g, (2.5)

and the drag coefficient C, at height z = \,. In (2.3)
k; are the vector components of wavenumber; S(w, 8)
is the two-dimensional wind wave spectrum as a func-
tion of frequency w and angle 6 between wind and wave
directions; w, is the frequency up to which the spectrum
S is known (the “cutoff” frequency); and C, is the
drag coefficient at height z = \,, where

Ao = 27g/(w? cos|8]) (2.6)

is the so-called apparent wavelength.

In (2.3) B is the nondimensional wind-wave inter-
action parameter as a function of &, and C,. The scalar
function & was investigated in numerical experiments
with a 2D model. Because the approximation of this
function used in ChB93 was not valid for very high
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values of drag coefficient, we now use the following
expression:

7=~ G

mj) exp(~10£), (2.7)

which implies that, in practice, ¥ depends on the
frequency and drag coefficient but not on the wind
speed. This means that the nondimensional fre-
quency influences the surface momentum flux 7o and
the vertical scale A, but not its vertical distribution
in terms of z/A,.

The K-coefficient in (2.2) may be computed by the
formula

K = kz(e/c)'?, (2.8)

where ¢; = 4.6 and the equations for turbulent kinetic
energy (TKE) may be written in the form

de_ydudu, du 9 se (eja):”

0z ou; - (29)

"oz "9z oz kz
Shear production of turbulence is described by the first
term on the right side; the mutual transformation of
kinetic energy of wave-produced fluctuations and tur-
bulent energy is described by the second. A discussion
of the energetic properties of the WBL is given in Pan-
chenko and Chalikov (1984).

Let us estimate the role of the diffusion term by

comparing it with the dissipation term:
5:(_9.1(‘_9_6)_](_2__,\, kZé_e,

az e

o 7 (2.10)

where Ae is the typical deviation of e due to wave-
produced perturbations. Calculation shows that Ae/e
does not exceed 0.2, implying that the typical value of
615 0.03 and the influence of TKE diffusion is negligibly
small.

We now estimate the role of nonstationarity in (2.9).
The dissipation timescale for KET, given by 7, = kz/
e'/2 may be estimated by substituting e = ¢,v%, which
leads to

(2.11)

where £ is a height of layer. The timescale of the WBL
relaxation 7, to change the stress 7 by the amount AT
is approximately u//AT. This scale may be represented
as

h
= ACu’

(2.12)

Here AC is the variation of drag coefficient due to wave
influence and has a typical value of 0.001.

Finally, the timescale for the wave field evolution
T is
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jw = (ﬂpwp)—l,

where w, is a peak frequency and §, is a typical value
of 8 at w,. Assuming that w, is of order of 1 and g,
about 107*%, we obtain a quite reasonable value for the
timescale of wave field evolution, 7,, ~ 10*s. Taking
into account that the typical value of the WBL height
is 10 m and a typical value for the wind speed is 10
m s~!, the resultant relaxation timescale J, for the
WBL is of order 500-1000 s, an order of magnitude
smaller than J,,. It seems that we can neglect the effect
of wind nonstationarity and assume that the wind field
in the WBL has always been adapted to the wave field.
Although this may be correct for calculations of wind
wave fields at synoptic scales, it is not correct for smaller
scales, especially under conditions of horizontal in-
homogeneity as found in mesoscale models. Moreover,
this effect also may be large in the coastal zone. The
assumption of stationarity does not work when wind
and waves are strongly “unadapted” to each other, for
example, when the phase velocity is considerably
greater than the wind speed or when the prevailing
directions of wind and waves are different. In this case,
the mutual adaptation of wind and wave fields occur
within a timescale of order J,.

The relation J,/J, is about 1072-1073, implying
that the turbulent energy relation (2.9) may be accepted
as a stationary balance of dissipation and production
terms: '

(2.13)

(2.14)

The model formulated above illustrates our general
approach to modeling the WBL-wind-wave (WW)
system. The evolution of the wave field may be sim-
ulated using a spectral wave model. In this case the
evolutionary problem has to be solved step by step,
exchanging information between WBL and WW mod-
els. The WBL model calculates the spectral density of
energy input to waves as in ChB93, while the WW
model simulates the evolution of the wave spectrum.
As waves develop, the slow evolution of the whole at-
mospheric boundary layer occurs. In such calculations,
it is necessary to assign the boundary conditions at
sufficiently large height (=~10° m) and to take into
account the Coriolis term. If Egs. (2.2), (2.3), and
(2.14) are used to parameterize the dynamical inter-
action in an atmosphere-~wave system, the evolution
of the atmosphere is described with a 3D thermody-
namic atmospheric model. In this case, (2.2), (2.3),
and (2.14) establish the connection between wind in
the lowest level of the atmospheric model and turbulent
stress at the same level. These stress components should
be taken into account at the next time step in the at-
mospheric model. The WBL model provides the wave
model with the energy flux spectrum density §(w),
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E(w) = Z—“ wS(w, 0)B(@g, C).  (2.15)

