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1. INTRODUCTION

The search for a vector correlation coefficient was motivated by

a requirement to verify various forecast schemes for ocean surface

winds. The most common method used to correlate vector quantities

(i.e. winds, wind stress, or currents) has been to apply standard

linear correlation techniques to the scalar components of a vector,

i.e. its magnitude and direction or its orthogonal u and v components

(e.g.,Charles, 1959; Buell, 1971). However, the most common measures

of correlation do not incorporate relationships of both speed and

direction (or u and v) simultaneously. A vector is represented by

both a magnitude and direction , and thus can not be used in the

standard definition of linear correlation. In fact, because wind

direction is a circular function, the standard definition of linear

correlation for direction only can not be used.

Over the past 30 years, only rarely has a "true" two-dimensional

vector correlation coefficient been used in studying relationships

between vector quantities in meteorology or oceanography (e.g.,

Lamberth and Armendarz, 1966). Also, it has become evident that there

is no universally accepted definition for vector correlation. For the

various proposed definitions of vector correlation, each has its own

formulation, which is usually presented with primary emphasis on the

interpretation of the coefficients with little or no concern for its

basis or its statistical properties.
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In this note we give a short history of the 
various definitions

for two-dimensional vector correlation which have 
appeared in the

meteorological and oceanographic literature. We indicate the

properties that are desirable for a vector correlation coefficient.

We also investigate the properties of some of the previous

definitions. Finally, we propose a definition from the statistical

literature which we believe should be universally adopted, at least

for a certain class of problems. The properties of this new

definition are presented as well as simulation studies related its

statistical properties. Finally, we give an example of its application

to real data.

BASIC DEFINITIONS

First, some basic definitions for vector quantities are

presented. These definitions are presented for a two-dimensional

vector (W) with orthogonal components u and v. The definitions of the

symbols used in this paper are given in appendix 
1.

1) The magnitude (speed) of a vector W is given in terms of its u and

v components as:

IWI = (u2 + v2) S

2) The direction of a vector e is given by

e = tan -1(v/u).
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Let W ( i=l,...n) be a set of n vectors.

3) The mean resultant vector is then

n

W= (1/nE Wl

The magnitude of this vector is

n n
2 20.5

IW = (((1/n) Xui) + ((1/n) ivi))1=1 i ~~i=1v

4) The mean vector speed is given by

n

IWI = (1/n) -l IWli.

Let Z be the covariance matrix of the vector W. If we have a
w

sample of vectors Wl (i=l to n), let S be the sample covariance

matrix. That is

n ~~~~~S S
n u U

S =(1/(n-l)) i (W-W)(W-W)T 2 sj (1.1)
_U V

where the sum is taken over a sample of size n and T the matrix

transpose. The variance of a vector can be defined as

2 2TR(Zw)= C + a-2
W VI

where TR( ) represents the trace of the matrix. This, of course, is

the sum of the variances of the individual components u and v. A more

standard definition is the generalized variance given by I|X , the
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determinant of the covariance matrix. For a discussion of the

generalized variance and its meaning see Anderson (1984).

There have been a number of definitions of vector correlation

presented in the oceanographic and meteorological literature. 
Most of

these definitions appear to have. been adopted because they 
could be

interpreted geometrically. In most cases there has been little or no

attention given to ascertaining the statistical properties associated

with these definitions.

Most of the definitions have been an attempt to generalize 
the

definition of the standard one dimensional linear correlation

coefficient. In order to clarify and motivate the discussions of

vector correlation we next review some of the properties of the

standard product moment correlation coefficient, p.

Given two random variables u and v, with standard deviations a-U

a ,and covariance c , the correlation coefficient is defined as
v 

p= a / (,)

Given a sample of u and v, the sample correlation coefficient, r, is

defined as

os5r= s0 /((ss).
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This correlation coefficient has the following properties:

1) -1 <p <1.

2) If x=a +bu, and y= c+ dv, then

PU= PXY'

Thus p is invariant under linear transformations of u and v.

3) If u and v are independent, then p=0.

4-) p=l if and only if u=a+bv for some a and b.

A vector correlation coefficient should have the vector equivalent of

these properties.

Except for property 3, similar properties hold for the sample

correlation coefficient. That is, even if u and v are independent the

sample correlation coefficient will not be equal to zero.

The sample correlation coefficient is related to least squares

regression. If, from a -sample of u and v, the least squares

regression line of u on v is found

A

u= a +bv,

then

b= r(s / sv)

and

2 A -2
r = (Z(u - U) )/ (Z(u-u).

The quantity r is referred to as the proportion of explained variance

or the coefficient of determination.

5



In order to present the history and develop other definitions of

vector correlation , we provide additional background. Let W and W2

be two two-dimensional random vectors. Next, let

X= W1 = v 1
2 u2

be a four dimensional vector. Further, let

r z z - tr2(ul 'u) a(ul IV 0(Ul 'u O (U IV, )
:= 11 12 (= (V ,u) C (Vu ,v 1) O-(V1 ,u 2) O(V1,v 2)

X 21 2 a(uv u) ( u (u2,u2 ) (Uv 2 ) (1.2)3 2 ~~~~~~~~~~~~~~~2
(V ,U ) O-(V2,V1 ) c(V2 ,U 2 ) C (V 2V 2

be the four by four covariance matrix of the vector X. In equation

(1.2) E11 is the covariance matrix of W , Z2 is the covariance
11~~~~~~~o W1, 22

matrix of W2, E12 is the cross-covariance matrix of W and W2 and Z21

is the cross-covariance matrix of W2 and W1. If the population

covariance matrix Z is not known then it is replaced by the sample

covariance matrix Sx, where SI is defined in the usual way. This is

similar to the definition in equation (1.1).

Much of the history given here of early definitions of vector

correlation is based on Court (1958). We have put each of the

definitions in terms of the population parameters and in matrix

notation. Most of the early papers give the definitions in scalar
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notation and in terms of the sample parameters. A very early

definition was given by Detzius (1916) as,

22
p2= TR(Z12) /(TR (11 ) TR (22))

PD= ~12 11 22

This is sometimes referred to as the "stretch" correlation

coefficient.

