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Abstract	
A novel multi-model ensemble approach based on the neural network (NN) 

technique is formulated and applied for improving 24-hour precipitation forecasts 

over the continental US.  The developed nonlinear approach allowed us to 

account for nonlinear correlation between ensemble members and “optimal” 

forecast represented by a nonlinear NN ensemble mean.  The NN approach is 

compared with the regular multi-model ensemble, with multiple linear regression 

ensemble approaches, and with results obtained by human forecasters.  The NN 

multi-model ensemble improves upon regular multi-model and multiple linear 

regression ensembles: (1) it significantly reduces high bias at low precipitation 

level; (2) it significantly reduces low bias at high precipitation level, and (3) it 

sharpens features making them closer to the observed ones.  The NN multi-model 

ensemble performs at least as well as human forecasters supplied with the same 

information.  The developed NN approach is a generic approach that can be 

applied to other multi-model ensemble fields as well as to single model 

ensembles.  
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1. INTRODUCTION	
For numerical weather prediction (NWP) models the rainfall is one of the most 

difficult fields to predict accurately.  Detailed knowledge of the atmospheric 

moisture and vertical motion fields is critical for predicting the location and 

amount of rainfall, but these are difficult quantities to predict and observe 

accurately.  Precipitations are determined by cloud dynamics and microphysical 

processes involved.  Clouds and convection are among the most important and 

complex phenomena of the atmospheric system.  The processes that control 

clouds, and through which they interact with other components of the Earth 

system involve slow and fast fluid motions carrying heat, moisture, momentum 

and trace constituents, and influence other important physical processes through 

phase changes of water substances, radiative transfer, chemistry, production and 

removal of trace constituents, and atmospheric electricity.  Numerical weather 

prediction (NWP) models cannot adequately represent the cloud dynamics and 

microphysical processes involved in rainfall generation because these processes 

occur on a subgrid scale, which means that they have time and space scales that 

are well below the resolution of the scales explicitly treated in NWP models.  

Therefore, NWP models must resort to parameterizations that treat convective 

clouds in a very simplified way.    
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The errors in quantitative precipitation forecasts (QPFs) can arise as a result of 

errors in the observations and limitations of the forecast model.  To compensate 

for shortcomings in observing systems and model physics there has been a trend 

in recent years toward ensemble forecasting, the realization of a number of model 

integrations using perturbed initial conditions. Ensemble prediction systems 

(EPSs) have been extensively tested and used in operations at the European 

Centre for Medium-Range Weather Forecasts (ECMWF) and the U.S. National 

Centers for Environmental Prediction (NCEP) (Buizza et al. 2005, Palmer et al. 

2007). Using this strategy one can estimate the probability of various events and 

possibly also the uncertainty associated with a particular forecast.  The ensemble 

average has repeatedly been shown to give a more accurate forecast than a single 

realization of the forecast model (Zhang and Krishnamurti 1997; Du et al. 1997; 

Buizza and Palmer 1998).   This technique is very computationally expensive 

and lower-resolution versions of the models are generally employed.  A drawback 

with the single-model EPSs (assuming that errors result primarily from 

uncertainties in the initial conditions) is that any biases present in the model itself 

will also be present in the ensemble and may require calibration.  The recent 

introduction of ‘‘stochastic” or “perturbed” physics attempts to account for 

uncertainties in the model subgridscale processes (Buizza et al. 1999, 2005; 

Krasnopolsky et al. 2008). 
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Multi-model ensemble (MME) (aka poor men’s ensemble) is another approach 

that has been taken to address aforementioned issues.  It combines forecasts from 

more than one NWP model.  Hamill and Colucci (1997, 1998) combined 

ensembles from the NCEP Eta model and regional spectral model to generate 

improved short-range forecasts of probability of precipitation.  Ebert (2001) 

exhaustively investigated advantages and problems of MME approach using a 

MME composed of seven operational NWP global and regional models.   

 

In the case of MME, the ensemble is composed of output from different models 

and/or initial times, rather than a single model with perturbed initial conditions.  

