
Generated using version 3.2 of the official AMS LATEX template

Long Range Sea Ice Drift Model Verification1

Robert W. Grumbine ∗

NOAA/NWS/NCEP/EMC/MMAB Contribution no. 3NN

2

∗Corresponding author address: Robert W. Grumbine, #2108 5830 University Research Ct., College Park

MD 20740

E-mail: Robert.Grumbine@noaa.gov

1



ABSTRACT3

Integrated sea ice drift is predictable to about 16 days in the Arctic. This surprising result4

is an extension from Grumbine (1998), where there was no apparent decline of skill through5

the 6 days forecast lead at that time. Forecasts from 1998 to 2007 provide a further test of6

that, and a continued search for good measures of model skill. Index of Agreement, used in7

Grumbine (1998), turns out to be a poor skill measure for sea ice drift.8
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1. Introduction9

The drift of sea ice is important for safety of navigation and fishing. A feature of particular10

importance is the motion of the ice edge. Since most vessels are not strengthened for working11

inside the ice pack, even low concentrations (15%) of thin (0.1 m) ice are a concern [Cavalieri12

et al. (1991)]. Alaska Region National Weather Service forecast offices, lead by Anchorage,13

have been making use of sea ice drift guidance models for a number of years (at least since14

1978 [Crisci (1978)]) to assist in making these forecasts. The nature of these models has15

been to use ’virtual floes’. That is, if there were an ice floe at this location at the start of the16

model run, then it is predicted by the model to drift this distance in the following direction.17

The lead time of these models was 2 days in 1978 [Crisci (1978)], to 4 days some time before18

1989, and to 6 days in 1989 [Grumbine, inspection of source code] where it remained until19

January 2001.20

In 1997 a new drift model was implemented operationally [Grumbine (1998)], hereafter21

G1, which again went to day 6. The new model was superior to the old, measured by drift22

error radius. It was a sufficient improvement that Anchorage Weather Service Forecast Office23

soon thereafter requested that guidance be extended [Page, pers. comm, 1998] to day 10.24

Since the atmospheric model used by the drift model, the Global Forecast System (GFS),25

extends to day 16, the experiment was begun running the model to day 16. The experiment26

was successful, and the 16 day guidance became operational in January 2001.27

A remarkable feature of the verification statistics for forecasts of up to 6 day lead in28

G1 was that there was no apparent decline in skill by any of the measures used – index of29

agreement, correlation, vector correlation. As noted in G1, this behavior could be expected30

in a case where the steadily increasing bias, from biased forcing, was offset by a decreasing31

random error component as positive errors are offset by negative errors. One of the interests32

for this paper is to determine how long that compensation could continue. We will see that33

that limit is 2-5 days, depending on skill measure.34

The new model has been running as a parallel since 14 April 1993, and operationally35
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since September 1997, which gives us over 15 years worth of experience.36

We have two main questions: Does the model have skill beyond day 6? and Is there37

potential for a higher resolution model to improve on this one? The first can be tested in a38

fairly straightforward manner. The second, we will examine by comparing the verification39

statistics between buoys as a function of initial distance between buoy and forecast point. If40

the model performs better for buoys closer to forecast points, then we have reason to believe41

that we should go to a higher resolution model. This resolution test applies only to the42

quantity tested – N-day integrated drift. This point is important to keep in mind as there43

is reason to believe that more than averaged drift conditions are required in order to model44

the sea ice thickness correctly [e.g. Geiger (1997)].45

2. Skill Assessment Methods and Results46

We will again use the International Arctic Buoy Program (IABP) observations of ice47

motion for our verification, partly to ensure comparability with the G1 scores.48

As in G1, we use several different assessors of skill. We use several because each will49

penalize different types of errors. Also, we are seeking skill measures which provide insight to50

how well the model is performing. We expand here from four assessors to ten. In considering51

how well the model performs by each measure, we are simultaneously also examining how52

informative each measure is. We will wind up concluding that only five are needed, and one53

of the four (index of agreement) used in G1 is not useful for evaluating this model.54