A later definition which involves both the "stretch" and the

"turn" of a vector was given by Sverdrup (1917),

2 2
p = (TR(Z12) + ((UlV2) -C(u2,v1))/(TR( ll)TR(Z )).s ~12 1 2 2 1 11 22

This is probably the most frequently used definition in meteorology

and oceanography. It has been used by British meteorologists during

the 1950's. See, for example, Durst (1957). Durst (1957) develops

this definition in terms of "stretch" and "turn" coefficients.

"Stretch" relates the difference in magnitude between two sets of

vectors through a constant (k), and "turn" relates the rotation

through a constant angle (e) of one set of vectors to another. It is

also related to the complex correlation coefficient. This is defined

as

0.5
Pc = (TR(Z12) + i(o(Ul'v2)-o-(u2,vl)))/(TR(Zll)TR(22) ),

where i is the square root of -1. See Kundu (1976) for a geometric

interpretation of this parameter. The square of the absolute value of

7



the complex vector correlation coefficient is the same as the

definition given by Sverdrup. See equation (1.3)

Hotelling (1936) presented a definition given as

P2 (( -I z (2:)-Z21).l
Ph i (( 11 ) 1 2 2) 2 1 )

Hotelling derives many of the statistical properties of the sample

statistic for this parameter. We return to this definition in the

next section.

A definition proposed by Court (1958) was based on a

generalization of the concept of explained variance.His 
definition was

2 -1
p = TR(Z 12( 22) 21)/TR 

12 22 21 11

In this definition, W plays the role of the dependent variable. The

definition is not symmetric in W1 and W2 and it is not invariant under

changes in scale. If each of the variables u ,vI,u2,v2 are always

measured with the same units then the fact that it is not invariant

under changes in scale becomes unimportant.

Since 1960, a series of papers on the correlation of 
directional

data or angular association have appeared. For a history and

discussion of these papers see Breckling (1989).

8



Here, we consider vector correlations where the vectors are given

in term of u and v. The definition we propose is

P2 = TR((Z1l) 12(2 (Z) -I12 (1.5)

This is the definition given by Jupp and Mardia (1980). In the

next section, we show that this definition is a generalization of the

standard scalar correlation coefficient. Unlike some of its

predecessors, however, which have been restricted to the unit circle

(e.g., Mardia and Puri, 197g; Stephens, 1979) this definition includes

both direction and magnitude. For applied problems in oceanography

and meteorology, this is a very important distinction. It has what we

consider a complete set of desirable properties. In addition, it has

the very important property that the distribution of a simple function

of its sample value is asymptotically robust. That is, if W1 and W2

are independent, then the asymptotic distribution of the statistic

does not depend on the distributions of W1 and W2. Since the

distributions of the W may be unknown or difficult to express in a

closed standard form this property is very significant for possible

applications of the parameter, such as hypothesis testing.

2. THEORETICAL DEVELOPMENT

As we explained in the introduction there have been a number of

definitions of vector correlation. In this section we explain and

prove the properties of the vector correlation defined by Jupp and

Mardia (1980). All of the properties stated or proven in this section
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are contained in their paper. However, their results are presented in

a very general context. Many of the details presented in their paper

may not be clear to the nonspecialist. We give the results for

vectors of two dimensions in ordinary Euclidean space. To generalize

the results to three and four-dimensional vectors is conceptually

straightforward.

The properties of this new definition are the following: It is a

generalization of the simple one-dimensional correlation coefficient.

When the vectors are independent, its asymptotic distribution is

known, hence it can be used for hypothesis testing. It is symmetric

in the arguments. It has a simple interpretation in terms of

canonical correlation. It is invariant under transformations of the

coordinate axes, including rotations and changes in scale. It is

equal to zero when the vectors are independent and obtains its

maximum value if and only if they are linearly dependent.

THEORY IN TWO DIMENSIONS

Let W and W be two two-dimensional random vectors. Then we
1 2

define the vector X , its covariance matrix Zx and the submatrices 
of

Z, exactly as in section 1, equation (1.2). Here, we always assume

that Z and X22 are nonsingular. Thus the vectors W1 and W2 are

nondegenerate or uII a + b Iv (i=1,2) for some a and b1. We also

assume that all moments of the vector X exist.



Then the definition of the vector correlation coefficient between

W and W is

2 2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-1. (2.2 1).p = TR((Z) 12( 1 (2.1)
v 11 12 22 21

where the Z are as in equation (1.2).In terms of the u's and v's
Ii

this definition is given by

2
P = f/g,

V

where

2 ~ ~~~~ ~~~~ 2 2 (22

f= (ulul) (a2 (u2,u2) (a(v1 ,v2)) + C (v2,v2) (0(v1 ,u2 )) ) +

a (v v1 ) (- (U2,u ) (0(u t,v2)) + (v ,v (0v)((u ,u ))2) +
1 2 2 1 2 2 2 1 2

(0` (u , l)C(Ul ,v 2) 0(v ,U 2) 0- (u ,V )) +

( (U 1V l) C (Ul, U2) 0(v , v2) (U ,v 2) )-

2(02 (U, U )cr(v ,u2)cr(V-,v2)0`(u ,v )) -
1 1 1 2 1 2 2 2

2(0' (v V1 ) )0(Ulu 2)c (u Iv2) (u ,V ) )-

2 ( 2 (U 2,U2)`(U,V1) I0 (U1, v 2) 0 (V , VI ) ) -

2(02 (V 2,V2)0(Ul,v1 )cr(ul, U2)(v ,U ))

and

g=[ (U lu )- (Vlv l)-(0c(ul ,vl)) ][ (U2,U2)a2 (v 2,v 2)-((u 2 v2)) ]

The long scalar form presented directly above is the form of the

definition used in the program given in appendix 2.
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It is easily seen that the definition given in equation (2.1) is a

generalization of the square of the standard Pearson correlation

coefficient for two, one-dimensional random variables. For the one-

dimensional case with random variables u and v, the square of the

correlation coefficient is defined as

(2.2)
p = (a (U,V)) 2/02 (u) T2 (V) .