The scheme described may be easily generalized by
coupling the WBL and WW models with a mixed layer
(ML) model. Existing ML models do not take into
account waves at all, and therefore they cannot describe
the closed balance of momentum and energy. The gen-
eral approach to modeling the WBL-WW-ML system
is described in ChB93.

3. Boundary conditions for the WBL model:
Local drag law

Upper boundary conditions are assigned outside the
WBL at height z = h, where the WPMF attenuates
and the vertical structure of boundary layer is close to
a self-similar one. At height 4, either the wind velocity

z=Hh: W= uy (3.1)
or vertical turbulent momentum flux
z=h: T,’ = T,’h (32)

is assigned.

The problem of lower boundary conditions is quite
complicated. It cannot be formulated without consid-
eration of some of the properties of solutions at small
heights. At the wave surface itself z = n(x;, t), the
surface current velocity components are known

u; = uip(x;, t). (3.3)

It is difficult to directly use these boundary conditions
even in a coordinate-following system because in the
vicinity of the surface small-scale perturbations of un-
known nature are present. This layer is analogous to
part of the boundary layer above a rigid surface adjacent
to roughness elements. The difficulty is avoided in a
reasonable manner by introducing a local drag law at
a small but finite height z = z,:

T; = f(u;, hy), (3.4)

where A, is the appropriate microscale characterizing
the surface. For the case of turbulent flow above a rough
surface, A, is the characteristic height of roughness ele-
ments associated with roughness parameter z,

= n(x;, I):

z=2z,:

Zp = mhra

(3.5)

where m is of order 0.01. For rough surfaces, when z,
> v/v, in the constant flux layer, the wind profile is a
logarithmic one, and the local drag law takes the form

T,‘ = C(ujuj)'/zui. (36)

In general, the absolute value and direction of the
outer stress 7; and total surface stress may be different,
which causes the evolution of the wind profile on
timescales of order J,. Furthermore, a developing
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F1G. 1. Wind profiles 7i(2). The curves are labeled by @,.

WPMF results in a deviation of the wind profile from
a logarithmic variation, implying that a simple qua-
dratic law (3.6) is inappropriate.

Let us consider the lowest part of the WBL adjacent
to the water surface at z < z,. The height z, must be
small enough so that the vertical variation of the =
component of the WPMF depends only on waves of
the inertial region of the spectrum. In this region, the
wave spectral density is assumed to be described by a
Phillips law:

S(w) = ag’w™, (3.7
For example, if the wavelength at the spectral peak is
about 60 m, the wavenumber is of order 0.1 m™! and
the peak frequency is about 1 s~!. If we suppose that
the inertial region begins at 3w,, then z;, should be
smaller than g/(3w,)? ~ 1| m. The characteristic height
of such waves is also of order 1 m. In this layer we may
neglect changes in total stress with height and consider
the stationary momentum balance when directions of
wind and total stress coincide. We will call this the
adjusted layer. Aligning the x axis with the wind di-
rection in this layer, we obtain the equation

'

é—(T+ 7)=0, (3.8)
0z

which may be integrated (variables without indexes
are assumed to be the absolute values of vectors) to

give’

T+ 7 = const = T, (3.9)

where T, is the sum of turbulent and wave-produced
stress at height z,. The equation for turbulent energy
may be represented as
u K 0
“9z  (kz)*
Therefore, the turbulent coefficient may be described
by the following expression:

(3.10)

173
K=(kz)4/3(Taa—u) . (3.11)
oz

Substituting this equation into (3.9) we obtain
u
8z

which may be integrated as

172 pz T 3/4
- z’(1~§,—a) dinz, (3.13)

4/3
(kz)“”(Ta)‘”( ) =T,—7, (3.12)

u=u+
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FIG. 2. Drag coefficient profiles 10°C(1?/gz).

where u, is a wind velocity at some height z, < z,.
Notice that the wind velocity at any height cannot de-
pend on the choice of an arbitrary reference level z,,
implying that du/dz, = 0. The form of &, in (3.13) is

U = —

T:;/z T 3/4
P (l -T—a) dinz + C, (3.14)

where C is an integration constant.

