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1 INTRODUGTION

The problem of correlating vector
quantities has been of interest to
meteorologists for at least the past 75 years
(e.g., Sverdrup, 1917; Durst 1957; Court, 1958;
Breckling, 1989). However, it appears that a
completely satisfactory definition for vector
correlation has yet to emerge. Crosby et al.
(1992) proposed a definition for vector
correlation which arose outside the meteor-
ological community, originating with Hooper
(1959) and later expanded upon by Jupp and
Mardia (1980). We apply the results of Crosby
et al. to the problem of comparing marine
surface winds for two different situations. In
the first situation, the above definition for
vector correlation is applied to marine surface
winds from buoys at two locations in the NW
Atlantic approximately 700km apart; in the
second, we compare marine surface winds derived
from NMC’s Global Data Assimilation System with
those acquired from NDBC buoys located primarily
in U.S. open coastal waters and in the Gulf of
Alaska. The data selected in the first case are
time series, and as such, allow us to examine
the time variation in vector correlation over
the length of record. In the second case, the
observed and analyzed data were simply grouped
by month, permitting intermonthly and seasonal
comparisons.

First, we present a brief review of the
theory and a description of the properties
associated with the definition of vector
correlation originally given by Hooper. Then we
apply the technique to marine surface winds in
two different situations. We summarize our
results and comment on the technique in the
final section of the paper.

2, THEORETICAL BACKGROUND AND PROPERTIES

2.4 Theory

Given the two-component vectors W; = u,i
+ v,j and Wy = uzi + v, in Cartesian
coordinates, we can express the covariance
matrix for W; and W, as
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In Eq. (1), the os are the variances or the
covariances of the u and v components. The
vector correlation between W, and W, is then
defined as
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where p,? is the square of the vector
correlation coefficient, p,, and TR represents
the trace of the products of the I;; submatrices
(Jupp and Mardia, 1980). Eq. (2) can be
expanded in algebraic form to yield

pzv = f/g, (3)
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This version of Eq. (2) may be more convenient
for computational purposes. Because W is two-

_dimensional, Eq. (2) yields values of p,? which

vary between 0.0 (no correlation) and 2.0
(perfect correlation).! For convenience, we
have calculated, and quote, values of p,? (vice
Jpy?) throughout the study.

2.2 Properties

The definition for vector correlation
given by Eq. (2) has the following properties,
where we have replaced the population parameter,
py2, by the corresponding sample parameter, r,Z.

(i) rvz is symmetric in the sense that
Lalw, = Talw
(ii) r,2 is independent of coordinate
transformations,
(iii) rv2 is equal to 2.0, for two-dimensional
et i

vectors, if W; and W, are completely dependent.

(iv) If'ih and ﬁ; are independent, then r,/?

will approach 0.0 as the sample size increases
without limit. For W; and W, independent, nr,?
is asymptotically distributed as chi-square,
where n is the sample size for which r,? is
calculated. For the two-dimensional case, the
chi-square distribution has four degrees-of-
freedom.

(v) For the one-dimensional (scalar) case,
r,? simplifies to the square of the Pearson
product-moment correlation coefficient.

(vi) The vector correlation (squared), r.?,

is equal to the sum of the squared first (r;?)

and second (r;?) canonical correlations (Crosby
et al., 1992), r,2 = r;2 + r,2.

3. APPLICATIONS
3.1 Marine Surface Winds at Two Locations

in the NW Atlantic

In the first situation, we calculate
vector correlations between surface winds at two
locations in the NW Atlantic. The wind
observations were acquired by NDBC environmental
data buoys located at 40.5°N, 69.5°W (buoy
number 44008) and at 34,9°N, 72.9°W (buoy number
41001). These buoys, whose locations are shown
in Figure 1, are approximately 700km apart,
close enough so that synoptic-scale disturbances
that typically pass through the region will, in
most cases, influence the winds at both sites.
An expected winter storm track for this region
has been included (Klein, 1957). As winter low-
pressure systems leave the east coast of the
U.S., they often deepen over the Gulf Stream and

1This definition, of course, can be scaled to vary
between 0.0 and 1.0, if so desired.
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expand as they propagate to the NE. Thus, the
winds at both buoys are expected to be strongly
influenced by the passage of these low pressure
systems which pass through the area during the
winter months. The observations, taken hourly,
extend from 1 December 1987 to 4 February 1988,
a period of 65 days. The stick diagram shown in
the upper two panels of Figure 2 depict the time
series of wind vectors at each location.

FIGURE 1. Locaticns of the two NDEC environmental data bu
vmm time-series surface winds were oxtracted. Period :g:a:?:
December, 1987 to 4 February, 1988. A ical wi
has been included (Klein, gs‘.'). o AHiEkE Bt EEUER
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Figure 2. Wind vector sequences for NDBC bucys 44008 (top panel)
and 41001 (next-to-top-panel), and the corresponding vector
correlations for sample sizes of 8, 16, and 24 (lower panels) .
The horizontal dashed lines in the lower three panels indicate the
5% level of significance.