Equation (2.2) can be rewritten as

22 -1 2 !-
p = (a2 (U)) (o-(U,V) (C2(V)-) -T(vU)) (2.3)

Since all the expressions in equation (2.3) are scalar, it follows

that

2 -1 2 -2 = TR(C(U)) a1(U, V) (2(V)) -la(v,u) ),

which is of the same form as the definition given in equation 
(2.1).

An intuitive justification

correlation is based on canonical

two-dimensional random vectors.

defined in the following manner:

of u2 and v are formed

z
11

Z
12

for this definition of vector

correlation. Let W1 and W2be two,1

The canonical correlations are

linear combinations of u and v andI1

= a u + b v

a12u 2 11 1

122z 12 2

12



such that for all such linear combinations

one-dimensional correlation coefficient,

the standard

P = corr(Zll Z12)

between zlg and z12 is a maximum. Note that pl - 0. The parameter P1

is the first canonical correlation. The variables z and z are
11 12

called the first canonical variables. Then a second set of variables

z = a u +b v
21 21 1 21 1

z = a u +b v
22 22 2 22 2

is found such that

corr(z, z21) =corr (zll, z22)=corr(z1 2,z 21 )=corr(z121 22 =0

and

p2= corr (z21 , Z22)

is a maximum. The parameter P2 is called the second canonical

correlation and is nonnegative. The vector correlation coefficient

given by equation (2.3) is the sum of the squares of the two canonical

correlations. That is

2 2 + 2
v 1 2

13



For the definition of Hotelling (1936), given in equation (1.4)

2 2 2
Ph P1 P2

That is, this vector correlation coefficient is the product of the

canonical correlations. This means, for example, if the correlation

between u1 and u2 is one, and the .correlation between v1 and v2 is

zero, then this vector correlation coefficient will be equal to zero.

We believe that this is an undesirable property and for this reason we

do not recommend its use.

PROPERTIES OF p
V

We will need the following results: If M and N are square

matrices, then

TR(MN) = TR(NM). (2.4)

If M and N are nonsingular, then

(MN) - = N M- , (2.5)

Graybill (1969).

Property (1). The coefficient p is symmetric in W and W2.Using (2.4)
V 1 2

twice, it is seen that

2 -1 ~~~-1X p2(W W) =TR(71t Z Z 1Z
v= TR(Z1 2 l 1222 21

= TR (X' Z7 -122 21 11 12

: p2(W ,w ).
2 1

14



As discussed in the introduction, this is not true for some

alternative definitions of vector correlation.

Property (2). The parameter p2 is invariant under transformations of

the coordinate axes, including rotations and changes in scale. For

translations this property is obvious since the covariance matrix is

unchanged by such transformations. The second part of this property

can be restated as the following theorem.

Theorem 1. The vector correlation p2 is invariant under linear

transformations of W and W if the transformations are of rank 2.
1 2

That is, if a linear transformation of the form

~a a 0 0 

L = a21 a22 0 [A 0 

0 a b 11 b12 o B

0 0 b m b2L° ° 21 22

where A and B are nonsingular, is applied to the four-dimensional

2
vector X, then p is unchanged. To see this, let

*~~

2 WX =L X =[:I ] LZ1,
The covariance matrix of X is given by

Ao [: 211 12

0A 2 BTT
i0 i E 0 

15



The covariance of X is then equal to

A Z1 A A : B·. A BT1

A_ _12

B Z AT B 2- BT

B1 22

Then for the new vectors W, and W
1 ~~2

2 * * T-1 T -1
p2(W1 ,W2) = TR((AEl A

T ) (AZ12B
T) (BE22B )1 (BZ 21 A )) (2.6)

Using the results in equations (2.4) and (2.5), the right-hand-side of

equation (2.6) becomes

TR(-1 Z -1 P2(W
11 12 22 21 v 1 2

2

Property (3). The parameter p2 is the sum of the squares of the

canonical correlations. This can be shown using property (2).

Computing the canonical correlations is equivalent to finding an A and

B of equation (2.6) such that the covariance matrix of X is equal to

0 1 0 P2

Pi 0 1 0

0 P2 0 1

where p1Z p2
z 0.0 and P1 and P2 are maximized. That is,p1 is the

first canonical correlation and P2 is the second. See Anderson

(1984). Next, let

16



Pi1 0

D =

P1

Then for W and W
2

2 -1DI-1D
P = TR(I DI D)

P2 + P2 (2.7)
1 2

which by property (2) is equal to p2(W ,W) and where I is the two by
1 2

two identity matrix.

2
Property(4). If W and W2 are independent then pv= 0.

If W and W2 are independent then,

212 =E21

and

P = TR(Z 0OZ22 O) = 0.

Property (5) If corr(u ,u2), corr(u ,v2), corr(v ,u2) and corr(v ,v2)
1 2 1 2 1 2 1 2

2
are not all 0, then p >0.

To show this property we note the following set of inequalities

2 2 ,cIoI
p2 p _max(i u c(u,u2)Icorr(u 1 v2) IIcorr(v ,u2),I corr(v ,v2 ) )

V 1 2

17



Property (6). The random vectors W1and W2 are linearly dependent if

and only if p=2_ 2.

Assume W and W are linearly dependent. Then there are nonsingular
i ~~2

matrices C and D and a vector A such that

CW +DW2 + A = O.

Here, 0 represents a 2 by 1 vector of all O's. Hence,

W = -C-1DW - C-A. (2.8)
1 2

This relationship can be written as

E W I t -Ce m lDIt I ° X -Ca i

llw2 t t a ar o2 l c

It follows that the covariance matrix of X can be written as

L11 E 12.

