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Abstract. In this study, Earth location errors in AVHRR satellite data and
methods for their correction are examined with particular application to oceanic
regions far removed from ground control. A general correction procedure, using
landmarks or Ground Control Points (GCPs) and taking into account landmark
uncertainties, is presented. Correction functions are derived as expansions for any
complete basis. Operationally-available estimates of Earth location are used as a
first-guess in developing the correction procedure. In particular, polynomial
expansions are used to represent the correction functions which provide the basis
for renavigating the satellite data. The coefficients of the polynomial expansions
are obtained using the method of least-squares. The stability of the correction
procedure with respect to local errors in navigation, (i.e. within a scene) and how
to select the correct order of the correction polynomials are examined. Uncer-
tainty in extrapolating navigation corrections over remote regions is examined
and quantified. The importance of landmark uncertainty in degrading renaviga-
tion accuracy is also addressed. Scveral parameters arc introduced to optimize
the choice of GCPs and their distributions. The procedures which are developed
are then applied to simulated and actual AVHRR imagery. Finally, the impact of
local errors in navigation, which most likely arise from rapid variations in
spacecraft attitude, on renavigation accuracy is emphasized and one possible
solution proposed.

1. Introduction

The Advanced Very High Resolution Radiometer (AVHRR) is a high-resolution,
multi-channel scanning radiometer that has been flown aboard NOAA’s TIROS-N
polar-orbiting satellites since 1978. Satellite imagery from this instrument has been
used extensively to study a variety of oceanic features based on their thermal
manifestations at the surface. As the oceanographic applications for AVHRR data
have become more sophisticated, the need for greater Earth location accuracy has
likewise increased. For example, by measuring the displacements experienced by
selected thermal features between successive images, it is often possible to infer the
apparent advective motion that transports these features. Such feature-tracking
methods place stringent requirements on Earth location accuracy since the asso-
ciated displacements may not be large compared to the uncertainties in the
navigation. Although careful co-registration of successive images in coastal regions
usually produces close alignment near coastlines which are often used as a common
reference in the co-registration process, there is no guarantee that close alignment
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will occur between the images for oceanic locations far-removed from land. Thus, we
are motivated to reexamine the question of Earth location accuracy as new
applications for AVHRR satellite imagery arise which continue to place greater
reliance on earth location accuracy.

In navigating AVHRR satellite data, two basic approaches are used. The first
employs an ephemeris model to predict the orbital elements which are then used to
calculate Earth locations for the satellite data; the second involves the use of
landmarks that provide a basis for relocating AVHRR image pixels which are
usually first navigated approximately using an ephemeris model (e.g., Emery et al.
1989). Our primary interest in this study involves the use of landmarks, and a
number of issues arise in their use that significantly influence the quality of the
renavigated data. They include the number and distribution of landmarks, landmark
uncertainty, and the mathematical procedures that are used to relocate the satellite
data. These issues are examined in some detail.

Since the mid-1970s, a number of studies has addressed the problem of
navigation for data acquired from polar-orbiting satellites. The various types of
geometric errors and methods for their correction for Landsat data were outlined by
Bernstein and Ferneyhough (1975). Malhotra and Rader (1975) described the two
basic approaches for Earth-locating remotely-sensed data using (1) an ephemeris
model to determine the orbital position and attitude of a spacecraft as a function of
time, and (2), landmarks or Ground Control Points (GCPs) as known reference
points on the Earth’s surface as a basis for relocating the entire field of image
elements or pixels. Legeckis and Pritchard (1976) developed an algorithm to correct
satellite data from the Very High Resolution Radiometer (VHRR) for geometric
distortions due to Earth curvature, Earth rotation and rolling motions of the
spacecraft. A method for assigning geographical coordinates to digital satellite
imagery from the VHRR was given by Kirkham and Stevenson (1976). McConaghy
(1980) presented a technique for analytically determining the geographic location of
individual pixels in VHRR satellite data io an accuracy of 0-17 or less, in latitude
and longitude.

According to Clark and LaViolette (1981), AVHRR data from TIROS-N could
be reliably registered on to a geographical grid using two-dimensional, third-order
polynomials. The remapped data were useful for tracking the movements of oceanic
fronts. Freidman et al. (1983) were able to reduce the computational effort involved
in obtaining precise geometric corrections for Landsat data by reducing the required
number of GCPs from an average of 15 to 4, through (1) the processing of multiple
scenes, and (2), physically modelling the motions of the spacecraft. Two methods for
geometrically correcting AVHRR data were compared by Emery and Tkeda (1984).
One method included Earth oblateness and the second assumed a circular orbit for
the satellite. Both methods used GCPs as a final step in the Earth location process.
Significantly fewer GCPs were required to achieve a specified degree of Earth
location accuracy for the case where Earth oblateness was included. Brunel and
Marsouin (1987) presented a method for navigating AVHRR data in real time based
on an extrapolation of the satellite’s orbital elements which were calculated from the
ARGOS Data Collection and Location System. The mean navigational error using
this method was 4-7 km. Cracknell and Paithoonwattanakij (1989) were apparently
able to achieve subpixel accuracy in renavigating AVHRR data by combining
AVHRR and Landsat images using the method of Torlegard (1986). The NOAA/
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TBUS mean orbital elements were used by Kloster (1989) in an orbital prediction
model as a basis for Earth locating AVHRR data.

A comprehensive review of the methods used in AVHRR image navigation was
given by Emery et al. (1989). A procedure for automatically navigating AVHRR
image data using both ARGOS and TBUS orbital elements and an operational
ephermeris model was developed by Marsouin and Brunel (1991). O’Brien and
Turner (1992) applied an efficient template-matching algorithm to raw AVHRR
image data to automatically identify coastal features to be used as GCPs for image
registration and to provide local corrections for the Earth locations predicted from
the TBUS orbital elements. Gupta (1992) used matching GCPs in slave and master
images to obtain acceptable geometric co-registration. Deviations in geometric
registration related to the distributions of GCPs were also examined. Bordes er al.
(1992) applied template-matching between selected coastal landmarks in AVHRR
images with corresponding landmarks taken from a digital coastline reference file.
Accuracy of the mapped AVHRR data using this technique was on the order of one
pixel.

The text proceeds as follows. First, various sources of Earth location error for
AVHRR satellite data and examples of errors in Earth location are given. A
technique for correcting Earth location errors is presented next; the uncertainties
that arise in landmark location and in the extrapolation of the corrections over
remote regions are included. Results of the correction technique which 1s developed
are presented followed by a discussion and a summary with recommendations.

2. Earth location errors
2.1. Sources of error in Earth location

To find the exact Earth location of each picture element (pixel) in a satellite
image, the following information is required:

1. Orbital elements: semi-major axis, eccentricity, right ascension of the orbital
plane, inclination of the orbital plane, argument of perigee, and the angular
position of the spacecraft within its orbital plane. These elements determine
the satellite’s position in space with respect to the earth as a function of time.

2. Attitude: roll, pitch and yaw, which determine the orientation of the satellite
as a function of time.

3. Sensor geometry; determines the viewing angle of the sensor as a function of
time.

Because the models that are used to predict the orbital elements contain various
sources of error, predictions based on these models can only be taken as approxi-
mate. Table 1 below shows several sources of Earth location error plus rough
estimates of their magnitudes (for additional information see Emery er al. 1989,
Bordes ef al. 1992).