Autocorrelation analyses were initially
conducted to estimate the time scales of
persistence. Autocorrelation analysis of the u
and v wind components indicated correlation time
scales that were rather consistently of the
order of half a day; consequently the original
data have been subsampled every 12th point to
produce series with observations which are
approximately independent.

Vector correlations have been
calculated for four sample sizes, 8, 16, 24 and
the entire series (i.e., 130) corresponding to
periods of 96, 192, 288 and 1560 hours,
respectively. A sliding sample window was
employed which was stepped forward one data
interval at a time for each sample size. The
results are shown in Figure 2 (lower three
panels). The upper 95th percentile of the
distribution has been included to determine
whether or mot the individual values of r,?
statistically significant at the 5% level,
assuming that the points within the series are
independent (Crosby et al,, 1992).

are

Our choices of sample size are based
primarily on the synoptic time scales of
variation in the surface wind fields. The winds
shown in Fig. 2 indicate time scales of
variation (i.e., "event" time scales) on the
order of 2-4 days. Sample sizes of 8 (4 days),
16 (8 days) and 24 (12 days) clearly encompass
these time scales. It is important to recognize
that the sample size must be sufficient to
include significant variation in the vector
sequences being correlated. For sample sizes
that are too small in this respect, spurious
correlations may arise.

The results for a sample size of 8
indicate that significant variation in r,?
itself occurs over the length of the series.
The sample parameter r,? exceeds the 95th
percentile slightly less than 50% of the time.
Relatively high values (r,? = 1.5 or greater)
tend to occur where major changes in surface
wind (particularly noticeable in wind direction)
are similar at both locations. Relatively low
values of r,2 (less than about 0.4) tend to
occur throughout the record, but we find no
obvious explanation for their occurrence.

As sample size increases from 8 to 16
and from 16 to 24, the correlations tend to be
statistically significant in most cases but the
changes in r,? tend to reflect to a lesser
extent the major 2-4 day event-scale changes in
surface wind. It becomes increasingly difficult
to relate the values of r,2 to individual events
in the wind field. In the limit, when N equals
130, we obtain a single value for r,? that
represents the correlation between the surface
wind fields at the two locations over the entire
record. In this case r,? is equal to 0.54, a
value which is statistically significant at the
5% level.
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3.2

Comparing Analyzed and Observed Marine
Surface Winds hedy

In the second situation, we compare
analyzed and predicted marine surface winds with
observed winds for various buoy locations around
the coastal U.S. and in the Gulf of Alaska. For
this comparison, winds were acquired at 20
locations. The analyzed and predicted winds
were derived from NMC's Global Data Assimilation
System (GDAS). The lowest level winds from GDAS
are located at the mid-point (~45m) of the
lowest layer in the model. These winds are then
adjusted to a height of 10m by assuming a
neutrally stable, constant flux, layer using the
well-known log-profile relation (e.g., Monin and
Obukhov, 1954). These winds are produced on a
2.5° (latitude) x 2.5° (longitude) grid for
forecast periods of 00(analyzed values), 24, 48
and 72 hours. The period during which these
comparisons were made runs from 12/89 through
12/90, a period of 13 months. As indicated
earlier, these data have simply been grouped by
month for each of the 13 months. First, the
appropriate analyzed values (i.e., the u and v
components) are obtained by bilinear
interpolation to the various buoy locations.
Then the u and v components from each buoy and
the corresponding interpolated values from the
analysis taken over all buoys enter into the
calculation of a single vector correlation for
the entire month. Since there are many reports
from each buoy we note that the total number of
observations that enter into the caleulation for
a given month greatly exceeds the total number
of buoys (199-531 versus 20). To further
interpret our results, we have also included
conventional scalar correlations? for the wind
speeds to help distinguish between the effects
of speed and direction. Also, to help identify
any possible seasonal trends in the 13-month
sequence of vector correlations which we
present, we have calculated confidence limits
for these vector correlations using the
bootstrap method, an empirical approach for
estimating the mean square error for any
statistic.

The results of these calculations are
presented in Fig. 3. Vector and speed
correlations are both shown with, and without,
one particular buoy (buoy number 46003, located
in the Gulf of Alaska). At first unknown to us,
the wind directions from this buoy were
erroneous from 2/21/90 to 4/13/90 (U.S. Dept. of
Commerce, 1990). Our initial calculations
indicated a major and unexpected decrease in
vector correlation for 3/90 (and to lesser
extents for 2/90 and 4/90). A detailed
examination of the data during this period
indicated that incorrect wind directions from
this buoy had been included in the data set for
that month, an observation that was later
confirmed according to the above reference. As
a result, we have recomputed the vector
correlations for the entire 13-month peried
excluding the one offending buoy. The
recomputed results reveal the sensitivity of
this calculation to erroneous data. From the

>The one-dimensional Pearson product-moment

correlation coefficient.




speed correlation during the same period, it is
clear that the decrease in vector correlation is
primarily due to problems in wind direction for
_this one buoy. Overall, this comparison, with
and without bucy 46003, also shows that during
the remainder of the period (excluding February
and April 1990), the vector correlations are
generally robust in the sense that when a few
reports are removed from any of the remaining
monthly groups, similar vector correlations are
obtained.
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FIGURE 3. Vector and speed correlations between analyzed and
observed winds by menth for all buoys (dashed lines) and witheut
buoy number 46003 (solid lines).