Z21 221

C-1D 22D (C-1 ) T

- 22D(c)
-Z2 D T(ClI )T

(2.9)

Then from equation (2.9) , we have

2 T -T-- D T-i
2 = TR((C-1 Dz D (C-1 ) )- C-1 DE2 (z( 22) 122 (C -) ) = TR(I)=2.

V ~~~22 22 22 22

Assume

2P = 2.
V

18

-C-1DF
22

2z2



Then the canonical correlations p1 and P2 both are equal to 1.

This is obvious because

2 2 2
Pv P1 P2

and

0 p2 p S 1.

Then as in the proof of property (3), there are nonsingular matrices A

and B such that

* t
X = (2.10)

*

W 0 W~~W
22

and the covariance matrix of X is of the form

-1 0 1 0
1 0 1

1 0 1 0.
1 0 1

Hence, the correlation between u and u is 1 and the correlation
1 2

e ·
between v and v is one. Since these are ordinary correlation

1 2

coefficients, this implies that

* *
u= c + Cu

1 0 1 2

and
* *v =d + dv -
1 0 1 2

19



Hence, it follows that* [c : 0 1 [ c:]
W = c W2 + W1 L0 c j L2o

From equation (2.10), we have

W 1 [A B0] EW I

From equations (2.11) and (2.12)

W = A- W* = A-
I 1

I 0
L0 d

= A 0 d B W2

it follows that

*
W +
2

A -1 [E :1

+ A C,

which proves the assertion.

2
THE SAMPLING DISTRIBUTION OF p

If the covariance matrix Z of X is estimated in the usual way

from a sample of size n byX
from a sample of size n by

S
S = 11

X -S

L21

Si
12 = (1/(n-1)) Z(X-X)(X-X)T

S
22

20
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Then p2 is estimated byThen pV is estimated by

Pv =TR(S1S SSS ) (2.13)
11 12 22 21

The statistic defined by equation (2.13) will have several of the

properties of p . That is: It is symmetric in W and W2 . It is
v 1 2

invariant under transformations of the coordinate axes. It is equal

to the sum of the squares of the sample canonical correlations. If W

and W are linearly dependent, then the probability that pv=2 .0 is
2 

one.

If W and W are independent, it does not follow that
1 2

AZ
122

and hence p * 0. However, as the sample size increases, S will
12

approach the zero matrix and p2 will approach 0.

Property (7). If W and W are independent then np2 is distributed
1 2 P

asymptotically as a chi-square variable with four degrees of freedom.

This asymptotic distribution is valid for any marginal distribution of

the W1 and the W vectors.

Since

TR(S 1 1 2 2 2 2 1

21



is invariant under linear transformations of the vectors W and W, it

follows that the sampling distribution of

nTR(S Is S- 1S ) = TR(Slnl' 2S S2-nl/2S) (2.14)
11 12 22 21 11 12 22 21

will be invariant under such transformations. Let ax be the mean

vector of X and let -Z1 2and Z-/ 2 .be the unique positive definite
11 22

square roots of the matrices Z-1 and Z-1 respectively.11 22

We then transform the vector X by

rz-1/2 0

x= L11 -1/2 (X-Ax.)

22

Under the assumption that W and W are independent, the covariance

matrix of X is given by

11

:11 0 1
22

and hence, as in the proof of theorem 1, the covariance matrix of X

is given by

1 0 0 E= 0 1 0 0
x 0 0 1 0

0 00 1

and the mean of X is 0.

22



By the above, we only need to consider the sampling distribution of a

vector with mean 0 and covariance matrix I. In order to simplify the

notation we will assume that the vector X has these properties.

We now consider the sampling distribution of the statistic given by

equation (2.14). By the weak law of large numbers it follows that

limr S-1 = E-1= I and lim S = Z = I.
n=CO 11 11 nODo 22 22

We now consider an individual element of the matrix nl/2S .The first
12

element of n 1/2S is equal to
12

n n n

n1 (ilulu2i)/(n - 1) - ((ilU)(lu2i)/(n-l)n)).

By the weak law of large numbers

/ n n
lim n /2(( u ) (ilu )/(n-l)n) =0.
fl~Co 1=1 I 1=1u~

Hence for large n this element will be approximately

n1/2n/2 ( (uu )/(n-l)). (2.15)

It is a well-known result in mutivariate analysis that the statistic

given in equation (2.15) will have asymptotically a standard normal

distribution. Similar results hold for the other elements of nl/2S
12'

It is also the case that the asymptotic covariance matrix of the

vector consisting of these elements is equal to the identity matrix I.

23



Combining the above results we find that for large n

-1 I-1 n 2 n n 2

nTR(SS S2 1) = n( lUliu2 /n) + n(llul v 1/n)2+ n( Z v u2 /n)2
11n12 22 2 121 1=1112111 1121
n

+ n(lxvllv 21/n) 
2+ terms which go to 0 with increasing n. (2.16)

The right-hand side of equation (2.16) will be asymptotically

chi-square with four degrees of freedom.

The importance of this property can not be over emphasized. This

means that for large samples, the statistic p2 can be used to carry

out standard statistical procedures such as hypothesis testing even if

the distributions of the W are not known. It is one of the primary

reasons we are suggesting that this definition be adopted. In many

applications in meteorology and oceanography the form of distribution

of the vectors may not be known. A study of some of the 
small sample

properties of p2 follows.

^2
SMALL SAMPLE DISTRIBUTION OF p

-2

For the case where W1 and W are independent, the statistic np
For th case here 1 2

is distributed asymptotically as chi-square with four degrees of

freedom. In practice, however, sample sizes which are too small 
to use

this asymptotic result (i.e. n<<64) are frequently encountered. Thus,

we seek to extend the results presented by Jupp and Mardia to small

sample sizes by estimating the small sample distributions using Monte

Carlo techniques. In particular, a random number generator (Press et

al., 1986) was used to generate normally-distributed (0,1) u and v
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vector components for two-component vectors for sample sizes of 8, 12,

32, and 64. Values of p2 were calculated for 1,000,000 cases for each

sample size. One million runs were required for each sample size in

order to achieve reasonable accuracy (i.e., to the second decimal

place) over the tails of the distributions that were generated.