Figure 1 shows spacecraft attitude time histories for roll, pitch and yaw for one
orbit of the NOAA-11 polar-orbiting satellite. Although variations in roll and pitch
are small (absolute value <0-03%), yaw is significant in this case (< —0-4%) leading to
maximum Earth location errors of roughly 10km toward the edges of the scan.
Although these data may not be representative, they emphasize the importance of
variations in yaw as a likely contributor to errors in Earth location.
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Table 1. A partial list of the sources of error in Earth location for AVHRR satellite data.

Direction Estimated
(x=along-scan, magnitude
Error source y=along-track) (km) Comments
Orbital elements xand y ~10 (1) Orbit ellipticity
(2) Oblateness of the Earth
(3) Local variations of gravity
(4) Solar activity
Timing errors® v ~2 Affects only along-track
direction
Yawt xand y =3
Pitch ¥ <1
Roll x <1
Interpolation of bench- xand y ~1 Remapping from ephemeris
mark locations output
Imperfect registration x and y <1
between channels
Lowered resolution due to xand y <6 Only significant at high zenith
scan angle dependence] angles

*Timing errors arc due to the clock drift aboard the satellite. Corrections lor clock
drift arc applied when the accumulated drift has reached values usually in the range of 0-5
to 1-0 seconds. As a result, we have sclected a value for clock drift of 300 msec™ ! as
representative which corresponds to an Earth location error of approximately 2 km (D.
Solomon, personal communciation).

tValues of 0:03° for the error in roll and pitch and 0-1° for yaw, were used to estimate
the corresponding crrors in earth location (D. Solomon, personal communication).

1The navigation error duc to scan angle dependence corresponds to approximately hall
the distance or range of uncertainty between adjacent pixels in the alongscan direction at
the edge of the scan.
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Figure 1. Roll, pitch and yaw for one orbit of the NOAA-11 spacecraft. The dale is
24 March 1992,
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Consequently, we give a brief description of how yaw is measured aboard the
spacecraft. Yaw is measured in two modes, the nominal mode and the YGC (yaw
gyroscope compassing) mode. The nominal or primary operating mode relies on
periodic Sun angle measurements to reset the gyroscopic sensor which measures yaw
aboard the spacecraft once each orbit. The secondary or YGC mode is used when
Sun angle measurements cannot be made, a problem which often arises during the
winter. As a result, the accuracy of yaw measurements in the YGC mode is reduced
(J. Shepherd, personal communciation).

2.2. Classification of errors
One method of classifying errors in Earth location is according to their frequency
of variation (e.g., Friedmann ef al. 1983):

1. Low frequency errors: when the periods of the error variations are much
greater than the scene imaging time. Unpredictable orbital variations contri-
bute to low frequency errors.

2. High frequency errors: when the error variations occur over periods of the
order of, or less than, the scene imaging time (& 5minutes for the AVHRR).
Spacecraft motions (i.e., roll, pitch and yaw) contribute to high frequency
errors.

Low frequency errors are essentially constant over the scene (they also have low
spatial frequency) and often require only a constant shift in the image coordinates to
provide an adequate correction (e.g., Bordes ef al. 1992). High frequency errors may
vary significantly within a scene and are inherently more difficult to correct.
These distinctions are important because they reflect different components of the
error generation process, components which often have different physical origins.

2.3. Examples of errors in Earth location

The space and time scales associated with Earth location errors for AVHRR
satellite data have not been examined extensively. (The few published figures on
navigation accuracy vary from subpixel to several pixels or more for AVHRR
satellite imagery which has been renavigated using landmarks (e.g., and RMS error
of 1:5km was quoted by Cornillon er al. 1986)). As a result, we present several
examples of earth location error for two geographic regions (in this section and in
§4) based on navigation data provided by NOAA/NESDIS. However, the extent to
which these errors are representative is not known.

Initially, we consider a sequence of eight AVHRR images acquired over the
Persian Gulf from 2-15 August 1991 for NOAA-11. The resolution of these images
is 2-:2km. Fifteen GCPs were chosen over this region.

Figure 2 shows the variation in the apparent location of one selected GCP over
the sequence of eight images. The smaller rectangles represent estimated landmark
uncertainties which reflect our inability to select the exact location or pixel of
interest. The outer rectangle brackets these locations and is roughly 20km
(longitude) x 8 km (latitude).

Figure 3 shows the space and time variation in Earth location error for nine
landmarks over the sequence. A tendency for the resultant errors to be greatest in
the alongscan direction is clearly indicated in this case. The Earth location errors
vary from image to image with an overall RMS value of 54 km.
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Figure 2. Apparent locations (black dots) of onc sclected GCP in the Persian Gulf area lor a
sequence of eight images. The smaller rectangles (or bars) represent estimated
landmark uncertainties. The black triangle represents the ‘true’ location of the GCP
taken from a map (National Geographic Socicty, Middle East; scale 1:5877 000), and
the circle represents our estimate of map uncertainty. Numbers near the dots indicate
day/month/year.
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Figure 3. Space and time variation of Earth location errors for nine landmarks around the
Persian Gulf for a sequence of seven images. Numbers at the arrow heads indicate the
corresponding dates during August 1991.
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In a second case, an image was acquired over the Gulf of Mexico from 25 May
1992 from NOAA-11 (this example is included in §4); the RMS error in this case was
15-5km (figure 8). The magnitudes and directions of these errors appear to be rather
consistent throughout the scene, in contrast to the greater variability indicated for
the Persian Gulf case. In general, these errors are expected to be both location and
time dependent.

The Earth location error statistics for the sequence of eight images over the
Persian Gulf are shown in table 2 together with similar statistics from Marsouin and
Brunel (1991) for AVHRR data obtained from NOAA-9 and NOAA-10, and from
Bordes et al. (1992) for NOAA-11. The results of Marsouin and Brunel (1991) were
obtained for 16 images from 19 June to 26 September 1988 and those for Bordes
et al. (1992) from a larger set of images acquired between May and November 1990.

There are considerable differences in the results obtained by Marsouin and
Brunel (1991), by Bordes er al. (1992) and those obtained by us. These differences
emphasize the difficulties in specifying representative or typical estimates of Earth
location error for AVHRR satellite data.

Finally, the spatial distribution of Earth location errors for selected AVHRR
satellite data has been estimated by Bordes er al. (1992). For most of the images they
examined, the errors were more-or-less constant over the entire scene (3000-4000
scanlines). However, they found several cases where the error patterns were maore
complicated and varied significantly within a scene.

3. Correction technique
3.1. Background
3.1.1. Preliminary considerations

AVHRR image data are initially acquired in a satellite-oriented coordinate
system. Consequently, the resulting images are produced in image coordinates which
are referenced to the inclined plane of the satellite’s orbit and its orthogonal
direction (i.e., the alongtrack and crosstrack directions). Each pixel in the image can
be uniquely located by a line number for each scanline and an element number for
each pixel along a given scanline. The navigation process then consists of reassigning
each pixel initially given in image coordinates to an appropriate geographical
location on the Earth’s surface.

This transformation can be written as

Table 2. Statistics of Earth location errors for AVHRR images from three sources.

Standard Minimum Maximum
RMS deviation error error
Satellite (authors) (km) (km) (km) (km)
NOAA-9/10 (Marsouin and 5] 0-6 20 43
Brunel 1991)
NOAA-11 (Bordes et al. 1992) 3.3% — — —
42
NOAA-11 (Present work— 54 41 12 17-9

Persian Gulf)

*Corresponding RMS pixel (upper line) and line (lower line) errors.
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x=A(e,])
y=Ble, 1)

where A and B represent functions which transform the image coordinates to
geographical coordinates. Here, (e,1)=(element, line) represents the image coordi-
nates of a pixel, and (x, y) = (longitude, latitude) represents the Earth coordinates of
the same pixel in degrees of longitude and latitude. (Here, and elsewhere in the text,
y and x refer to latitude and longitude, respectively, and differ from the alongtrack
and crosstrack directions because of the inclination of the satellite’s orbit).