Unlike EPSs that use singular vectors or breeding modes to generate optimal 

perturbations to the initial conditions, MME samples the uncertainty in the initial 

conditions via the different observational data, data assimilation systems, and 

initialization methods used by operational centers.  MME also samples the 

uncertainty in model formulation due to the differences in model dynamics, the 

variety of model physical parameterizations, numerics, and resolutions.  As the 

result, MME can be considered as an approach, in which all components of NWP 

system are perturbed not only initial conditions or model physics.  Many authors 

(e.g., Speer and Leslie 1997, Du et al. 1997, and Ebert 2001) demonstrated 

superior performance of MME. 
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In this paper we introduced a new nonlinear MME based on a neural network 

(NN) technique.  The purpose of this study is to examine improvements that a 

nonlinear NN based MME may introduce over a regular (linear) MME for the 

case of precipitation forecast. The next section reviews linear methods of 

combining ensemble members and calculating the ensemble prediction and 

introduces a nonlinear NN based MME.  Section III describes the forecast and 

verifying data that we used in the study.  Section IV describes approaches to 

improve prediction of precipitations that we investigate.  Section V contains 

results and their discussion.  The paper finishes with conclusions. 
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2. Calculation	of	the	ensemble	results		
 

In MME as well as in EPS the final product is a combination of the ensemble 

members.  The simplest and most common combination of the ensemble members 

is an ensemble mean (EM), which is calculated as a simple average of ensemble 

members: 



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1  ,                                                              (1) 

where N is the total number of ensemble members and Pi is the ith ensemble 

member generated by the model number i.   

 

More sophisticated approaches (Krishnamurti et al. 1999, 2000) use the weighted 

ensemble mean (WEM), 
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 here each ensemble member is subscribed a weight, Wi, based on some ad-hoc 

considerations.  For example, Krishnamurti et al. (1999, 2000) used multiple 

linear regression technique to determine optimal weights, Wi, for combining the 

ensemble members based on a training dataset; a significant improvement was 

demonstrated using weighted ensemble mean over the simple ensemble mean.   
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The aforementioned approaches (both simple and weighted mean) implicitly 

assume a linear dependence between ensemble members and the best predicted 

value (the amount of precipitations in our case).  However, in some cases this 

assumption may be incorrect.  For example, for longer forecast times when 

bifurcation of the ensemble forecasts may occur, it can lead to misleading results.  

Also for fields (like precipitation fields) with high gradients and sharp, localized 

features the assumption of linearity may lead to significant problems in MME 

predictions (see more detailed discussion in the following sections).  In such cases 

the dependence between the ensemble members and the best predicted value may 

be a complex nonlinear one.   

 

In this study, we relaxed the linearity assumption and allowed for an arbitrary 

nonlinear dependence between the MME members and the best predicted value.  

A neural network (NN) technique is used to approximate this arbitrary nonlinear 

dependence using a training set.   The NN technique is used because NN is a 

universal approximator that can approximate any continuous or almost continuous 

dependence given a representative data set for training (Cybenko 1989, Hornik 

1991).   
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The nonlinear NN ensemble mean (NNEM), which we introduce here, is defined 

following Krasnopolsky (2007a, b); it is an analytical multilayer perceptron that 

can be written as: 

 
 


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where Xi are components of the input vector X composed of the same N inputs 

(ensemble members) as those used for EM and WEM equations  (1) and (2) plus 

optional additional input parameters (see Section IV), n is the number of inputs (n 

≥ N), a and b are fitting parameters (weights), and   



n

i
ijij Xbb

1
0 )(  is a so-

called “neuron”.  For the activation function   we use a hyperbolic tangent and k 

is the number of neurons in (3).  It is noteworthy to repeat that expression (3) is 

capable of approximating any nonlinear relationship between the ensemble 

members Pi and the ensemble forecast NNEM. 
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3. Forecast	and	verification	data		
At NCEP we applied different aforementioned MME techniques for calculating 

24-hour precipitation forecast over the continental US (ConUS) territory (Lin and 

Krasnopolsky 2011).  24-hour precipitation forecasts over ConUS are available 

from eight operational models, including NCEP's own mesoscale and global 

models (NAM and GFS), the regional and global models from the Canadian 

Meteorological Center (CMC and CMCGLB), global models from the Deutscher 

Wetterdienst (DWD), the European Centre for Medium-Range Weather Forecasts 

(ECMWF), the Japan Meteorological Agency (JMA) and the UK Met Office 

(UKMO).  Also NCEP Climate Prediction Center (CPC) precipitation analysis is 

available.  CPC’s 1/8 degree daily gauge analysis is used in the training of NNs 

and for the verification of model predictions.   