The resulting empirical cumulative frequency distributions are

shown together with the theoretical chi-square distribution with four

degrees of freedom in Figure 1. There is a significant departure from

the theoretical chi-square distribution for small sample sizes. The

reason for the crossover of the curves at approximately constant

values of np2 is not known. For sample sizes greater than 64, the form

of the distribution closely approximates chi-square with four degrees

of freedom; for samples smaller than 8, the general form of the

distribution breaks down, no longer resembling chi-square. These

curves are used in a subsequent section to estimate levels of

significance.

The density functions of the cumulative distributions are shown

in Figure 2. The results are given for sample sizes of 12 and 32. As

the sample size increases, the distributions become (1) more

positively skewed and (2), more peaked.

A curve derived from the samples used to construct Figure 1 shows

the 95% level for np as a function of sample size (Figure 3). The

mean values ± 1 sigma are plotted for each sample size. This curve

show a smooth, well-behaved relation . Hence, interpolating for
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samples sizes other than those given should provide reasonably

accurate results for sample sizes of 8, or greater.

In cases where the variables are normally distributed the theory

for testing the independence of sets of variables is well developed.

For a discussion of this theory see Morrison (1990).

A 2

INTERPRETING pv

In order to provide more insight into the types of vectors (i.e.,

vector sequences) that may lead to relatively high values of the

sample values of this parameter, we consider four natural situations

2
which lead to perfect correlation (i.e. pv=2.).

Four cases that lead to perfect correlation are shown in figure

4. The first or trivial case, arises when the vectors are identical

(Fig.4a). The second case which produces perfect correlation arises

when the magnitudes of the vectors in the second sequence are

multiplied by a constant.(i.e. magnification; Fig. 4b). A third case

of perfect correlation arises when the directions of the vectors in

the second sequence are each rotated by a constant angle (Fig. 4c).

The fourth case arises when the second sequence is derived from the

first by a combining both magnification and rotation (Fig. 4d).

From the above, it becomes apparent that we can generalize these

results to include any situation where one vector sequence can be

expressed as a linear combination of the other (i.e., any case where
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two vector sequences are linearly dependent). In vector notation if

there exists a nonsingular matrix A and a vector B such that

W =AW + B
1i 21

then the vector correlation between the series Wl and W21 will beI i ~~21

perfect. This is a restatement of property 5.

Next, we consider the situation when there is zero correlation

between two vector sequences. It is, of course, the case that if two

vectors are independent then their vector correlation will be zero.

In the cases where the vectors are normally distributed their vector

correlation will be zero, if and only if they are independent. Using

the random number generator described above, we generated independent

vector sequences with normally-distributed vector components for

sample sizes of 10, 100, 1000, 10,000 and 100,000 and computed p2 for

each sample size. This experiment was repeated 50 times for each

sample size. As theory predicted, p clearly approaches zero for

increasing sample size (Fig. 5). For a sample of size 100,000, for

example, the averaged value of p is approximately 0.006. These

results also demonstrate that relatively high correlations

(e.g., >0.6) can be obtained solely by chance for small sample sizes

(e.g. 10).

In the interpretation of p , it is also important to consider

the proper choice of sample size when the vectors W and W are not

independent. This will especially be of significance for vector time
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series. The optimum choice will depend in part on time scales over

which the vectors vary significantly. For example, if a sample size

is chosen which is too small to encompass significant variability

within the vector sequences, the resulting values of p2 may not be

meaningful. Help in identifying this problem may be obtained by

examining the trace of the sample covariance matrix from which 
p is

calculated. The trace of the covariance matrix may provide a measure

of the "signal-like" character of the calculated values of p. Thus,

for some threshold, values of the trace which exceed this threshold

will have corresponding vector correlations which are meaningful. In

this regard, calculations performed in the next section indicate,

although not clearly, that there is a tendency for larger values of

the trace to correspond to higher values of p2 (i.e., they are

positively correlated).

Another potentially useful diagnostic tool in helping to interpret

the vector correlation coefficient of Jupp and Mardia is the

^2

determinant of the covariance matrix used to compute Pv' For cases

where the determinant of this matrix approaches zero, it may be

difficult to obtain a meaningful solution. In our experience, the

value of the determinant has a wide dynamic range, often spanning 
six

orders of magnitude, and so may prove to be a sensitive indicator for

interpreting the vector correlation coefficient obtained from the

matrix.
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APPLICATIONS

An obvious application of the previously defined vector

correlation coefficient is to conventional oceanographic and

meteorological time (and spatial) series. However, it is important to

recognize that this correlation technique can be applied to other data

constructs as well. It could, for example, be applied to wind

observations at all of the reporting sites within a given geographic

domain (e.g., a state), at different times. It could also be applied

to ocean surface temperature gradients at selected locations over the

Gulf Stream for different seasons.

In the example which follows, we apply the vector correlation

technique of Jupp and Mardia to surface wind observations (i.e., time

series) from two NDBC environmental data buoys in the NE Atlantic

located at 40.50 N, 69.5 W (buoy number 44008) and 34.9°N, 72.9°W (buoy

number 41001; Fig. 6). These buoys are approximately 700km apart,

close enough so that synoptic-scale disturbances that typically pass

through this region as indicated by the typical winter storm track

which has been included (Klein, 1957) will, in most cases, influence

the winds at both locations. The observations, taken hourly, extend

from 1 December 1987 to 4 February 1988, a period of 65 days. As

winter low-pressure systems leave the east coast of the U. S., they

often deepen over the Gulf Stream and expand as they propagate to the

NE along the expected storm tracks. Thus, the winds at both buoys are

expected to be strongly influenced by the passage of these low

pressure systems which pass through the area during the winter months.
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Autocorrelation analysis of the u and v wind components indicated

correlation time scales on the order of half a day; consequently 
the

original data have been subsampled every 12th observation to produce

series with observations which are approximately independent. Vector

correlations have been calculated for four sample sizes, 8, 16, 24,

and the entire series (i.e., 130). The sample window was stepped

forward one data interval at a time for each sample size, producing

partially redundant values of p 2 . To more fully interpret the vector

correlations, we have also calculated the trace and 
the determinant of

the associated 4 x 4 matrix from which p2 is obtained, plus the
PV

determinants of each ofthe 2 x 2 submatrices (S , S, S2, S2).I 1 12' 2 1 2 2

Since the primary matrix is symmetric, we only present the

determinants for the three unique submatrices. Separate figures for

each sample size include the above information (Figs. 7-10). Also, the

9 5 th percentiles have been included to determine whether or not the

individual values of p2 are statistically significant.