To determine the transformation functions A and B, at least two approaches can
be used, a physical model of the earth plus satellite system, or an empirical model
which depends on the mathematical properties of A and B.

(a) The physical approach depends on the construction of orbit, attitude and
sensor geometry models to generate accurate navigation (Kloster 1989,
Marsouin and Brunel 1991).

(b) The empirical approach relies on the use of GCPs. The location of a GCP is
estimated using simple, empirically-based models for A and B, where the
differences between the GCP locations obtained from the satellite navigation
data and an independent geographical reference are used to calculate the
parameters of the model (e.g., Bernstein and Ferneyhough 1975).

Both of these approaches have limitations. Our knowledge of the precise magnitudes
of the processes influencing a satellite’s position in space is incomplete, and thus our
models are inexact. For example, although the satellite’s position in space is affected
by the solar wind, ephemeris models are not able to predict this effect with great
accuracy (E. Harrod, personal communication).

In using GCPs, high frequency variations in spacecraft attitude often require
many well-distributed GCPs to adequately navigate an image which in turn may
require the transformation functions, A and B, to be nonlinear. Moreover, the GCP
approach may become computationally intensive as the number of GCPs increases,

At this point we include a brief description of the NESDIS navigation pro-
cedures. The NESDIS navigation procedures (Harrod 1990) are based on high
precision orbital elements which are provided by the U.S. Navy Space Command
(USNSC). These elements include an inertial position, a velocity vector with orbit
numbers, a ballistic coefficient, solar flux, average solar flux, and planetary index. A
numerical integrator is used to predict the velocily vector ahead for inclusion in a
User Ephemeris File (UEF). The UEF contains the original USNSC velocity vector
and data records at 60-second intervals for a 10-day period. The UEF is used to
generate the Earth location data and the TBUS messages. The 10-day UEF is used
to compute the Earth location and gridding parameters for the AVHRR data. A
start time, taken from other instruments aboard the spacecraft, is used together with
instrument scanning parameters and vectors from the UEF to produce the Earth
location and gridding parameters. The Earth location and gridding data files are
updated for a 29-hour period that starts on the following day. With respect to the
orbit prediction model presently in use by NOAA/NESDIS, geographical coordi-
nates are produced with an accuracy of approximately 0-05-0-1° (see §2). An
improved ephemeris model is presently under development by NESDIS and is
referred to as the Advanced Earth Location Data System (Sharma 1990).
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However, for oceanographic applications, accuracies of this order are often
unacceptable. In such cases, the empirical GCP approach may be used to improve
the navigation data which are initially provided (from NESDIS or from any other
source of ephemeris predictions for AVHRR satellite data).

A two-stage approach, using an orbit prediciton model to provide first-guess
earth locations, followed by the use of GCPs, provides the basis for improved Earth
location accuracies for regions where GCPs are available (i.e., Bordes ef al. 1992).

This is the approach we have followed in this study.

3.1.2. Landmarks and landmark uncertainty

Ground Control Points (GCPs), i.e., unique geographical locations or features
such as small islands, lakes, capes, etc. which are clearly visible in an image, can
often be used as a basis for renavigating images where Earth location errors exist.
This error is usually defined as the difference between the image location of a
selected GCP and that obtained from a high resolution map or geographical
database. Where a number of GCPs are taken into account, the RMS difference is
often used to express the mean error.

However, the use of GCPs introduces an additional error which we refer to as
landmark uncertainty. Landmark uncertainty results from our inability to accurately
locate GCPs in a satellite image or map. Thus, landmark uncertainty has two
sources: uncertainty in the location of a GCP in the image, and the uncertainty of its
location on the corresponding map.

Uncertainty of the image coordinates is produced by the limited resolution of the
human eye and the AVHRR instrument. (Objective techniques such as two-
dimensional cross-correlation can be used to reduce the dependence on human
judgement (e.g., Borders ef al. 1992)). Map uncertainty depends on the scale of the
map and on its cartographic accuracy. Detailed digital libraries also exist that
contain high resolution coastlines plus the locations of other unique land features
(Bordes er al. 1992, Cracknell and Paithoonwattanakij 1989). As we proceed, several
terms are used to describe the spatial distributions of the GCPs:

1. The GCP region—general location of the GCPs within the image.
2. The GCP area—the actual geometric area covered by the GCPs themselves.

3.2. The correction functions
3.2.1. Approach
Let # and v be the approximate geographical coordinates of an image pixel.
These coordinates are approximate because they are subject to small errors, thus we
let
u=X+e,

v=Y +¢, (1)

where X and Y are the exact coordinates of the pixel, and ¢, and ¢, are the spatial
components of the navigation error vector, e={e,,c,}, where &¢ may also be
separated into two primary frequency bands (see §2.2), ie., high and low
frequencies,

S:El'f'+8h'f'
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or
8y = gL gF:
o U oy B
g,=¢, +e (2)

To correct these errors, we introduce a procedure where the # and v coordinates
assume the roles of first-guess estimates for the true values,

x=u+F(u,v)
y=v+G(u,v) (3)

Here x and y are the corrected coordinates and F and G are, as vet, unspecified
correction functions. We may consider the correction to be optimal when the
corrected coordinates (x, y) are equal to the exact coordinates (X, Y). From this
condition and from (1) and (3), we immediately obtain

Flu,v)= —¢,
Glu.v)= —e, (4)

Equation (4) defines the optimal correction functions for F and G. To obtain
solutions to (4), we introduce models for F and G. If we knew the physical processes
that cause the residual errors in navigation and their time dependence, we could
construct a physical model for the correction functions, F and G. However, as
indicated earlier, our knowledge of these processes is incomplete. Therefore, we
consider an empirical model based on GCPs.

Such an empirical model can be defined as

Flu,v)=~f(u,v,a)
Glu,v) =~ g(u, v, b)

fand g in turn can be expanded as

N

flu,v,a)= Z a; o, v)

=1

M
glu.v.b)= 3 bgy(u, v) (5)
i=1
where a and b are coefficients to be determined, ¢(u, v) and ¢(u, v) represent as yet
unspecified basis functions, and N and M are the basis dimensions.

@(u,v) and ¢(u, v) can be represented by any complete set of basis functions. If
the basis functions create a complete set, we can (in principle) represent the error for
a given level of accuracy by increasing N and M in (5) to the appropriate values, The
possibility of choosing different basis functions for ¢(u, v) and ¢(u, v) provides an
additional degree of freedom, allowing us to fit the model to the errors more
cfficiently. Such flexibility allows us to improve the representation for minimal
values of N and M, which may in turn improve the convergence of (5).

Because of our lack of detailed information concerning the navigation errors
mentioned previously, we use a polynomial basis as the simplest representation for
expanding (5). However, we note that polynomial models with reasonably small #
and m, where n and m are the orders of the polynomials (not to be confused with N
and M), cannot reproduce both the high and the low frequency components of the
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navigation error simultaneously. Thus, we assume that the low frequency compo-
nent, ¢, is more important than g™ (some justification for this assumption is
provided in table 2). Our model can now be expressed as

F(Ms i)) z.)(‘n,i':ﬂ(?"fa U, af) = _‘L'le

G(us U) = gn‘m(u: v, b’) = S;f. (6)
Here a’ and b’ are polynomial coefficients. We note that # and m may be different for
f and g, providing additional flexibility in specifying the expansion, (see discussion
for additional information). Because these polynomials are two-dimensional, they
contain terms which are cross-products. A variety of two-dimensional polynomials
can be defined which depend upon the particular terms that are retained in the

expansion (Chisholm 1973). In this study, the following two-dimensional poly-
nomials were chosen (for n<m),

nt+lm+2—i

fn,m(xsy)= Z Z akxi—lyj_l
i=1 j=1

where k=j+(m+1)(i—1)—(i—1)(i—2)/2. The number of terms (or the number of
coefficients) in this expansion is given by N, where

N=02m—n+2)n+1)/2

Finally, substituting (6) into (3), we obtain the following equations for the corrected
coordinates

x=u+f, (u,0,a)
y:ergn,m(u, Usbl) (7)

where, according to (6), x and y are corrected only for the low frequency component
of the error.