Since the GFS Hybrid [Lord et al. (2007)] implementation on 1 May 2007 the drift55

model has actually been running with a regression tuned with only 2 weeks of model 1056

meter winds, rather than geostrophic winds of G1 and prior models. For consistency as we57

examine performance measures and model skill, only the 1998-2007 frame is used in this58

paper. A subsequent paper will examine the 2007-present model. And will use 2 years of59

observations for tuning.60
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Distance Correlation61

One measure is simply the linear correlation between the forecast distance of drift and62

the observed distance. This is a statistic most are familiar with, and with well-known63

weaknesses. One is that it will consider a 50 km drift forecast correct even if the drift is64

southward rather than northward. The other is that the magnitude of drift error is considered65

equally significant regardless of how large the observed drift is. That is, if the forecast is 2266

km, and the observed drift is 2 km, this will be penalized the same (in a least squares linear67

regression) as a forecast of 40 km versus an observation of 20 km. Both are 20 km wrong,68

but the relative error is very different.69

The distance correlation between forecast and observed for each forecast lead (averaging70

period in this model) is shown in figure 1. The peak is at 3 days, with it not declining below71

the 1 day lead’s score until day 8.72

slope = (Σxy − n ∗ x ∗ y)/(Σxx − n ∗ x ∗ x) (1)

intercept = y − b ∗ x (2)

correlation = (Σxy − n ∗ x ∗ y)/
√

(Σxx − n ∗ x ∗ x)/
√

(Σyy − n ∗ y ∗ y) (3)

(4)

Slope of Regression73

The slope of the regression line between forecast and observed distances provides infor-74

mation beyond the correlation itself. If the model were perfect, this slope would be 1, as75

would correlation. But one can have a perfect correlation with a model that is continually76

wrong by a factor of 2. This parameter will show that situation. As we see in figure 1, the77

model consistently under-predicts the drift of ice, at most about 65% of the observed. Given78

this model’s linear nature, an a posteriori fix could be made to the model’s output. As we79
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will see in discussion of the intercept (below), part of this is systematic bias in the model’s80

guidance.81

This skill measure peaks for 2-3 days, and declines below the 1 day forecast, slightly,82

at day 4. Of the figure 1 skill measures, it shows the shortest period to peak skill, and for83

sustaining day 1 skill in to the future.84

Regression Intercept85

In making the linear regression for the slope, above, we also find the optimal intercept86

for the line. This is the bias in forecast drift distances. Regression intercept is displayed in87

figure 2, where we see it increase to about 45 km at 16 day forecast lead.88

Vector Correlation89

Vector correlation [Crosby et al. (1993)] will penalize directional errors as well, although90

it is still subject to the usual problems of correlation scores. Figure 1 shows this score as91

well. A perfect score is 2 (2 dimensional vectors). This score peaks at 4 days lead/averaging,92

and does not decline below the 1 day lead’s skill until 11 days. This vector correlation’s93

definition for a sample is:94

r2 = Tr[Σ−1

11
Σ12Σ

−1

22
Σ21] (5)

where Tr denotes the trace of the matrix and Σij is:95

s(ui, uj) s(ui, vj) (6)

s(vi, uj) s(vi, vj) (7)

s() is the sample covariance, and i, j = 1 represent the observations and i, j = 2 are the96

forecasts.97
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Index of Agreement98

Index of Agreement [Wilmott et al. (1985)] ignores direction, as does correlation, but99

does include a sense of how large the error is relative to the forecast. Figure 1 shows this100

as well, this skill having little trend, whether to rise or fall in time. Given the behavior101

of all other measures, this is inconsistent, and the score shows little ability to distinguish102

better from worse. As such, it should not be used as a skill measure for integrated ice drift103

distances.104

d2 = 1 − [Σωj|ej|2]/[Σωj(|pj − o| + |oj − o|)2 (8)

where d2 is the index of agreement, summations are from 1 to N (the number of observations),105

ω are weights to correct ej for being over- or underrepresentative, ej is the error in the jth106

forecast, p is the prediction, o is the observation, and o is the mean of the observations107

weighted by ω. In our case, the weights are taken to be unity. The index of agreement will108

be largest when the numerator is smallest (forecasts agree with observations), and when the109

denominator is largest (large natural variability - the oj vary greatly from o ).110