Our choices of sample size are based primarily on the synoptic

time scales of variation in the surface wind fields. The winds shown

in Figs. 7-10 indicate time scales of variation (i.e., "event" time

scales) on the order of 2-4 days. Sample sizes of 8 (4 days), 16 (8

days) and 24 (12 days) clearly encompass these time scales. It is

important to recognize that the sample size must be sufficient to

include significant variation in the vector sequences being

correlated. For sample sizes that are too small in this respect,

spurious correlations may arise.
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The results for a sample size of 8 (Fig. 7) indicate that

significant variation in p2 itself occurs over the length of the

series. The sample parameter p exceeds the 95t percentile slightly

less than 50% of the time. Relatively high values (p2=l.5 or greater)

tend to occur where major changes in surface wind (particularly

noticeable in wind direction) are similar at both locations.

Relatively low values of p2 (less. than about 0.4) tend to occur

throughout the record, but we find no obvious explanation for their

occurrence. The trace and the determinant sequences do not provide

consistent indications that reflect the behavior of p2 in this case;

however, upon occasion relatively high values of the trace and/or the

S determinant do tend to coincide with high values of p.
12 v

As sample size increases from 8 to 16 and from 16 to 24, the

correlations tend to be statistically significant in most cases (Figs.

8 and 9) but the changes in p2 tend to reflect to a lesser extent the

major 2-4 day event-scale changes in surface wind. It becomes

increasingly difficult to relate the values of p to individual events

in the wind field. In the limit, when N equals 130, we obtain a

single value for p that represents the correlation between the

surface wind fields at the two locations over the entire record. In

this case (Fig. 10) p2 is equal to 0.54 and is clearly statistically

significant.

significant.
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CONCLUSIONS

A need exists within the oceanographic and meteorological

communities to agree upon a single 
definition for vector correlation.

Because of the desirable statistical 
properties associated with the

definition of vector correlation given 
by Jupp and Mardia (1980), we

propose that this definition be adopted.

The primary emphasis of this report has been to present the

definition of vector correlation of Jupp 
and Mardia with preliminary

guidance on its use and interpretation. Consequently, considerably

more effort should be devoted to the application 
of this technique to

the practical problems that frequently arise in oceanography and

meteorology in comparing vector quantities.
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APPENDIX 1

Definitions of symbols used in this paper.

Scalars are represented by small letters; 
u, v.

Vectors are represented by capital letters; 
W, X.

Matrices are represented by bold face capital 
letters; S, A.

The theoretical covariance of a vector W 
is represented by E .

TR(A) is the trace of a matrix.

IAI is the determinant of a matrix.

AT indicates the transpose of a matrix.

A 1 indicates the inverse of a matrix.

I is an identity matrix.

0 is a matrix of zeros.

Greek letters are used to indicate population 
parameters (i.e. Z, a,

p2 ) and Roman letters for the corresponding 
sample parameters (i.e. S,

s, r2). The sample parameters may be represented by Greek letters

with a ^ (ise 2
with a ^ (i.e. r v



APPENDIX 2

C
C PROGRAM IN FORTRAN 77 TO CALCULATE THE VECTOk CORRELATION
C COEFFICIENT OF JUPP ANO MARDIA(BIOMETRIKA,1980).
C
C THE FOLLOWING PROGRAM CALCULATES THE VECTOR CORRELATION BETWEEN
C SEQUENCES UF TWO-DIMENSIONAL VECTORS. THESE VECTORS MUST BE
C SPECIFIED IN TERMS OF THEIR U(XI,Y1) AND V(X2,Y2) COMPONENTS.
C FOR TWO-DIMENSIONAL VECTO.S, THE VECTOR CORRELATION COEFFICIENT
C WILL VARY BtTWEEN O.O(UNCORRELATED) AND 2.0(CCOMPLETELY CORRELATED).
C
C VECTOR CORRELATION COEFFICIENTS CALCULATED ACCORDING TO THE
C FOLLOWING PROGRAM SHOULD BE ACCURATE TO AT LEAST THREE DECIMAL
C PLACES USING SINGLE PRECISION ARITHMETIC.
C
C NS IS THE SAMPLE SIZE - SAMPLE SIZES LESS THAN 8 ARE NUT
C RECOMMENDED BECAUSE THE ASYMPTOTIC CHI-SQUARE DISTRIBUTION
C BREAKS DUON FOR SMALLER VALUES.
C

PARAMETER (NS = SAMPLE SIZE)
REAL*4 VARl,VAR2,VAR3,VAR4,COVI2,C0V13,COV14,COV23,COV24,
*COV34,XI(NS),YI(NS),X2(NS),YZ(NS)pR

C
C ENTER INPUT VECTOR COMPONENTS Xl(NS)Yl((NS),X2(NS) AND Y2(NS)
C

WRITE(6 50)
50 FORMAT(12X,' INPUT ',//)

WRITE(6,100)
100 FORMAT(5X,'Xl YI X2 Y2',//)

D00 76 LK = 1 NS
WRITE(6,703 XI(LK),Y1(LK),X2(LK),Y2(LK)

76 CONTINUE
70 FORMAT(4X,4(2X,F7.4))

WRITE(6,700)
700 FORMAT(2X,///)