3.2.2. Least-squares fitting procedures

If ¢ could in reality be separated into low (¢") and high (s"") frequency
components, (6) and (7) would provide the basis for obtaining a correction for the
low frequency error. The residual error in this case would be

e.=X—x=e"
e,=Y—y=eb" (8)

In practice, we are not able to make this separation. However, by assuming that
|e"f /e | < 1, we consider the following alternative to (6),

fn.m(u’ v, a) = ==y
gn.m(ua v, b) el E_v (9)

To find solutions to (9), we apply the method of least-squares, which gives rise to the
following minimization

. CTTE 1 ,.
min=min] e 3, Vot o)1 =
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The condition expressed in (10) determines the minimum of a functional xfr (the
minimization takes place with respect to a) where ' is the landmark uncertainty for
the ith GCP and K is the number of active GCPs (i.e., the number of GCPs which
actually take part in the least-squares fitting). Equation (10) can be written in
differential form as

i@ _,
da; ’

which yields the following system of linear (i.e., normal) equations

A, ,8,=B,, qg=1,...,N (11)
1

I 1=

P

The matrix 4, , and the vector B, can be expressed as

K ; \
@1, o) (1, ;)
Ap = Z & :

i=1 (mi-)z
. K (Xi*h’s)(ﬂq(“iavi)
Bq_lgl _ (wit)z

where @,(u, v) and @ (i, v) represent the basis functions originally introduced in (35).
The solution of (11) yields the a; coefficients for the error correction function, 1. A
similar equation holds for ¢.

It is important to emphasize that a (i.c., the solution of (9)) differs from a’ (the
solution of (6)) for two reasons. First the right-hand side of (6) differs from the right-
hand side of (9), due to the fact that the right-hand side of (9) includes the high
frequency component of the navigation error. This term acts as noise here because
the polynomial expansion is incapable of reproducing both the high and the low
frequency components simultaneously. Second, taking into account the landmark
uncertainties ;, which serve as weighting factors in (10), introduces additional
uncertainties in the solution for a. This occurs in this case, because we can not
distinguish between the solutions for a’ and a=(a’+ Aa), if both satisfy the conditon

‘fn.m(”i’ Vs a) 7.fn.m(uf’ Ui, (3+ Aa))l s(})h i= ]! i Al K

and that ;(} < I. Further, it means that a relation between the solutions of (6) and (9)
can be written

Somuv,2)=f, (1, 0,2") + 3 (u, v) (12)

Equation (12) shows that the correction function, f, ,(u, v, a), may be similar, but not
necessarily identical, to the correction function, f, (i, v,a’), even when the high
frequency noise is completely removed. This difference, 0 p(u, v), is small within the
region covered by the GCPs, where from (10),

Ié‘r(uiavz)‘gwh i=1,....K

and, in general, there are no constraints on this function outside the GCP region.
For the corrected coordinates, (12) yields

X=u +.fn.m(MJ v, a) =u +‘fn.m(uv v, a!) + 6]'(”3 U)
y=v+g, (uv.b)=v+g, .(u,0,b)+ 041, v) (13)
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where the residual errors can be expressed as
e, =X—x=8/u,v)+et" -
e,=Y—yp=0d,(uv)+e" (14)

It is evident from (14) that the residual error now has an additional component, in
particular, d(u,v), compare with (8). Within the GCP region, this contribution is
limited by landmark uncertainty and the residual errors are thus constrained
according to

e <o+t
htf.
= <w—+ &y (1 5)

where w=max(w;). However, outside the GCP region d(u, v) and the residual errors
can be very significant (see §3.3). In effect, d(u,v) represents the uncertainty in
extrapolation over areas far-removed from GCP regions.

3.3. Extrapolation uncertainty for remote regions

To correct errors in navigation over the ocean, our correction functions must be
extrapolated. Consequently, we examine the extrapolation uncertainty within, and
beyond, the GCP region. The extrapolation uncertainty (&) has four primary
sources:

l. Landmark uncertainty. The greater the landmark uncertainty, the less the
sensitivity of the least-squares method to variations in the coefficients a and b,
and the greater Aa and Ab will be. Also, é(u, v) will be greater outside the GCP
region and the resulting extrapolations will be less stable.

2. Distribution of landmarks. Both the relative size of the GCP region and the
spatial distribution of GCPs strongly affect extrapolation accuracy and
stability. The greater the area covered by the GCPs and the more uniform
their distribution, the greater the accuracy and stability of the extrapolation.

3. The number of GCPs. In general, the greater the number of the independent
GCPs (see §3.3.3), the higher the accuracy of the extrapolation.

4. The high frequency component of the navigation error. The greater the high
frequency error component, &"*, the greater (i, v) will be outside the GCP
region, with a corresponding decrease in the accuracy and stability of the
extrapolation (see §3.2. and 4.1 for details).

3.3.1. Estimation of extrapolation uncertainty
We are not able to estimate ¢" in areas far-removed from landmarks, but we
can estimate d(u, v), using (5) if we know Aa (or Ab), since

f (u, v, a)
da;,

2 N
Aa? = 2 |pu, v)|*Aa? (16)

i=1

N

S, 0)= 3,

=1

To estimate Aa (or Ab) we calculate the covariance matrix D which is the inverse of
the Hessian matrix, H (a matrix whose components are second-order partial
derivatives), where

D=H""'
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and where H can be expressed as
1 422

[y 4
S 17
“1 2 éaiba; (17)

From (10) we obtain the following relationship for H,

:i I(Hh UI)(p;(u.!s ‘Ul‘) (18)

l

Now, Aa can be found from the diagonal elements of D, where

Aa;=/D;; (19)

By substituting Ag; in (16), we obtain an estimate for the error associated with the
extrapolation of the navigation error correction function. Expressions (16)-(19) are
thus useful in estimating the extrapolation uncertainty in areas far-removed from
landmarks.

3.3.2. Landmark distributions

From the above, it follows that greater accuracy in the interpolation of the
correction functions inside GCP regions does not necessarily correspond to greater
accuracy in the extrapolation of the correction functions beyond the GCP regions,
To evaluate the accuracy of our correction procedures outside the GCP region,
additional GCPs or spectator locations can be introduced. These so-called spectators
do not take part in the least-squares fitting and thus can be used independently to
check the accuracy of our extrapolation (or interpolation) procedures.

The accuracy of our correction procedures depends strongly on the location,
distribution and number of active GCPs. If active GCPs cover only a small portion
of the scene (a situation often encountered in oceanographic applications), we expect
lower extrapolation accuracy over the ocean. To distinguish between different GCP
configurations, we introduce a new coefficient which we refer to as a ‘spanning’
coefficient. It indicates the approximate ratio of the effective area covered by the
GCPs, to the area covered by the image.