RMS Distance Error111

The root mean square of the distance error prevents under-forecast drifts from compen-112

sating for over-forecast drifts. In the limit of an unbiased model, this becomes the standard113

deviation of the errors. As for the regression intercept, figure 2 shows this monotonically114

increasing in time. It is always greater than the intercept, increasing to about 52 km at 16115

day forecast lead.116

Error Radius117

The error radius is the difference between the position of the drifter (ice floe) at the end118

of N days versus the forecast location. This is a very natural figure in terms of visualization.119
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It is also shown in figure 2. The mean shows monotonic increase, to about 35 km at 16 days.120

The root mean square of this error also shows monotonic (aside from a curious decline at 16121

day lead, likely artefactual) increase to about 60 km at 16 day lead.122

The preceding 4 measures are all distances, all of which increase monotonically with time.123

One can equate them, then, to a speed, which ranges from 2-5 cm/s.124

RMS Direction Error125

Figure 4 shows the root mean square of the direction error. We see it decline to about126

71 degrees at 5 day forecast lead. It remains superior to the day 1 forecast through 9 days.127

Errors increase from the minimum at day 5, though only slightly.128

We can compare this measure to the result of a random guess for direction, given in129

equation 1. Uniformly random selection of direction would have an rms error of 103 degrees.130

At 16 days, the directional error is still less than this. Actually, as shown in figure 4, the131

rms direction error at day 16 is only slightly larger (85 degrees versus 71 degrees) than at132

day 5.133

√

1

180

∫

180

0

θ2dθ = 103◦ (9)

Mean Distance Error134

Figure 3 shows the mean distance error, allowing underforecasts to compensate for over-135

forecasts. This shows an increase through time much like the measures above which do not136

permit compensation. This confirms the impression from the slope of the regression line that137

the model is systematically biased.138
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Mean Direction Error139

The mean direction error, also shown in figure 4, is consistently small, untrended, and140

of the same sign – a magnitude of -5 to -10 degrees. While small, it is the same order of141

magnitude as the drift rotation in the first place (8 degrees in G1).142

3. Implications for Resolution of Velocity grid143

The mean error radius is given in table 1 with respect to matchup radius. That is, for144

the given radius, buoys which were this close to the Skiles point (the set of points used by145

? were treated as drifting in the same distance and direction as a buoy which really was at146

the Skiles point. Table 1 also gives the error radius for only those matchups which were in147

the annulus between the given matchup radius and the next smaller matchup radius. Thus,148

in the row for 55 km (the matchup radius used in G1), values for the matchups are given149

both for initial distance between forecast point and buoy being between 0 and 55 km, and150

between 38.9 and 55 km. Figure 5 helps illustrate this.151

The mesh of Skiles points is a 381 km polar stereographic grid. This rectangular mesh152

does not translate uniquely to a representation based on radius from a point. There are153

three obvious methods of translation:154

1) Tile the plane with circles inscribed inside the rectangles (leading to radius = dx / 2,155

where we let dx be the 381 km spacing). This leaves gaps between the circles, especially156

along the diagonals between grid points.157

2) Tile the plane with circles having the same area as the squares, (giving radius = dx /158

√
π). This gives both some gaps along the diagonals, and some overlap perpendicular to159

them.160

3) Tile the plane with circles circumscribed around the squares. This gives radius = dx /161

√

(2), and no gaps, but much more overlap.162

As compromise among the three, I will take the circles having the same area as the163
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squares. In this case, the matchup radius of 55 km, for instance, corresponds to a grid164

spacing of just about 100 km (97.5), much finer than the model’s actual grid spacing of 381165

km. Table 1 also lists this equivalent grid spacing.166

In order to test for statistically significant differences in the difference between the means167

of two populations having unknown variance, the test statistic is [e.g. p 283 Devore (1982)]168

t =
(mean(x1) − mean(x2))

√

(
s2

1

m
+

s2

2

n
)

(10)

where n = number of observations from population 1, m is the number from population 2,169

x is the variable of interest, subscripts referring to which population was sampled, and s2 is170

the sample variance. This is also given in table 1, for annulus versus succeeding annulus. By171

comparing annuli, we have independent samples. There these are t statistics, with (n+m-2)172

degrees of freedom. A two tail t test for p = 0.95 has critical value of 1.97 for N tending to173

infinity.174

So, considering first the annulus from 165 to 190 km, representing the outer area of the175

model’s grid, we find no (statistically) significant improvement until the matchup radius 55176

km (annulus 38.9-55 km). The next improvement is with the matchup radius of 27.5 km177