Derivation of a wind profile requires establishment
of the form of wave-produced stress 7 at small heights
z < z,. It is natural to suppose that close to the surface
the wave-produced momentum stress formed by the
universal part of the spectrum (3.7) should be universal
too. The absolute value of 7 depends on the entire
spectrum and cannot be universal. But it is possible to
suppose that the vertical derivative of 7 close to the
surface depends on total local stress, gravitational ac-
celeration g, height z, and parameter « in (3.7), de-
fining the energy density at high frequencies:

Py (3.15)

ﬂo(Tay ga Z’ a)'

The highest frequency w, participating in the formation
of 7 is related to z by the relation w? = (g/z,), which

is why w, is not included in the list of governing pa-
rameters. Dimensional considerations imply

o7

— =y(Z, a), 3.16
Y, WUz, @) (3.16)
where 7 = 7/ T, and Z = gz/ T, are the nondimensional
WPMF and height.

Because o is a factor in the spectrum (3.7), it follows
from (2.3) that 7 /9% depends on « linearly. Taking
into account that 7,/gz < 1, we represent the function
¢ by expansion

a a
= A e S I 17
¥ a(ao PRy ) (3.17)
It is evident that as T decreases to zero, 97 /32 must
also vanish. Thus, ay = 0, and the simplest form of
(3.17) is

o
3 (3.18)
oz 4
Integrating (3.18) we obtain
=1+ aa In(z/zyp), (3.19)

where a, is a universal (negative) constant and zgq
is the height at which 7 converges into T,. Ob-
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viously, the sense of zgo is similar to that of the
roughness parameter z, for the wind profile. For-
mally, z, is some (very small) height at which the
wind, being log-linearly extrapolated downward,
theoretically decreases to zero. In reality, both the
interpretation of zp in terms of the wind profile and
the interpretation of zy in terms of the WPMF are
incorrect because we have neglected all effects of
molecular viscosity and capillarity. Nevertheless,
(3.19) may be useful for analytical representations
of the wind profile.

Equation (3.19) has a deep physical sense. It im-
plies that near the surface, contributions to WPMF
are due to the smaller and smaller waves. It is re-
markable that the considerations presented above
were confirmed by numerical calculations of the
WPMF profile performed with the JONSWAP spec-
trum in ChB93. Each WPMF profile revealed a linear
dependence of = on log-z over a broad range of log-
heights close to the surface.

Substituting (3.19) in (3.13), we obtain the local
drag law for the adjusted layer of the WBL.:

4T,
Tk

U =

7/4
(aa1)3/4(1nzi) +C. (320)
00
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This formula may be represented also in the form

AT, ( or \7'(. 7\
=3 (6lnz)r (1 _Ta) +C. (321)

Let us determine the integration constant C. First,
note that an expression of type (3.21) describing the
wind profile cannot be used directly because, as dr/
d1Inz — 0, the wind velocity u — o . This contradiction
implies that 7 and the vertical derivative of 7 both con-
verge to zero simultaneously. When the fetch is suffi-
ciently long, the negative fluxes of momentum at low
frequencies begin to weaken the positive fluxes of mo-
mentum on the medium frequencies and all the WPMF
is concentrated at high frequencies. In this case the
height of the WBL increases, but WPMF approaches
zero, and the sea surface influences the air flow only
through its usual roughness. Therefore, we need to in-
troduce the roughness parameter z, for wind velocity.
Of course, form drag is generated and develops in this
situation too, although very close to the surface it is
due to surface perturbations of poorly known nature.
This type of drag formation approximates that above
a solid rough surface. It was found in ChB93 that the
nondimensional roughness parameter Z; may be rep-
resented in a form

5.0 T T T T T
0.03
2.04 )
4.0+ o 05
.06
0.07
.08
2.09
Q:”’ 0.10 7
= 2.11
a g.12
2
=
" 20t .
1.0F N
2.0 S
2.0 5.0 6.0

FIG. 3. Wave-produced momentum flux WPMF profiles 7(2).
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%y = 2oL 7" = xVa, (3.22)

where « is a constant in Phillips law (3.7) and X is a
constant. The sense of formula (3.22) i1s that « char-
acterizes the level of energy in the high-frequency part
of the spectrum. As the mechanism of drag formation
from high-frequency surface perturbations is unknown,
this constant has to be derived from empirical data.
An approximate estimate of X is possible using the
Pierson-Moskowitz spectrum with o = 8.1 X 1073,
For 2, = m = 0.0130 (Smith and Banke 1975),0.0144
(Garret 1977), and 0.0185 (Wu 1980), we have ob-
tained X = 0.14, 0.16, and 0.20, respectively. ChB93
showed that the wave-induced momentum flux for a
fully developed sea is small. Therefore, the wind profile
is close to logarithmic even at very small heights. Thus,
consider that the total and local roughness parameters
are equal to each other.