With respect to this spanning coefficient, we first define a ‘centre of mass’ and an
effective size for the active GCP region. The coordinates (x., ) represent the centre
of mass of the GCP region if the following mean values are taken

= Z Vi (20)

where K represents the number of active GCPs. Next, the rectilinear distance of any
point in the image (x;,y;) from the centre of mass of the GCP region can be
expressed as

ri=/ = 22+ (i— pof? 21
We can also define an effective size R of the GCP region as

I

R= X (22)

E\Mpq
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and the corresponding effective area, s, as
s=nR? (23)

Thus, with respect to the original GCP region, we have now introduced a circle of
radius R whose centre is located at the point (x,., y,). The area of the circle defines an
effective GCP area which, in general, differs from the geometric area of the region
covered by the GCPs. For our purposes, this parameter is useful in describing
particular GCP configurations.

We now define the above-mentioned spanning coefficient as

a=5/8S (24)

where S is the area covered by the image. Thus o represents that portion of the image
which is effectively covered by the GCPs. That is, o per cent of the image pixels are
located inside the effective GCP region, and thus (1 —a) per cent are located outside
this region. In the following section we show that the spanning coefficient, o, allows
us to distinguish between different GCP configurations as well as to estimate in
advance the accuracy of the correction.

3.3.3. The number of landmarks and their independence
The minimum number of GCPs which is required to extract the coefficients of
the model functions f and g is determined by

Rye =0 (25)

where ny, represents the number of degrees-of-freedom which in this case can be
defined as

Hge=K—N (26)

where K is the number of active GCPs and N is the number of unknown coefficients
contained in (11).

From (25) and (26), we obtain the following important requirements, first that
K =3 for first-order polynomial expansions, and second, that K =6 for second-order
expansions. Thus, these values of K provide lower limits for the number of GCPs
that are required when using first- and second-order polynomials.

Finally, two GCPs are independent if

dij >(w;+w;) (27)

where d;; is the distance between the ith and jth GCPs and w; and w); represent the
uncertainties associated with the ith and jth GCPs. If two GCPs do not satisfy the
condition expressed in (27), they are not independent; thus at least one of them
could be excluded from the set of active GCPs which are initially chosen.

4. Verification of the method

In this section we apply our method of correcting AVHRR Earth location data
first to simulated satellite data and then to several AVHRR images. Our goals are to
verify the method, to estimate its accuracy, and to determine to what extent it is
stable (i.e., when accuracy increases monotonically with increasing order of the
polynomial expansion). We also wish to find acceptable values for the degree of the
correction polynomials, the spanning coefficient, and the number of GCPs and their
configurations.
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4.1. Simulared images
4.1.1. Simulations

To investigate the behaviour of our renavigation procedures systematically, we
simulate images with different land/ocean configurations and with different distribu-
tions of GCPs, including independent GCPs (spectators) located over remote (i.e.,
oceanic) regions,

The following function was chosen to simulate the low frequency error

e =exp(—u+v) (28)

where u and v represent the pixel locations in image coordinates. The function
expressed in (28) is nonperiodic and nonpolynomial; it varies slowly over the image
and, therefore, is representative of a broad class of low frequency errors. Because we
have little information about the high frequency component of the navigation error,
Gaussian random noise was used to simulate the high frequency errors (Press er al.
1990). The dimensions of the simulated images were 11 by 11. The total simulated
error according to (9) is then

Esim = E.lsifrx + 8?{1{1' (29)
with a noise-to-signal ratio (ff) given by
B=com e (30)

Each simulated image has been separated into two geographical regions, ‘land’ and
‘ocean’ (figure 4). Twenty-five active GCPs were chosen over land in each case. The
simulated error from (29) at these points has been used in (9), (10) and (11) to
determine the correction functions, f and g. Next, f and g were used to calculate a
navigation correction for spectator locations over the oceanic regions. All the pixels
in this region were used as spectators (not shown in figure 4). These spectator
locations are not used in the least-squares fitting; we use them only to check the
accuracy of our method. For each spectator location we calculate an extrapolation
error, e, where we define this error as

€= Iesim ffn‘m I :fesim
and a mean extrapolation error over the oceanic region, as

E=Mean {e} 100 per cent

4.1.2. The accuracy and stability of the extrapolation procedure

The four simulated images shown in figure 4 represent four different situations:
land on one, two, three and four sides of the image. For each image, 25 active GCPs
are uniformly distributed over land, and the land occupies approximately one half of
the total area. We use the parameter o which was introduced in (24) to distinguish
between the different GCP configurations; in the cases shown, it varies between 0-41
(a) and 095 (d).

Figure 5 shows the accuracy of the extrapolation of the correction functions over
the ocean versus f (i.e.. the noise-to-signal ratio) for different orders of polynomials
for the GCP configurations shown in figure 4. The accuracy and stability (with
respect to the order of the polynomial and the noise level) of the extrapolation
depend strongly on o and f. As o increases, the extrapolation accuracy increases; as
f increases, the extrapolation accuracy decreases.



The problem of AVHRR image navigation revisited 995

e © o © G . ° ° °
° ° ° [
e @ o o @ ° L7 B B, ‘.. s
L ]
LAND
e o o o € QCEAN o, o
COAST LINE —=<] OCEAN
L] L ] L] L ] é e . &
°
e o © o & ° &
=041 =057
(a) ()
LTI ° ] ° ° O ° ° e
GCP
& ® e \./ » e L)
L] Lo ] e
] ]
OCEAN QCEAN
° - o] ® . Ve
] ® g e © Fe
. ® ° ® ® e
® ® ° ° ® ] o ® ° °
o=074 =095
(©) (d)

Figure 4. Four different ‘land’+‘ocean’ configurations. The black dots represent GCPs.
Corresponding values of o are shown in each case (see §3.2.3).

For the most favourable configuration (land on four sides—figures 4(d) and
5(d)), the correction procedure is acceptable (of the order of the noise) for
polynomial orders from 1 to 4 over a wide range of f’s. For these orders of
polynomials and for f<0-2, the correction is stable.

A contrasting situation is illustrated in figures 4 (¢) and 5 (a) with land on one
side only. In this case, the polynomials of first- and second-order produce acceptable
extrapolations, while a fourth-order polynomial is unstable, even for small }S.
Figures 4(b) and (¢) and 5(b) and (¢) represent intermediate situations.

These examples demonstrate that polynomials of order three or higher usually
yield unstable extrapolations and thus can only be used under extremely favourable
conditions (for very low noise levels, with «>0-75). Since these conditions are
usually quite unrealistic, we exclude polynomials of order three or higher from
further consideration. We have also omitted zero-order corrections to simplify the
figures.

Next, approximately 100 simulations were generated for different configurations
again using 25 GCPs with «’s ranging from 0-25 to 1-0 for first- and second-order
polynomials. Two slightly overlapping envelopes for correction accuracy over the
ocean are plotted versus « (figure 6 (a)). The noise-to-signal ratio was 0-1 in all cases.

The second-order polynomial provides a better correction than the first-order
polynomial only for 2>0-5. Thus, to benefit from a second-order correction, «’s in
this range or higher will be required (especially for higher noise levels—see figure 3).
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Extrapolation accuracy versus noise-to-signal ratio (Beta) for the four configur-
ations shown in figure 4, for different orders of the correction polynomials. The
notation ‘n, m(1)" indicates the order of the polynomials in the x(n) and y(/m) directions
respectively, and ‘(1) the number of polynomial coefficients used in the least squares
fitting.

