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form. Various examples of the use of these models will be shown in the conference
presentation,
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ON THE TRANSFORMATION OF WAVE SPECTRA
BY CURRENTS AND BATHYMETRY?

Yung Y. Chao?

Abstract

Application of the conservation principle for action spectral density along rays,
frequently described in literature, is not sufficient to specify the refracted wave spec-
trum. In order to determine the change of wave spectrum by current-depth refraction
correctly, the effect of ray separation which causes convergence or divergence of wave
energy must be included. This effect can be derived from the divergence of the velocity
field in the conservation equation for action spectral energy density.

Introduction

A number of papers which apply ray theory to calculate refracted wave spectra
have appeared recently { e.g., Le Méhauté and Wang, 1982; Mathiesen, 1987; Liu et
al., 1989). However, the theoretical bases upon which these calculations are made
are not always clear. Some apply only the conservation principle for action spec-
tral density while others include an additional transformation factor based on purely
mathematical reasoning. The purpose here is to clarify the problem from a theoretical
point of view and to provide physical insight to this transformation factor.

Basic Equations

The change of wave field due to the presence of varying currents and bathymetry
can be specified based on conservation of wave action along characteristic curves or
rays (Bretherton and Garrett, 1969; Phillips, 1977). The path of a ray is determined
by simultaneous solution of the following set of equations:

dk; dw g\ Qg 8h  Ouj

W g Ohom igm (1)
da:j Jw
e e hh (2)

'OPC Contribution No. 51.
?National Meteorological Center, NWS/NOAA 5200 Auth Road, Camp Spring, MD 20746.
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dw _0wdx _ 000k . Oui (3)
TS el T ’

where
d _ 8 0w 0 (4)

&= ok, 0a;

Tensor notation is used to make these relations more concise. Tere we express the
wave-umber vector by k = (k1,ka), group velocity by Cg = (¢q, ,Cgo), llow velocity
by U = (ug,uy), and the horizontal carlesian coordinates by x = (zq,24). w(k,A) =
o + kiu; represents the apparent frequency and o, the intrinsic frequency of waves in a
frame of reference moving with flow velocity U(x,1), obeys the dispersion relationship,
o = (gktanh kR)Y?, where g is the gravitaional acceleration, k =| k |, and h(x,1)
is water depth. A(x,?) represents local properties of the medium, i.c., h and U.
Equation 3 indicates that if water depth and current velocity do not vary with time,
w remains constant along the rays.

Conservation of wave action for a slowly varying wavetrain of small amplitude
can be expressed in terms of rays as

L@

F is the local wave energy per unit area (proportional to the square of the wave
amplitude) and V = Cg + U. The wave action is defined as E/e. Tor a continuous
spectrum, £ corresponds to the energy density of a group of waves whose wave-
numbers lie in the element of area 84 of the wave-number plane, specified by the

vectors k, k+ &', and k + &’ such that
8E(k) = pgF (k) oA, (6)
SA = & x &', (7)

(k) is the spectral density and p the water density. Dy applying the kinematic
conservation principle, Phillips(1977) has shown that

%m+wswm=u ' (8

Therefore

4 (_F(_k)_) =10, 9)

dt a
Equation 9 expresses the conservation of action spectral density along the ray. In
the absence of a current, F(k) remains constant along the ray. This result was first
demonstrated by Longuet-Higgins(1957).

R
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Ray Separation Factor

' Emlmtion 8 cannot be directly integrated along a ray because knowledge of
neighboering solutions is required to determine the divergence of the velocity. In order

to solve this problem, we introduce the Jacobian J(s,r) of the transformation from
the ray coordinates (s,r) to x = (z,y),

(z,y
J(s,7) = 0231:)), (10)

where r is a parameter which is a constant along each ray and s is the arclength along

;l;)zgr;,y Then differentiating Bq. 10 with respect to s we obtain (Chao and Bertucci
1

U _L (00 D20\ ;
o %arﬁﬁa}‘Jh V-V4+V.vv, (1)
If the temporal variation of current and water depth is small compared to wave period

_Qv—l

8t a3 0) (12)
and we have from Eqs. 2 and 4 that

_ d d
V-VVTl= vl vVl
dtv = VdSV . (13)

By substituting Eq. 13 into Eq. 11 and rearranging, we obtain

1dJ d
V-V=V|-—-vV_—_vy-!
T Vd.sv ’ (14)
Therefore Eq. 8 becomes
d
Eln(.]VéA) =0, (15)

which states that the quantity JV §4 is conserved along the ray.