It is important to emphasize that we are forced to
introduce the roughness parameter z, only because we
do not know the mechanism of drag formation at very
high frequencies. Form drag plays the main role for
the sufficiently mature or fully developed sea. The spe-
cific property of the WBL is that for values zp > zp
the WPMF provides enough stress for the vanishing of
the wind at height z = zy,. In this case the usual rough-
ness parameter does not apply. In its place it is appro-
priate to use a rule,

2o = max(Zp, Zgo). (3.23)

We are now faced with the problem of how to compute
the boundary conditions formulated above in a nu-
merical solution of the WBL one-dimensional problem.
Because (2.1)-(2.3) are strongly nonlinear, it is rea-
sonable to solve them iteratively. Let us suppose that
7, and 7 are the values of the WPMF at levels z = z,
and z = z, and (d7/9z),, its vertical derivative at z
= z,. Then, assigning u = 0 at z = z,, we can evaluate
the integration constant in (3.14) and represent u, in
the form

i 32 ar \!
7% T (alnz)r

T, 704 70\
X[(l*'y—,a) —(l—i) ], (3.24)

where 74 may be derived from the log-linear distribu-
tion of 7 in (3.19)
d
" In E(i) .
200

ur:—-

(3.25)

To = Ta(l +8lnz

It follows immediately that 7o < T, when zyy < zp,
which arises above a fully developed sea when wave
age c,/u is close to (or smaller than) unity and the
negative flux of energy dominates the low-frequency
part of spectrum. In the presence of fast long waves
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aligned in the direction of the wind, the positive flux
from these waves to the wind may considerably de-
crease the negative momentum flux from the wind to
short waves, and the total friction may be weakened.
To satisfy the momentum balance condition the wind
speed will increase. When a positive WPMF exists, the
total roughness parameter becomes less than the local
roughness parameter. Of course, the total momentum
flux cannot drop to zero, although for very long fetches
in the hypothetical situation of an “overdeveloped™
sea (as reported empirically by Glazman and Pilorz
1990), the sea surface may become very smooth in the
sense of a total roughness parameter. In (3.26), 7, and
7o are values of WPMF at levels Z = Z,and Z = Z;. For
developing sea (according to our calculation when w),
> 0.075 or u/c,> 1.8) the WPMF can be Jarge enough
to equal the outer value of stress 7}, implying that 74
= 1. It is remarkable that in this case Egs. (2.1), (2.15),
and the boundary condition (3.26) form a closed sys-
tem, and information on the local roughness parameter
is not needed.

In presenting the boundary conditions for the WBL
we proceeded from the assumption that the wind is
strong enough to form an inertial subrange in the wave
spectrum. However, it is known that the inertial inter-
val cannot arise when the wind is weak. This implies
that in the vicinity of the interface the high-frequency
WPMEF is absent and the turbulent stress is a constant
with respect to height. In this regime the drag relation
(3.26) is not valid. Therefore, the drag coefficient (1.4)
may depend on additional nondimensional parameters
that include the molecular viscosity and coefficient of
surface tension. Empirical evidence of the growth of

8.15 : .
g.10 .
7
@.95 =
0.00 . 1
g.00 2.01 g.02 2.93
[» 4

FiG. 4. The dependence of nondimensional gradient of WPMF v
in the adjusted layer on Phillips constant «. Asterisk: calculations
and curve: approximation (4.6).
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the roughness parameter with decreasing wind are given
by Wu (1988) (see also the discussion in Blake 1991).
Although this regime may be investigated numerically
using a 2D model of the WBL, it has thus far not been
completed.

4. Structure of WBL above developing waves

Let us consider the structure of the WBL for the case
when the wave field is produced by the local wind in
the absence of swell. We suppose that the spectral den-
sity distribution as a function of nondimensional fre-
quency wv, /g is described by the JONSWAP approx-
imation (Hasselmann et al. 1973, 1980). The nondi-
mensional peak frequency @, is a parameter of the
approximation. Let the axis x be alongwind. Because
the JONSWAP spectrum is symmetric relative to the
wind, the directions of the turbulent stress and the
WPMF coincide with the wind direction. It is conve-
nient to represent the governing equations (2.1)~(2.3)
and (2.15) in nondimensional form by the scaling:
velocity v, = T )%, length vi/g, turbulent energy
v2, turbulent viscosity coefficient v3/g, and wave-
number g/v. Using the estimate of timescale from
(2.12)-(2.14), we consider the stationary one-dimen-
stonal WBL problem. In this case, the total stress 7°
+ 7 is a constant over height:

~ Ol

R 4+5=1
az T ©

and the momentum balance equation takes the form

dii 4/3
(kz*)4/3(a~’zf) +3=1,

where 7 is the nondimensional WPMF

(4.1)

(4.2)

7= fw' fﬂ cos(8)®2S(&)D(&, 8)
0 -~

X B(&,, COF(§, C)dbda. (4.3)

Taking into account the boundary condition (3.24),
the integral of (4.2) may be represented in the form:

. _ A4 or - ~\7/4 o~ \1/4
R e ISR UL

+l (1 = 57)*dInz. (4.4)
k Js,

Although this is not an explicit solution because 7 de-

pends on i, this form is convenient for iterations.
Some computations from Eq. (4.1) were presented
in ChB93. Those computations did not take into ac-
count the universal structure of the WPMF profile
formed by the high-frequency part of the spectrum, as
expressed by (3.19), but used the local quadratic drag
law instead of (3.24). The new results obtained from
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(4.4) and the boundary conditions (3.2) and (3.24)
are shown in Figs. 1-10 for 0.03 < & < 0.12. The
boundary conditions (3.2) and (3.24) were assigned
at h = 1/&5 and h, = 1/®?%. The JONSWAP spec-
trum was approximated using a frequency step A®
= @,/20 up to the “cutoff” frequency 5&,. Increasing
the “cutoff ” frequency up to 7@, did not change the
results significantly. Wind profiles presented in Fig. 1
are almost logarithmic only for an old sea (small
@,). Beginning from &, = 0.05, the wind profile exhibits
a deviation from logarithmic variation because of the
WPMF (Fig. 3). Thus, a widely used variable such as
the drag coefficient C), at z = 10 is inconvenient be-
cause difficulties in comparison of data referred to other
heights. A much more universal variable is the drag
coefficient C with its dependence upon nondimensional
height gz/u? and some characteristic of wave field, such
as the nondimensional peak frequency @ = v,/ ¢,. This
dependence is presented in Fig. 2. It is seen that even
for the idealized conditions of stationarity, homoge-
neity, and the absence of swell the variability of the
drag coeflicient may be very large. The vertical profiles
of the WPMF are shown in Fig. 3. The smaller the
peak frequency, the smaller the WPMF at the same
height, but the greater the height it reaches because it
is produced by longer waves. Closer to the surface, the
WPMEF grows linearly in log-height in a good agreement
with the dependence (3.19) obtained with similarity
considerations. Equation (3.19) may also be written
as ‘

, (4.5)

7T=x1In

.'_\’?| Ne

where ¥ = 97/0 Inz is the gradient of the WPMF in
the log-scale and z, is the height at which 7 is zero
when extrapolated log-linearly. The value of v depends
on the wave spectrum at high frequencies. If the shape
of the spectrum at high frequencies is universal, then
the definition of the WPMF (2.3) implies that the de-
pendence of v on the Phillips constant « is almost lin-
ear. This dependence is presented in Fig. 4.

The calculations presented in Fig. 4 allow construc-
tion of an approximation for the term 97/9 InZ ap-
pearing dimensionally in (3.19):

o7
d1InZ
This dependence is correct in the range 0 < a < 0.07.

The Phillips constant & may be approximated by the
formula (Janssen 1989)

a= 0.575)3/2,

which applies in the range 0.03 < & < 0.25.

We note that formula (4.6) is needed when we can-
not reach high enough resolution for the spectrum and
we are not able to calculate d7/dz directly using (2.3).

=0.03 + 4.250. (4.6)

(4.7)
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FiG. 5. The dependence of parameter 2,
[see (4.8) on Phillips constant «].

In general, formula (3.14) provides the boundary con-
dition for the evolutionary equation (2.1). The depen-
dence of Inz, on the peak frequency w, is shown in Fig.
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5. Although the height z,, where the WPMF approaches
zero, may depend on the long wave part of spectrum,
that dependence cannot be universal. Nevertheless, if
we suppose that the wind wave spectrum may be de-
scribed by the JONSWAP spectrum and swell is not
important because of its small steepness, estimates from
Fig. 5 may be used to approximate the vertical distri-
bution of the WPMF as follows,

InZ, = 1.53a7'/4, (4.8)

Note that the accuracy of relations typical of (4.6)
depends completely on the accuracy of function
B(&,, C) for large values of C,, simply speaking, for
small heights. At present time we do not know well
enough the shape of 8 for C), > 3 X 1073,