Next, we investigate the dependence of extrapolation accuracy on the number of
active GCPs. We started with the configuration shown in figure 4 (¢) (2~0-74) and
then varied the number of GCPs from 3 to 25, keeping their distributions uniform. A
noise-to-signal ratio of 0-1 was used throughout. Figure 6(h) shows two envelopes
for correction accuracy over the ocean for polynomials of first- and second-order.
For the cases shown, the extrapolation accuracy is acceptable even for the minimum
number of GCPs (i.e., three for first-order and six for second-order—note that these
results are in agreement with our previous results from §3.3.3) if the noise level is
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Figure 6. (a) Correction accuracy over the ‘ocean’ versus the interpolation coefficient, . The
upper envelope represents a first-order correction and the lower envelope, a second-
order correction. The noise-to-signal ratio (f) is 0-1. (b) Correction accuracy over the
‘ocean’ versus the number of the active GCPs. The upper envelope represents a first-
order correction (1) and the lower envelope, a second-order correction (2). The noise-
to-signal ratio is 0-1. For a first-order polynomial, the cutoff occurs for K =3, and for
second-order, for K=6 (sec §3.3.3).

sufficiently low (f<0-2), and for acceptable GCP configurations (2 >0-6). Addi-
tional calculations were performed for f=0-2, 0-3 and for 0-6 <x<0-74; although
these calculations are not shown, they were helpful in providing a more complete
basis for interpreting these results.

Finally, figure 7 shows a three-dimensional layout for two different sets of
corrections, panels (a)-(d) and (e)-(#). The original simulated errors are the same in
both cases (see panels (2) and (e)). The number of active GCPs is also the same in
each case (K=7). The only difference between these corrections is the GCP
configurations that were used. For the first set of images (a-d), x~0-45, and for the
second set (e-#), a=0-2. The first set shows acceptable corrections. The second set
corresponds to a situation where only the coastline or a narrow coastal strip was
available for locating GCPs. For the second set, the error is not adequately corrected
over most of the image except for the small region occupied by the GCPs themselves,
Increasing the order of the polynomial does not help in this case. However,
increasing the order of the polynomial does improve the correction over the
immediate GCP region. If only seven active GCPs had been available and we had
calculated the corrections only at these points, we would have been unaware of the
significant navigational errors that occurred over the ocean. This example empha-
sizes the importance of GCP distributions and the use of spectators for assessing the
results of such least squares fitting procedures.

4.2, AVHRR images
We have also applied our navigational correction procedures to actual AVHRR
images for two different areas, the Persian Gulf (PG) and the Gulf of Mexico (GM).
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Figure 7. Three-dimensional layout for cases of acceptable (¢-d) and unacceptable (e-h)
corrections. The x and y axes correspond to longitude and latitude respectively. Panels
(a) and (e) show initial errors before corrections for two different GCP configurations
(z axis represents the initial error). For panels (b) and (f), the z axis represents the
residual error after a zero-order correction, panels (¢) and (g), the results after a first-
order correction, and panels (&) and (/), the results after a second-order correction.
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Fifteen GCPs were used for the PG image and 22 for the GM image. Certain GCPs
were active sites, while other GCPs were used as spectators. Earlier (§2.3) we
indicated that the navigation errors for these two images were significantly different,
with an RMS error of 3:6 km for the PG image and an RMS error of 15-5km for the
GM image. Also, the spatial variations of the errors for the two images were very
different (see figures & and 11). Without more specific information, we have taken
the standard deviations of these errors as estimates for the high frequency error. Our
estimates of noise-to-signal ratio for these images were f~0-5 for PG and fx~0-25
for GM. (ff was estimated by simply taking the ratio of the standard deviation of the
error to the total RMS error).

4.2.1. The GM image

For the Gulf of Mexico image, 22 GCPs were employed and their coordinates
were obtained both from the image (NESDIS navigated, resolution of 4-4km) and
from a high-resolution map (NOS Chart Number 411, Scale of 1:2160000). For
each GCP, several estimates of location were obtained. The mean values of the
corresponding latitudes and longitudes were then used as the final coordinates of the

2
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Figure 8. Spatial distribution of initial errors in Earth location and the corresponding
corrections in Earth location for 19 locations around the Gulf of Mexico. The arrows
without numbers represent the initial errors; the arrows with ‘zeroes’ represent the
residual errors after zero-order corrections were applied; ‘ones’ indicate the residual
errors after first-order corrections, and ‘twog’, after second-order corrections. Only
seven active GCPs (identified by ‘a’s’) were used in this renavigation procedure.
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GCP and the standard deviations taken as a measure of landmark uncertainty. For
the corrected field shown in figure 8, seven uniformly distributed GCPs were chosen
to take part in the least-squares fitting (active GCPs), with the other 15 GCPs
serving as spectators to evaluate the quality of the correction.

Table 3 shows the RMS error before and after the correction using different
orders of polynomials (from 0 to 2). Because the original errors in this case varied
slowly in space (and all of the original error vectors have approximately the same
direction—figure 8), a simple zero-order correction provides excellent results. A
first-order correction reduces the RMS error even further. However, a second-order
correction gives no improvement. This result is consistent with the relatively small
values of % (z=()-5) in this case. As in the previous simulations, we would have been
unaware of the true situation when applying a second-order correction without the
use of spectators.

According to figure 6(h) and table 3, increasing the number of active GCPs
improves the accuracy of the correction in this case and further improvement occurs
when a second-order correction is applied.

In order to interpret the figures that follow, we introduce the following ideas and
notation. In correcting AVHRR navigation data, we effectively shift each pixel in
accordance with the value obtained from the correction function at a particular
location. The actual shifts in x and y can be calculated as

”x =f(h’,_ L, a)f"H
n,=g(u, v, b)/0 (31)

where 0 is the resolution of the image, / and g are the longitude and latitude
correction functions, and 7, and n, are the shifts (in pixels). We now introduce the
parameter, u, where

p=INT((n +n})"?) (32)

which yields an integer value (here ‘INT indicates taking the integer result (as in
FORTRAN)) or shift in pixels for the eflective correction for each location in the
image.

Figure 9 shows |n.[, |n,|, and u for first-order (a-c) and second-order (d-f)
corrections. The second-order correction produces similar but more complicated
nonlinear patterns, responding more closely to errors with complicated spatial
structure. We note that only the magnitudes of the correction field have been

Table 3. Correction accuracy for GM image for different polynomial orders.

7 Active GCPs 12 Active GCPs
RMS error for RMS error for  RMS error for  RMS error for
Order of 7 active GCPs 15 spectators 12 active GCPs 10 spectators
polynomial (km) (km) (km) (km)
Before correction 157 155 15-4 14-8
0 4.5 4.7 4.4 4-6
42 44 28 39

]
2 35 46 2:3 35
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Figure 9. Correction displacement (integer values indicate the shifts in numbers of pixels)
for the Gulf of Mexico image for first-order (a-¢) and second-order (d-f) corrections.
Panels @ and d indicate shifts in the x direction, panels b and e indicate the shifts in the
vy direction, and panels ¢ and f indicate the overall (vector) shifts, p. Resolution of the
image is 44 km.

displayed in figure 9 (and in figure 12) and that to show the entire correction field, a
corresponding figure showing the phase or direction of the correction would also be
required.

Next, we have taken seven active GCPs (the remaining 15 GCPs were used as
spectators) and examined the accuracy and stability of the extrapolation with respect
to three GCP configurations (figure 10). For all three configurations, « <0-55. In the
first configuration, (a), there is land on two sides of the image. In the second
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Figure 10. Zero- and first-order corrections for the Gulf of Mexico image. Three different
GCP configurations are represented in (&), (b) and (¢). The active GCPs are indicated
by crossed circles. There are seven in each case but their locations vary, as indicated.
Solid arrows represent the initial errors, the dashed arrows represent the residual errors
after a zero-order correction and the dotted arrows represent the residual errors after a
first-order correction.

configuration, (b), there is land on one side of the image with a remote island located
over the ocean, and in the third configuration, (¢), there is land on one side of the
mmage with the GCPs concentrated near the coastline.