CALL STATI(X1l,Y1,X2,Y2,NS,VARlVAR2,COV12)
CALL STAT2(XI,Yl,X2,Y2,NS,VAR1,VAR3,COV13)
CALL STAT3(XI,Y1,X2,Y2,NS,VARl,VAR4,COV14)
CALL SFAT4(X1,Yl,X2,Y2,NS,VAR2,VAR3,COV23)
CALL STATS(Xl,Yl,X2,Y2,NS,VAR2,VAR4,COV24)
CALL STAT6(XI,YI,X2,Y2,NS,VAR3,VAR4,COV34)
CALL RSQ(VARI,VAR2,VAR3,VAR4,COVI2,COV13,COV14,COV23,
COV24,COV34 R)

WRITE(6,200) A
200 FORMAT(4X,'VECTCR CORRELATION COEFFICIENT = ',Fb.5,//)

STOP
END
SUBROUTINE STATl(XI,YI,XZ,Y2,NS,VAR1,VAR2,COV12)
REAL*4 VARI,VAR2,COVi12,SUMXI,SUMYl,SX1SQ,SYISO,SXlY1,

*Xl(*),Yl(*),X2(*),Y2(*)
SUMX1 = 0.0
SUMY1 = 0.0
SXISQ = 0.0
SYlsQ = 0.0
SXlYl = 0.0
DO 100 I = 1,NS

SUMX1 = SUMX1 + XM(I)
SUMY1 = SUMY1 + YI(I)
SXlSQ = SXlSQ + Xl(I)*XI(-I)
SYISQ = SY1SQ + YI(I)*Yl(I)
SXIYl = SXIY1 + Xl(I)*Yl(I)

100 CONTINUE
VAR1 = (FLUAT(NS) * SXISQ - SUMX1 * SUMXL) / FLOAT(NS * (NS - 1))
VAR2 = (FLOAT(NS) i SYlSQ - SUMY1 * SUMYI) / FLOAT(NS e (NS - 1))
COV12 = (FLOAT(NS) * SXlYI - SUMX1 SUMY1) / FLOAT(NS * (NS - 1))
RETURN
END
SUBROUTINE STAT2(XI,YI,X2,Y2,NS,VARI,VAR3,COV13)
REAL-4 VAR1 ,VAR3,COVI3,SUMXI,SUMXZ,SX1SQ,SX2SQ,SXIX2,Xlt *),Yl I(.) ,X2(*) Y2(*)
SUMXI = 0.0
SUMX2 = 0.0
SXISQ = 0.0
SX2SQ = 0.0
SX1X2 = 0.0



DO 100 I = 1,NS
SUMXl = SUMX1 + XL(I)
SUMX2 = SUmXZ + X2(I)
SXISQ SXISQ + Xl(l)*X2(I)
SX2SQ = SX2SQ + X2(I)*X2(I)
SX1X2 = SX1X2 + X1(I)*X2(I)

100 CONTINUE
VAR1 = (FLOAT(NS) * SXISQ - SUMXI * SUMX1) / FLOAT(NS * (NS - 1))
VAR3 = (FLOAT(NS) * SXZSQ - SUMX2 e SUMX2) / FLOAT(NS * (NS - 1))
COV13 = (FLOAT(NS) * SXIX2 - SUMX1 * SUMXZ) / FLOAT(NS * (NS - 1))
RETURN
FNn

REAL*4 VAQl,VAR4,CY1V4;SUMX1,SUHY2pSX1SQSY2S9iSX1Y2
AXl(:'),Yl(;s),X2(':) ,Y2('*)
SUMXI = 0.0
SUMY2 = 0.0
SX1SQ = 0.0
SY2SQ = 0.0
SXIY2 = 0.0
D00 100 = 1,NS

SUMXl = SUMXI + XI(1)
SUMY2 = SUMY2 + Y2(1)
SXISQ = SXlSQ + Xl(I)*Xl(1)
SY2SQ = SY2S + YZ(I)*Y2(I)
SXIY2 = SXIY2 + XI(I)*Y2(I)

100 CONTINUE
VAR1 = (FLCAT(NS) ' SXlSQ - SUMX1 * SUMX1) / FLOAT(NS *' (NS - 1))
VAR4 = (FLGAT(NS) SY2SQ - SUMY2 * SUMY2) / FLOAT(NS *' (NS - 1))
CGV14 = (FL1AT(NS) ' SXlY2 - SUMXI * SUMY2) / FLOAT(NS * (NS - 1))
RETURN
END
SUbROUT1N.= STAT4(X1 ,Yi ,X2,Y2,NS,VARZ,VAR3,COV23)
REAL*4 VAR2, VAR3,COV23, SUMY1, SUMX2,SYISQ,SX2SQ, SY1X2,

*,Xl(,:,),Yl(,:),X2(.),Y2(-:' )
SUmtYL = 0.0
SUMX2 = O.0
SYISQ = 0.0
SX2SQ = 0.0
SYIX2 = 0.0
DO 100 I = 1,NS

SUMYl SUMY1 + YI(I)
SUMX2 = SUMX2 + X2(I)
SY1SQ = SY1SQ + Yl(I)*Yl(I)
SX2SQ = SX2SQ + X2(H)'X2(I)
SYlX2 = SYiX2+ Yl([)*X2(I)

100 CONTINUE
VAR2 = (FLOAT(NS) * SYlSQ - SUMYl ' SUMY1) / FLCAT(NS * (NS - 1))
VAR3 = (FLUAT(NS) ' SX2SQ - SUMX2 * SUMX2) / FLOAT(NS * (NS - 1))
COV23 = (FLOAT(NS) * SYlX2 - SUMY1 * SUHX2) / FLOAT(NS m (NS - 1))
RETURN
ENO
SUBROUTINE STAT5(XI,Yl,X2,Y2,NS,VAR2,VAR4,C