A specific feature of the JONSWAP spectrum (Fig.
6) is the strong “overshoot” effect: energy in the high-
frequency part of the spectrum decreases with increas-
ing wave age. To estimate the contribution of different
parts of the spectrum in the momentum and energy
exchange, we calculate the integrals:

Il(a)=fof éodbdw, 12(&)=ff Fodbdw,
~r 0 -
(4.9, 4.10)

.83
.94

S

FIG. 6. JONSWAP spectrum.
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F1G. 7. Momentum flux integral spectrum density (&) [Eq. (4.10)).

where &, is the spectral density of energy exchange
Eo = 3S(&, 0)8(&a> ), (4.11)

and %, is the spectral density of the momentum ex-
change at the lowest level of the numerical model 2
= h, [see (2.3)]. The dependencies of I; and I, on fre-
guency @ are presented in Figs. 7 and 8. It is interesting
that the momentum and energy fluxes to waves de-
crease as the waves develop. An explanation for this
phenomena is that the phase velocity approaches the
wind velocity, and the wind-wave interaction param-
eter (3 goes to zero.

Due to the logarithmic growth of the WPMF ap-
proaching the surface, the magnitude of this quantity
depends on height. Therefore, consideration of the
“surface” value, considered by Janssen (1989) and
Jenkins (1992) is not meaningful. Trying to assume
that the nondimensional WPMF at the surface is equal
to unity is also not constructive. Clearly the integrated
momentum flux spectrum density ¥ is a function of
w,. The decision concerning what portions of the mo-
mentum have to be attributed to waves or currents
therefore depends, in practice, on spectral and spatial
resolution of the wave models. This implies that waves
that disappear at scales on the order of the horizontal
grid step give their momentum and energy immediately

to the local currents and mixed layer turbulence. In
principle, the same effect also takes place for the energy
flux, and assuming S(w) o w~> and B o¢ w? (at high
frequencies), the integration of (4.9) over ail frequen-
cies formally gives a finite value. Although both mo-
mentum and energy fluxes are finite, their values may
of course depend on the physics of the high-frequency
interaction. Fortunately, we know the limiting value
for the momentum flux: for quasi-stationary flow it
cannot exceed the external value of 7. The analogous
balance estimate for the energy flux is not possible be-
cause of a singularity in the dissipation in boundary
layer.

For long fetches (and mature spectra: @ ~ 0.03),
both momentum and energy input are negative at
low frequencies because the waves run faster than
the wind and they transfer their momentum back to
the atmosphere. Although the momentum flux in-
tegrated over frequency is, of course, positive, the
total energy flux is directed from wind to waves. The
dependence of integrated energy flux on the peak
frequency is shown in Fig. 9. A sign change occurs
at ® = 0.035 and a saturation level I, = 2.1 isreached
at frequency @ =~ 0.1. For very short fetches the lim-
iting value of I, then decreases once more, but as
this regime is beyond the range of known §3-param-
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FIG. 8. Energy flux integral spectrum density /;(@) [Eq. (4.9)].

eter values, it merits a (future) dedicated investiga-
tion. Finally, it may turn out that the negative energy
flux arising at low frequencies is the sole reason for
a possible stabilization of the wind wave spectrum
at fixed wind.

For numerical solution of (2.1)-(2.3), we used a
semi-implicit scheme based on (4.4) rewritten in the
logarithmic vertical coordinate ¢ = In((z — 9)/z,). The
wind and WPMF profiles were calculated iteratively.

Modifications of scheme

The method suggested is very simple and may easily
be implemented in coupled ocean-atmosphere models.
Nevertheless, this approach may turn out to be too
expensive because it is necessary to calculate the in-
tegrals over the wave spectrum many times and to solve
(2.1)-(2.3) iteratively. A simplified method may be
based on the following assumptions.

(1) The WPMF created by swell is small compared
with the WPMF produced by wind waves.

(i1) The spectrum of wind-generated waves is similar
to the JONSWAP spectrum.

(iii) The structure of the WBL may be described
assuming the stationary momentum balance equation.

With these assumptions, we may avoid numerically
solving the momentum balance equation (2.1) and use
a simple analytical representation of the wind profile
under stationary conditions that may be obtained using
a symmetric wave spectrum and approximating the
WPMF by

~

%qm%m~ymfy (4.12)
1

In nondimensional form the solution may be written

as
4 F\7/4 2\
———\{{t-yin=] —(1-ym2
7k7[( Y nzﬁ) ( Y nzﬁ) ]
at f<f)
=
4 4 1, 2
——|1-{1-yIn2} |+ =
7k[ ( V“a) ] k'
L at 5}5],
(4.13)
where Z; is defined by (3.24) and
Zoo = zy exp(—v 7). (4.14)
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FIG. 9. The nondimensional energy input to waves
as function of peak frequency .