Table 4 shows the accuracy of the corrections for the three GCP configurations
shown in figure 10. Because the «’s are less than about 0-5 in each case, we do not
expect improved results using a second-order correction. The results shown in table
4 indicate that configuration (¢) provides the poorest results in areas far-removed
from the GCPs. Only the zero-order correction provides acceptable results for this
configuration. Configurations (¢) and (b) include a first-order correction and show
improvement over the zero-order correction in these cases.

As before, without spectators, all configurations would have produced results
which were apparently similar, and second-order corrections would most likely have
been chosen in each case. These results are due to the least-squares method which is
used to calculate the coefficients of the terms in the polynomial expansions. In each
case, the higher the order of the polynomial employved, the better the fit to the active
GCP locations. Since the spectators are not used in the least-squares fitting, the
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Table 4. Correction accuracy for the different GCP configurations shown in figure 10.

Configur-
ation (@) (b} (c)

RMS error RMS error RMS error RMS error RMS error RMS error
for 7 active for 15 for 7 active for 15 for 7 active for 15
Order of GCPs spectators GCPs spectators GCPs spectators

polynomial (km) (km) (km) (km) (km) (km)
Before

correction 16-1 158 16-3 156 16-8 155

0 2-8 49 4-5 4-7 41 4-8

1 2-3 46 36 4-4 32 12-0

2 12 52 13 251 1-5 89-4

Table 5. Correction accuracy for PG image for different polynomial orders.

4 Active GCPs 7 Active GCPs
RMS error for RMS error for  RMS error for  RMS error for
Order of 4 active GCPs 11 spectators 7 active GCPs 8 spectators
polynomial (km) (km) (km) (km)
Before correction 3.7 35 34 38

0 28 27 2:5 24

I 13 17 1-2 13

2 N/A N/A 1-6

errors for spectators become very sensitive to extrapolation uncertainty, particularly
when they are located outside the GCP region.

4.2.2. The PG image

In the Persian Gulf image (NESDIS navigated, resolution 2:2 km), 15 GCPs were
used and their coordinates and uncertainties obtained as before. First four, and then
seven, (only corrections using seven active GCPs are shown in figure 11) uniformly
distributed active GCPs were used in the least-squares fitting. The remaining GCPs
were used as spectators in each case.

Table 5 shows the RMS errors before and after correction, using polynomials of
order O to 2. The initial errors were variable in space (figure 11); however, only a
first-order correction was required to reduce the errors significantly, and a second-
order correction provided no further improvement. Alpha (x) was about 0-6 in this
case; hence, we might have expected better results by applying a second-order
correction. However, the noise-to-signal ratio was >0-5 and consequently reduced
the accuracy of the second-order correction because of greater extrapolation
uncertainty.

Panels (a) and (b) in figure 12 show the first- and second-order corrections
obtained from equation (32). The first-order correction field (magnitude only) is
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Figure 11.  The same as figure 8 but for 15 landmarks around the Persian Gulf. Only seven
active GCPs (identified by "a’s’) were used in this renavigation procedure.
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Figure 12. Navigation corrections (integer values indicate the shifts in pixels) for Persian
Gulf image for first-order (@) and second-order (b) corrections. Resolution of the image
is 2:2km.
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box-like and linear, but the second-order correction is nonlinear and increases
rapidly outside the GCP region because the extrapolation uncertainty is high,

5. Discussion

The navigation correction procedures presented in this study are based on the
use of GCPs. All of the required information is introduced through the GCPs,
including the navigation errors, landmark uncertainties, GCP configurations and the
high frequency noise. Thus, the correction accuracy depends strongly on the
particular selection of GCPs.

Recommendations on how to (1) choose the number of active GCPs, (2) improve
the configuration of the active GCPs which are selected, and (3), choose the order of
the correction polynomials, were made. The concept of noise-to-signal ratio was
introduced and its impact on the quality of the renavigation process illustrated.
There are significant uncertainties associated with estimating the noise-to-signal
ratio. We have proposed only one very approximate method for estimating this
parameter. Hence, there is ample room for improvement in this area.

We now consider several possibilities for improving the noise-to-signal ratio and
thus the quality of the renavigated data. With respect to the noise-to-signal ratio,
one of the most serious problems encountered during this study was the occurrence
of high frequency errors in the AVHRR navigation data. These errors have spatial
scales which are of the order of, or less than, the dimensions of a typical scene, i.e.,
about 2000 km. We assume that these errors are primarily due to rapid variations in
spacecraft attitude although other unknown factors may also contribute. How often
such high frequency errors occur in AVHRR navigation data is not known but their
occurrence, even if infrequent, raises the possibility that when they occur, they may
go undetected. Clearly, the best solution to this problem would be to assimilate
information on spacecraft attitude directly into ephemeris model calculations.

Other possibilities also exist for improving the noise-to-signal ratio. For images
where high frequency errors occur, only a few, or perhaps no GCPs will be located in
the areas where the navigation errors are greatest. However, the effect of including
GCPs from such areas will be to degrade the accuracy of the corrections elsewhere in
the image. Excluding such ‘noisy’ GCPs from the complete set of active GCPs will
improve the noise-to-signal ratio and, therefore, the accuracy of the corrections.

One method of identifying noisy GCPs i1s based on the fact that the Earth
location errors for GCPs located in areas which contain high frequency distortion
differ significantly from the errors of their neighbours. Thus, we may initially
remove noisy GCPs so identified from the set of active GCPs before we apply the
correction procedures.

However, for regions where several GCPs are included in areas of high local
distortion, simple ‘preselection’ procedures may not be easy to apply. In these cases,
a more sophisticated, ‘postselection’ approach may be applied. This approach relies
on the fact that low-order polynomials are stable with respect to high frequency
noise. Thus, low-order polynomials do not fit noisy GCPs as well as they fit noise-
free GCPs. After the corrections are calculated, noisy GCPs can be recognized as
those with deviations which are significantly greater than the deviations of their
neighbours. The extrapolation uncertainty can then be used to recognize noisy or
redundant GCPs as those that maximize the extrapolation uncertainty as estimated
from equation (16).
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Considerable attention was given to determining the optimal order of the
polynomials that are used to generate the navigation corrections. The correction
functions were initially presented as separate functions of x and y in equation (3).
This separation was not only convenient mathematically, but has a physical basis as
well since the sources of navigation error such as roll, pitch and timing are aligned in
either the alongtrack or the alongscan directions. Consequently it may be possible to
improve the polynomial order selection by considering different orders for each
direction. Furthermore, it may be possible to use different bases for x and y to
optimize the fit of the mathematical model to the physical characteristics of the
errors, Finally, since polynomial correction functions are two-dimensional, various
cross-product terms arise in their expansions. Thus, even further flexibility arises
through the choice of terms which ultimately provide the best renavigation accura-
cies. Although we have not explored these various possibilities, they merit further
consideration.