(annulus 19.5 to 27.5 km). By this point, the annuli have far fewer observations, down to178

about 500 from the outermost annulus’ 13,000.179

In terms of grid spacing, this suggests that there is no particular reason – in terms of180

modeling N day integrated sea ice drift – for a model’s grid spacing to be reduced from181

381 km until it can be reduced to about 100 km. And no need for spacing to be reduced182

from 100 km until it can be reduced to about 50 km. Given modern computing this is of183

mostly historical interest for stand-alone sea ice models, but is relevant for coupled air-sea-ice184

models, where, for instance, the most recent Climate Forecast System [Saha et al. (2011)]185

includes a half degree, about 50 km grid spacing, ocean and ice model. The point is worth186

examining with a denser model and observational data set, and for other model types where187

it may be prohibitive to perform full testing at the higher resolution.188
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4. Conclusions189

Our first question, whether the model shows skill beyond 6 days’ lead is answered yes.190

It is clearly at least better than guessing random directions for ice floe drift. The second191

question, whether the skill can be improved by increasing model resolution, is also answered192

yes. Approximately a 25 km grid spacing is supported by this analysis, and such a model193

was submitted for NCEP operational implementation 21 May 2012. This model will also194

produce kml [Consortium (2012)] output for geographic inspection.195

Skill does indeed, eventually, decline. Depending on the measure used, peak skill is some196

time from day 2 to 5, with 4 days being a compromise lead between the different measures.197

Also, insofar as forecasters consider the model to be useful/skilled at 1 day lead, it shows at198

least equal skill for forecast leads of 4-10 days. How long, exactly, depends on the measure199

used.200

We also see that Index of Agreement, mean direction error, and mean distance error are201

not useful skill measures for sea ice drift as they vary so little that we cannot distinguish202

between day 1 and day 16 forecasts, even though the model, according to the other measures,203

clearly does vary in skill with respect for forecast lead. The magnitude of the mean direction204

error suggests, however, that the model could be improved markedly by correct tuning of205

the angle difference between geostrophic winds and ice drift.206

Five of the measures essentially repeat each other, so do not shed additional light on207

the model’s behavior. These are the mean distance error, the rms distance error, the error208

radius, and the regression intercept. Of these, error radius has some advantages for physical209

interpretation.210

There are four additional measures which provide unique information with respect to each211

other and the error radius regarding sea ice drift model. These are the vector correlation,212

distance correlation, the slope of the regression between forecast and observed drift distance,213

and the rms direction error. So I suggest that sea ice drift model verification use 5 measures214

– error radius, vector correlation, distance correlation, the slope of the regression between215
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forecast and observed drift distance, and the rms direction error.216
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Table 1. Error radius skills, for 16 day lead/averaging period, for matchup radii and annuli;
all distances in km

Matchup N Mean s dx N mean t vs. t vs.
Radius error equiv annulus error previous 190 km

radius radius annulus
19.5 488 32.2 39.7 34.6 488 32.2 -0.44 3.11
27.5 948 31.4 38.5 48.7 460 30.55 2.14 3.62
38.9 2119 34.7 46.6 69.0 1171 37.37 -0.42 1.77
55 4247 35.6 44.6 97.5 2128 36.5 1.87 2.96
77.8 8000 37.4 50.0 137.9 3753 39.44 0.17 0.99
110 15806 38.5 57.9 195.0 7806 39.63 0.47 1.05
155 29451 39.2 52.4 274.7 13645 40.01 0.68 0.68
190 42663 39.6 52.9 336.8 13212 40.49
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Fig. 1. Skill versus forecast lead/averaging time for index of agreement, correlation of
distance, vector correlation, slope of forecast vs. observed distance drifted
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Fig. 2. Skill versus forecast lead/averaging time for regression intercept, rms drift distance
error, mean error radius, rms error radius
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Fig. 3. Skill versus forecast lead/averaging time for mean distance error
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Fig. 4. Skill versus forecast lead/averaging time for mean direction error and rms direction
error
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Fig. 5. Illustration of annular matchup
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