The analytical solution (4.13) is in a good agreement
with the nurerical solution (4.3),(4.3). Asthe WPMF
diminishes and ¥ — 0, Eq. (4.13) gives the usual log-
arithmic profile # = k™' In(2/Z,). Outside the WBL
the wind profile may be represented as & = k™' In(Z/
Zo,), where 7y, is a total roughness parameter. Equating
this formula to (4.13) we obtain

1 z
2y = £, exp'{—u,+ o) n-a- %)”“]dlnz}.
Zy

(4.15)

The first term in braces gives the contribution of the
high frequency “tail,” while the second gives the con-
tribution of the discrete region of the spectrum. Al-
though the values of these terms depend on the as-
sumed height Z, of the parameterized near-surface layer,
the value of the total roughness parameter z,, does not
depend on Z, at all because of the definition of the local
draglaw (3.14) and the universality of the WPMF pro-
file (3.19). It is evident that at 7 = 0 the total roughness
parameter is equal to the local roughness parameter
that is created by the high frequency tail. When the 7
component of the WPMF is positive, the total rough-
ness parameter increases due to additional drag pro-
duced by the waves. At 7 < 0 the WPMF directed from
waves to wind makes the total roughness parameter
smaller than the local roughness parameter.

In general, when the wave spectrum contains waves
and swell running at different angles to the wind, the
vector of total momentum flux on the surface does not
coincide with the momentum flux outside the WBL.
In this case the interaction is much more complicated
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and cannot be described, assuming a stationary ap-
proach. Nevertheless, for a very thin adjusted layer
above the surface the assumption of stationarity is valid,
and the local drag law (3.21) may be used as a lower
boundary condition for the nonstationary problem. In
this case we assumed that if wind is not weak, the high-
frequency part of spectrum governing the local rough-
ness is formed by the local wind.

The solution (4.13) may be used for calculating a
stationary wind profile up to small heights in a sea-
surface-following coordinate system. This wind profile
may be used for calculations of energy input up to very
high frequencies. In fact, the existing wave models are
the “large wave models”: they are unable to take into
account very short waves because of computational
restrictions. For example, the length of the shortest
wave in a global version of the WAM model is about
15 m, so the height where wind-wave interaction takes
place is much higher than the depth of the layer where
the log-profile of 7 exists. In this case the fine details
of the wind profile are insignificant, and it may be ap-
proximated by

V. Z
u(z) P In 0

Principally, zy, may be derived from (4.15), but it
is more convenient to use the next simple procedure,
which is based on relation (3.22).

The drag coefficient and consequently energy input
to all waves in the scheme described depends on the
shape of the high frequency tail. For the JONSWAP
spectrum the Phillips parameter « is connected with
the peak frequency by relation (4.7); it may be assumed
that some rule exists for the evaluation of ¢, in the
computed 2D spectrum. For example, we may suppose
that w, is the highest and closest to the wind direction
maximum in the spectrum S(w, 8). Another way to
determine « may be based on direct calculation of «
by approximation of the modeled spectrum tail by w >
law. (Note that for an arbitrary wave field, a much
more informative characteristic than wave peak fre-
quency may be the frequency of peak input energy).

Formula (4.16) may be rewritten in terms of a drag
coefhcient C:

(4.16)

C=k}IR-1n(CO))?, (4.17)
where .
R= ln( 28 ) (4.18)
xXVou?

is a nondimensional parameter and z is an arbitrary
height. ‘

Equation (4.18) was solved analytically, and its so-
lution shown in Fig. 10 was approximated with formula

10.4 ) (4.19)

= -3 —_—
C=10 (0.021 TR

in the range —1.0 < R < —8.0.
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FIG. 10. The empirical dependence of drag coefficient C on wind velocity U, (Donelan 1982) (a) and on nondi-
mensional parameter R (b). 1) 0.8 <&, < 1.5;2) 1.5 < @, < 2.0; 3) 2.0 < &, < 3.0;4) 3.0 < &, < 4.0 and 5) 4.0

< @, < 6.0.