O V24)
REAL*4 VAR2 ,VAR4 COV24 SUMYi , SUMYZ,SYISQ,SY2SQ,SY1Y2,

*Xl(*),Y1 (*) X2(.tY2(*i
SUMYl = 0.0
SUMY2 = 0.0
SYlSQ = 0.0
SY2SQ = 0.0
SYlY2 = 0.0
DO 100 = 1,NS

SUMYI SUMYl + Yl(I)
SUMY2 = SUMY2 + Y2(I)
SY1SQ = SYISQ + YI(I)AYI(I)
SY2SQ = SY2SQ + Y2(I)'¥Y2(I)
SYlY2 = SYlY2 + Yl(I)*Y2(l)

100 CONTINUE
VAR2 = (FLOAT(NS) * SY1SQ - SUMYl * SUMY1) / FLOAT(NS * (NS - 1))
VAR4 = (FLOAT(NS) < SY2SQ - SUMY2 * SUMY2) / FLOAT(NS * (NS - 1))
COV24 = (FLOAT(NS) * SYlYZ - SU1Y1 * SUMY2) / FLOAT(NS * (NS - 1))
RETURN
END



SUBROUTINE STAT6(Xl,YI,X2,Y2,NS,VAR3,VAR4 COV34)
REAL;.4 VAR3,VAR4,COV34,SUMX2.SUMY2,SX2SQ,SY2SQ,SX2Y2,

*X1{(*) ,Y1(*),X2(*),Y2(*)
SUMX2 = 0.0
SUMY2 = 0.0
SX2SQ = 0.0
SY2SQ = 0.0
SX2Y2 = 0.0
DO 100 I = 1,NS
SUMX2 = SUMX2 + X2(I)
SUMY2 = SUMY2 + Y2(1)
SX2SQ = SX2SQ + X2(1)*X2(I)
SY2SQ = SY2SQ + Y2(I)*Y2(I) -
SX2Y2 = SX2Y2 + X2(I)*Y2(1I)

100 CONTINUE
VAR3 = (FLOAT(NS) * SX2SQ - SUMX2 < SUMX2) / FLOAT(NS * (NS - 1))
VAR4 = (FLOAT(NS) * SY2SQ - SUMY2 < SUMY2) / FLOAT(NS * (NS - 1))
C0V34 = (FLOAT(NS} * SX2Y2 - SUMX2 * SUMY2) / FLOAT(NS * (NS - 1))
RETURN
END
SUBROUTINE RSQ(VARlt VAR2,VAR3,VAR4,COV12,COV13,COV14,

*COV23,COV24, COV34,R)
REAL*4 R,R2,VAR1,VAR2,VAR3,VAR4,COV12,COV13,COVI

4,COV23,
*COV24,COV34,A1,A2,A3,A4,A5,A6,tA7,A8,BIB2,B

3 ,B4AB5,B6,
*B7,B8,C,D,E,F G,H, I,J,M,N,T1,T2,Ul,U2,T,U,P
A1 = ¥AR2 COVl3
A2 = COV12 ~ COV23
A3 = VAR4 * COV13
A4 = COV34 * COV14
A5 = VAR2 * COV14
A6 = COV12 * COV24
A7 = C0V34 ' COV13
A8 = VAR3 ' COV14
B1 = COV12 * COV13
B2 = VAR1 C0V23
B3 = VAR4 ' COV23
B4 = COV34 * COV24
85 = COV12 * C0V14
66 = VAR1 * COV24
B7 = COV34 * COV23
B8 = VAR3 . COV24
C = A1 - A2
D = A3 - A4
E = A5 - A6
F = A8 - A7
G = B2 - B1
H = B3 -B4
I = 86- 85
J = B8 - 67
M = C*D + E*F
N = G*H + I*J
T1 = VAR1 " VAR2
T2 = COVI2 ' COV12
U1 = VAR3 * VAR4
U2 = COV34 ': COV34
T = T1 - T2
U = U1 - U2
P = T U
R2 = (M + N)/P
R. = SQRT (R2)
RETURN
ENDO



FIGURE CAPTIONS

Figure 1. Cumulative frequency distributions for two-dimensional
vectors for sample sizes of 8, 12, 32, 64, and for the
theoretical chi-square distribution with four degrees of freedom.
See text for details.

Figure 2. Probability density functions (PDFs) corresponding to
the cumulative frequency distributions shown in Figure 1 for
sample sizes of 12 and 32. The PDF for the theoretical chi-
square distribution is also included

Figure 3. Nr2 versus sample size for a 95% level of confidence.
Mean values of nr + one sigma are plotted for each sample size.

Figure 4. Examples of vector sequences which produce perfect
correlation (i.e., =2.0). The first case, (a), arises when
the vectors are identical; the second case, (b), arises when the
magnitudes of the vectors in the second sequence are multiplied
by a constant; the third case, (c), arises when the directions of
the vectors in the second sequence are each rotated by a constant
angle; and the fourth case, (d), arises when the second sequence
is both multiplied by a constant, and rotated by a constant
angle.

Figure 5. The case leading to zero correlation between two
vector sequences. In this case, the vectors in each sequence are
generated randomly and the results averaged over 50 realizations
and then plotted for sample sizes of 10, 100, 1000, 10000 and
100000.

Figure 6. Locations of the two NDBC environmental data buoys
from which time-series surface winds were extracted. Period
covers 1 December 1987 to 4 February 1988. Typical winter storm
track has been included (Klein, 1957).

Figure 7. Vector correlation and related sequences for buoy
winds for a sample size of 8. Stick diagrams for the winds at
each buoy are shown in the upper two plots. The vector
correlation coefficient plus the 95% level of confidence follows.
Next, the trace of the vector correlation matrix is shown,
followed by the determinants of the All, A12 (A21), A22
submatrices, and the full 4 x 4 matrix.

Figure 8. Same as Figure 7 but for a sample size of 16.

Figure 9. Same as Figure 7 but for a sample size of 24.

Figure 10. Same as Figure 7 but for a sample size of 130 (i.e.,
the entire sequence).
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