The Jacobian J(s,r) can be gi ic i i
j - given a geometric interpretation. We note that th
Jacobian defined by Eq. 10 can also be expressed as :

a_x Ox
ds X ar’ (16)

where 9% /s = 4 is the unit tangent vector along a ray. Thus

J(s,7)=(0,0,1)-

&= J(s,7) 6 (17)

is the \vi<'ith between two neighbering rays associated with parameters 7 and r 4 67
Since 67 is a constant, we obtain from Eqs. 9, 15, and 17 .

Hmm:i{

0-1

qumu:i{gﬁfmamt (18)

0-.'
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Here we have used prime (/) to designate parameters in the source arca. Lquation 18
shows that the wave action flux is conserved between two neighboring rays.

Munk and Arthur(1952) derived a second order differential equation based on
physical grounds to determine the change in the ray separation factor &//&" over
variable depth. Skovgaard and Jonsson(1976) extended the approach to include the
effect of currents. Their equations for computing the ray separation are essentially
expansions of Eq. 16. Alternately, the ray separation factor can be determined without
recourse to solving differential equations as shown below,

Under steady state assumption, we take advantage of the constancy of apparent
wave [requency along the rays and consider the wave spectrum in the frequency-
direction domain rather than wave-number space. Since the total energy of a given
sca state at a location of interest should be the same either in the wave- number space
or frequency-direction space,

/ ] Flkyy kg) dity dity = ] f F(w,8) deo d (19)
the diferential elements 84 = &1ék2 and 4o are related by the Jacobian as follows:
6A Ak k) ks (20)
&8 Ow,8) ¢y +ucosf 4 vsind’

where @ is the angle of wave-number vector measured from the z— axis. Since & = &,

we have
A c; + w' cos @ + v'sin &' k& } (21)
A ey +ucosd +vsind {Eé@’ !
and Eq. 18 expressed in the frequency-direction domain as
o 84 ’ " ,
; m S ok i 2
Iw, 8) &l J,{(M’}F(wﬂ)&ué& (22)

It is easy to show that if bottom contours are straight and parallel to the shoreline
and U = U/ =0, then o = ¢, and

6A [ cos @’
=i 4 . 23
SA’ {cg}{cosﬁ} (23]
The quantitics shown in the first and second curly brackels are the well-known shoal-

ing and refraction coellicients, respectively, for calculating the wave height change
over a sloping beach.

Concluding Remarks

One may easily fall into error by simply applying the conservation principle for
action spectral densily along rays (Eq. 9) to calculate refracted wave spectra in the
frequency-direction domain through Eq. 20 as

o {Crg + u' cos #’ + v'sin 9’} k

= Fw,0), (24)

Flw,0)= 5

o' | ¢+ ucosd +wsind
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and then ‘integrate it to obtain the total energy density. A mathematically correct
approach is through the use of

: o [c +u'cosd +v'sing’) g a8
F{w,8)dwdf = = { g } Flw,8) dwdd'.

¢y +ucosd +uvsind [ & 68" (25)

We may conclude that in order to calculate refracted spectra correctly, the transfor-

matlfm factor @6/30" must be included. In view of Eqgs. 18 and 21, the quantity
L, . ’ - . ’

(k/k )(Oﬁ/l(?r? ) is equivalent to the ray separation factor, which measures the focusing

or defocusing of wave energy due to refraction.
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