Thus, the dependence of the drag coefficients C(z)
on wind velocity #( z) and sea state, expressed in terms
of the Phillips coefficient o, may be reduced to the
dependence on a single parameter R. Unfortunately,
the empirical data on the dependence of the drag coef-
ficient or roughness parameter on fetch are scarce. To
verify formula (4.20) we used observations collected
by Donelan (1982). These data, displayed in Fig. 10a,
show the dependence of drag coefficient C,, on wind
velocity u for different wave ages. The same values
of drag coefficient are presented in Fig. 10b as a func-
tion of parameter R.

The Phillips parameter « included in R was esti-
mated by formula (4.7), which can be presented in
the form

a = 0.57(Clhus/c,)*>. (4.20)
Values of Cyq and u,9 were given by Donelan (1982).

The scatter on nondimensional scale R in Fig. 10b
is noticeably less than that in Fig. 10a.

The calculation of input term & at frequency w and
angle 6 — 6,, to the wind may be performed knowing
the wind velocity u;, at arbitrary height s by the fol-
lowing steps:

(a) assigning the initial value of drag coefficient Cj;
(b) calculation of the friction velocity v, ;

(c) calculation of parameter « [ formula (4.7)];
(d) calculation of parameter R [ formula (4.18)];

(e) calculation of the drag coefficient C, [ formula
(4.19)];

(f) return to item (b) for iterations (one iteration
is usually enough to reach a good accuracy);

(g) calculation of the apparent wavelength A, [ for-
mula (2.6)];

(h) calculation of the total roughness parameter z,,
u,, and C) using the relations

2o, = h exp(—kC5;''?), (4.21)
_ 1n()\a/20)

= Uy (4.22)

Cr = Cpl(un/)?, (4.23)

(i) calculation of the nondimensional frequency w,
[ formula (2.5)];

(j) calculation of the 8-parameter as a function of
C, and o, (see ChB93);

(k) calculation of the spectral density of energy in-
put & by formula (2.16).

5. Concluding Remarks

The aim of this paper is a formulation of a param-
eterization scheme for the WBL in coupled atmo-
sphere-wave models. The scheme is based on the non-
stationary momentum equations (2.1)—-(2.3), the sta-
tionary turbulent equation (2.14), and boundary
conditions (3.1) [or (3.2)] and (3.24).
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The scheme of energy input described above together
with a new scheme for wave energy dissipation has
been implemented into an experimental third-gener-
ation WAVEWATCH model (Tolman 1991) at Na-
tional Meteorological Center.

Further development of the WBL theory should be
performed in three main directions.

1) The direct modeling of the statistical structure
of the WBL using 2D and 3D Reynolds eguations
(Chalikov 1986 ) should be attempted. We are not sure
that the 3 function is established accurately enough for
high frequencies and large drag coefficients, so it is nec-
essary to perform a new series of 2D and 3D simula-
tions. The 3D approach may be extended by imple-
mentation of the large eddy-scale simulation technique.
The most important problem is the establishment of
the precise form of the wind~wave interaction param-
eter and the WPMF profile in a broad range of fre-
quencies. The conception of the local drag law also
needs a further investigation.

2) It is clear now that the wind~wave interaction
problem is much more complicated than it originally
seemed, because the WPMF cannot be represented, in
fact, as a simple decomposition of elementary fluxes
produced by monochromatic waves. Although we are
forced to use this assumption, in reality all waves in-
fluence the wind profile and the energy and momentum
exchange.

All previous investigations of WBL used the con-
dition of the water surface as a superposition of linear
waves. Thus, the nonlinear nature of surface waves
was ignored. A much more consistent approach should
be developed by joining the WBL model with the non-
linear wave model (Chalikov and Liberman 1991) de-
scribing the individual wave dynamics. In a 2D ap-
proach the most appropriate method is based on con-
formal (surface following) mapping of domain. This
transformation is especially effective for potential wave
equations. A two-layer approach may offer deeper in-
sight into physics of small-scale wind-wave interaction.
Unfortunately, this approach also suffers from grave
shortcomings. First, the potential waves cannot be in-
fluenced by tangential stress. Second, many important
phenomena including wave breaking cannot be repro-
duced in full in potential approximation. Probably the
effect of wave breaking may be parameterized on the
basis of instability criterias and considerations of mo-
mentum and energy balance.

The main advantage of potential approach is that it
allows one to reduce the problem by one dimension.
The simulation of nonpotential waves over long period
is practically impossible because the evolution of energy
due to inaccuracy in approximation of vertical deriv-
atives exceeds the rate of nonlinear wave-wave inter-
action.
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3) The coupled atmosphere-ocean simulation
should be extended by joining with WAM-type and
WBL models. Only this approach would allow one to
reproduce a closed balance of momentum and energy
in a wind-wave-mixed layer system.
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