6. Summary and recommendations

General correction procedures for improving navigation accuracy for AVHRR
satellite data using GCPs were presented. Although earlier studies provided a basis
for the present study, a number of new topics and techniques have been introduced.
Particular emphasis has been put on the extrapolation of navigation corrections over
oceanic regions far-removed from ground control (i.e., landmarks). Sources of
landmark uncertainty were identified and the dependence of renavigation accuracy
on landmark uncertainty and the distribution of GCPs was investigated. Correction
functions were derived as expansions for any complete basis. A single parameter, o,
was introduced to quantitatively describe the configurations of GCPs. Acceptable
values for this parameter and the minimal number of GCPs for various conditions
were proposed. Criteria for establishing the independence of GCPs and for calculat-
ing the minimum number of GCPs were introduced. A least-squares procedure was
used which took into account landmark uncertainty. A particular basis using
polynomial expansions was presented and optimal orders for these polynomials were
obtained.

The problem of local (high frequency) variations in navigation error and its
relationship to the quality of the corrections was examined. The problem of
extrapolating navigation corrections over remote regions was examined and quanti-
fied. Finally, new procedures for evaluating the quality of renavigated data were
applied to both simulated and actual AVHRR images including the use of indepen-
dent, i.e., spectator, locations for determining the overall accuracy of the
corrections.

A technique for estimating extrapolation uncertainty was also presented. Pre-
and postselection procedures for selecting GCPs were proposed to reduce the
influence of local navigation errors.

It is recommended that the geometric area covered by GCPs should be as large
as possible. The distribution of GCPs inside the GCP region should be uniform; the
GCPs should also be independent, where possible. Along the U.S. west coast, for
example, land is often available on only one side of a typical scene. a situation which
limits the opportunities for good ground control. In these cases it is recommended
that satellite coverage be acquired as far inland as possible to obtain more, and
better-distributed, GCPs for renavigation.
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Polynomials of order higher than two should not be used to correct errors in
navigation except under extremely favourable conditions, and even second-order
polynomials should not be used in all cases. Under unfavourable conditions where
the noise-to-signal ratio is relatively high (f>0-5) and/or the GCP configuration is
poor (x<0-4), only polynomials of zero-order may give acceptable results.

Also, we emphasize that the rules and recommendations that have been
presented for evaluating navigational errors should not be interpreted rigidly but
rather that they should serve as starting points for additional work that is needed in
this area.

Finally, because high-frequency errors in satellite navigation may go undetected
in areas where no GCPs exist, it is strongly recommended that information on
spacecraft attitude including roll, pitch and yaw be assimilated directly into
operational ephemeris models during the process of calculating earth locations for
the AVHRR satellite data.

Although this study focussed primarily on correcting navigation data from the
AVHRR, the techniques presented here should apply equally well to data from
sensors on other spacecraft as well, including both polar-orbiting and geosynchro-
nous satellites.

Acknowledgments

This study was completed with support from NOAA’s COASTWATCH Pro-
gram, (a project of NOAA’s Coastal Ocean Program). The authors wish to thank the
following individuals for help and encouragement during the course of this study,
Walt Campbell, Joann Nault, Emily Harrod, Irwin Ruff, Lou Barbieri, Bill Pichel,
Bill Tseng, D. B. Rao, Mark Waters and Michael Pecnick. We particularly thank,
Lee Ranne for providing the data on spacecraft attitude shown in figure 1. Dick
Geary for producing figures 9 and 12, David Solomon for providing some of the
information contained in table 1 and Jim Shepherd for providing information on
yaw measurement. We would also like to thank one of the reviewers for his (or hers)
very detailed and thoughtful comments.

References

BErNsTEIN, R., and FERNEYHOUGH, JR., D. G., 1975, Digital image processing. Photogram-
metric Engineering and Remote Sensing, 41, 1465-1476.

Borpes, P., BRUNEL, P., and MarsouiN, A., 1992, Automatic Adjustment of AVHRR
Navigation, Journal of Atmospheric and Oceanic Technology, 9, 15-27.

BRUNEL, P., and MARSOUIN, A., 1987, An operational method using ARGOS orbital elements
for navigation of AVHRR imagery. International Journal of Remote Sensing, 8,
569-578.

CuisHorM, J. 8. R., 1973, Rational approximation defined from double power series,
Mathematical Computations, 27, 841-848.

Crark, J. R,, and LAVIOLETTE, P. E., 1981, Detecting the movement of oceanic fronts using
registered TIROS-N imagery. Geophysical Research Letters, 8, 229-232.

CornILLON, P., GiLman, C., STRAMMA, L., Brown, O., Evans, R., and Brown, J., 1986,
Processing and analysis of large volumes of satellite derived thermal infrared data.
Journal of Geophysical Research, 92, 12993-13 002.

CRACKNELL, A. P., and PartHoONWATTANAKD, K., 1989, Pixel and sub-pixel accuracy in
geometrical correction of AVHRR imagery. International Journal of Remote Sensing,
10, 661-667.

EMery, W. J., and IkEpA, M., 1984, A comparison of geometric correction methods for
AVHRR imagery. Canadian Journal of Remote Sensing, 10, 46-57.



1008 The problem of AVHRR image navigation revisited

Emery, W. ., Brown. I.. and Nowak, Z. P., 1989, AVHRR image navigation: summary and
review. Photogrammetric Engineering and Remote Sensing, 55, 1175-1183.

FriEpmany, D. E., Frieper, J. P, Macnussen, K. L., Kwoxk, R.. and RICHARDSON, S., 1983,
Multiple scene precision rectification of spaceborne Imagery with very few ground
control points. Phetogrammetric Engineering and Remote Sensing, 49, 1657-1667.

GuUPTA, R. K., 1992, Processing error reduction factors in the generation of geometrically
corrected NOAA/AVHRR vegetation index images. International Journal of Remote
Sensing, 13, 515-526.

Harron. E. D., 1990, NOAA/NESDIS polar data ingest and navigation. Proceedings of the
North American NOAA Polar Orbiter Users Group, edited by D. Hastings, Second
Meeting, 24-25 May 1990, New Carrollton, MD.

Kirkuam, R. G., and Stevenson, M. R., 1976, Computer generated gridding of digital
satellitc imagery. Remote Sensing of the Environmeni. 5, 215-224.

Kroster, K., 1989, Using TBUS orbital elements for AVHRR image gridding. International
Journal of Remote Sensing, 10, 653-659.

Lececkis, R., and PritcHARD, J.. 1976, Algorithm for correcting the VHRR imagery for
geometric distortion due to the Earth curvature, Earth rotation and spacecraft roll
attitude errors. NOAA Technical Memorandum NESS 77, NOAA/NESS, (Wash-
ington. DC: NOAA).

MaLHOTRA, R. C., AND RADER, M. L., 1975, Locating remotely sensed data on the ground. In:
Remote Sensing. Energy-Related Studies. edited by T. N. Veziroglu (New York:
J. Wiley & Sons). pp. 431-436.

MarsouiN, A., and BruNEeL, P., 1991, Navigation of AVHRR Images Using ARGOS or
TBUS Bulletins. International Journal of Remote Sensing, 12, 1575-1592.

McConacry, D. C., 1980, Geographic Location of Individual Pixels. Remote Sensing of
Environment. 10, 81-84.

O'BriEN, D. M., and Turner, P. J., 1992, Navigation of coastal AVHRR Images. Inter-
national Journal of Remote Sensing, 13, 509-514,

PrEss, W. H., FLANNERY, B. P.. TEUKOLSKY, S. A., and VETTERLING, W. T., 1990, Numerical
Recipes (Cambridge: Cambridge University Press).

SnarMA, Om P.. 1990, Advanced Earth Location Data System (AELDS). SSAI report,
Contract 50-DDNE-6-00009. SSAI, Seabrock, MD.

TorRLEGARD, A. K. 1., 1986, Some photogrammetric experiments with digital image process-
ing. Photogrammetric Record, 12, 175-186.