Fig. 4 shows the monthly vector
correlations (without 46003) with the addition
of confidence limits. Confidence limits were
included to determine whether or not the
variations in vector correlation from one month
to the next and on a seasonal basis were
significant. Since no theoretical basis exists
for calculating these confidence limits, we used
an empirical approach, referred to as the
bootstrap technique, to estimate these limits
(e.g., Yang and Robinson, 1986). In particular,
to employ the bootstrap technique, we take the u
and v components from the analysis and from the
buoys for a given month and resample each of the
component series to produce new series where
each value in the new series has an equal
probability of being selected from the original
series. We perform this procedure repeatedly,
in our case 200 times, to generate a
distribution of simulated vector correlations
from which we obtain the 95% confidence interval
by selecting the 2.5 and the 97.5 percentiles.
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This technique assumes that the original
observations are independent, which in our case
is not striectly true, since the observations
from closely spaced buoys may be spatially
correlated, and there is most likely correlation

‘over time for observations from the same buoy.

Serial correlation in the data not withstanding,
we have estimated- the upper and lower confidence
limits for the sequence of monthly vector
correlations. The confidence limits associated
with these vector correlations indicate ranges
of uncertainty which overlap significantly from
one month to the mext and on seasonal time
scales as well, implying that major seasonal
variations or trends in vector correlation do
not exist in this particular sequence (for
example, a value of vector correlation equal to
1.4 falls within the ranges of uncertainty for
all 13 months).
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In Fig. 5 we examine the relationship
between vector correlation and forecast period.
All of the monthly wvector correlations are
plotted versus forecast period from 00 hours out
to 72 hours. Straight-line segments connect the
mean vector correlations for each period and
reveal that the correlations decrease with
increasing forecast period, a result which was
anticipated. Also, the rate of decrease in
vector correlation increases beyond 24 hours.
Finally, we note that the spread of vector
correlations increases significantly as the
forecast period increases.
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Figure 5. Vector correlations for all months (without buoy number
46003) versus forecast period. A dashed line connects the mean
values of the vector correlations for each forecast period.
Circles indicate two (or more) data points at the same location.

4. SUMMARY AND CONCLUSIONS

In the first case, with respect to the
surface wind data at two locations in the NW
Atlantic, it is clear that care must be
exercised in selecting the "proper" sample size
for calculating vector correlations for time
series data. At one extreme, choosing a sample'
size which is too small may lead to spurious
correlations that will not be amendable to
interpretation. At the other extreme, when
vector correlations for the entire series are
calculated, a single value is obtained which
will be meaningful, but the opportunity to
examine time variations within the series will
be lost. In cases where the sample sizes are
small enough to reveal correlations related to
jndividual events within the series, it may be
possible to interpret p,% in terms of these
events. We have not attempted to do so here
because these vector correlations may well
depend on information that we did not have
access to.

In the second case, we compared
analyzed and observed marine surface winds using
the present definition of vector correlation to
improve quality control procedures. The
definition of vector correlation used here has
provided a sensitive indicator of the
relationship between analyzed and observed
winds. This correlation coefficient was also
useful in detecting erroneous data. To
determine whether or not intermonthly variations
in vector correlation existed, we adopted an
empirical statistical technique called
bootstrapping. Using this technique, we

estimated confidence limits for each of the
monthly vector correlations, which in turn
allowed us to determine whether or not the
monthly and seasonal changes in vector
correlation were significant. These results
indicated that the intermonthly changes in
vector correlation were most likely not
significant. '

In meteorology, vectors are often
compared by correlating the orthogonal scalar
components separately. Thus, the need for a
correlation technique that compare€s the vectors
per se can be questioned. We note, however,
that correlating the scalar components
separately produces values which are mnot unique
since the results depend upon the coordinate
system one chooses to adopt for the scalar
decomposition. For example, if one correlates
the scalar components using a spherical, earth-
oriented coordinate system, one will generally
obtain different results than if one uses a
natural coordinate system. The method presented
here is independent of the choice of coordinate
system that is used to define the vectors.
However, separate one-dimensional correlations
of the scalar components may be helpful in
interpreting the results, as was done for wind
speed in the second case here.

Our primary purpose has been to present
the definition of vector correlation originally
proposed by Hooper with application to comparing
and evaluating marine surface winds. There are
still many questions about its application to
practical problems. For example, the
distribution of this statistic is known for
large samples when the correlation is zero and
the sample points are independent. However,
little is known about its distribution when the
sample points are not independent, a situation
often encountered in time series data.
Consequently, considerably more effort should be
devoted to the application of this technique to
the practical problems that frequently arise in
comparing vector quantities.
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