 

Results indicate that all models demonstrate similar behavior: at lower levels of 

precipitation they are slightly wetter than the CPC analysis and at the higher 

levels (> 50-60 mm/day) they are dryer than the CPC analysis (for detailed 

discussion, see Lin and Krasnopolsky, 2011).  Moreover, locations of highs and 

lows and details of precipitation features are different in the precipitation fields 

produced by different models.  The model results (24h forecast) for three models 

(NAM, GFS, and ECMWF) together with the CPC verification analysis are 

shown in Fig.1.   
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Fig.1. The model results (24h forecast) for three models (NAM, GFS, and 
ECMWF) together with the CPC verification analysis for October 24, 2010.  Red 
and blue ellipses show high and low precipitation areas respectively.  The figure 
illustrates the differences in model forecasts, especially for high and low 
precipitations. 
 

All gridded data fields where interpolated to the same grid, the 40-km Lambert-

conformal AWIPS Grid 212 that encompasses ConUS.   

 

Fig. 2 shows a scatter plot which presents all aforementioned eight model 

predictions over the first six month of 2010 plotted vs. the CPC analysis.  It 

demonstrates a tremendous spread in the MME results.  The uncertainty of the 

forecast is especially large at higher levels of the precipitation amount.  The 
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Fig. 2 Scatter plot showing 24h precipitation forecasts obtained by eight models 
over the first six months of 2010 vs. corresponding CPC analysis. 

 

binned scatter plots of all eight model 24h predictions vs. CPC verification 

analysis is shown in Fig. 3.  The models create an envelope with the spread 

increasing with the increase of the precipitation rate.  All models have 

increasingly low bias at high levels of precipitations.  Figures 2 and 3 illustrate 

very well the aforementioned problems. 
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Fig. 3.  Binned scatter plot for eight models (ensemble members) and EM (1) 

 

In the next sections, we investigate possibilities of improving the multi-model 

ensemble technique for 24h precipitation forecast using linear (multiple linear 

regression) and nonlinear (NN) techniques to improve upon the standard linear 

ensemble (1). 
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4. Ensemble	approaches	to	improve	prediction	of	
precipitations		

Because of the model problems described above, the research community has 

been exploring various ways of making better precipitation forecasts.  Among the 

approaches investigated at NCEP and in this paper we consider an eight member 

MME, which is averaged in three different ways calculating: (i) a regular EM (1), 

(ii) WEM (2) based on multiple linear regression, and (iii) a nonlinear NN 

ensemble, NNEM (3).  

 

As can be seen in Fig. 3, the regular EM (1) goes inside (in the middle of) the 

envelope created by the models.  EM provides a better placement of precipitation 

areas; however, it does not improve the situation significantly.  Moreover, as it is 

illustrated in Figs. 5 and 6, EM (1) smoothes, diffuses features, reduces spatial 

gradients; it has high bias for low level of precipitations (large areas of false low 

precipitations) and low bias at high level of precipitations (highs are smoothed out 

and reduced).  These problems are illustrated in the next section.  They motivated 

us to search for improved techniques including nonlinear NN ensemble.   

 

First we introduced and investigated an improved linear technique.  To make just 

comparison with the NN ensemble, we redefined WEM (2) as a multiple linear 

regression using the same inputs as the NN ensemble. The multiple linear 
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regression ensemble mean (WEM) was created in the following way 

(Krasnopolsky and Lin 2011):  




 
8

1
44321

i
ii PalonalatasjdacjdaWEM                               (4)                 

where ሼܽ௜ሽ௜ୀଵ,⋯,ଵଶ are regression parameters, )
183

cos( jdaycjd 


, 

)
183

sin( jdaysjd 


, jday is the Julian day, lat is the latitude, lon is the 

longitude, and Pi are the ensemble members in a particular grid point of ConUS 

grid.  Thus, the multiple linear regression (4) has totally 12 input parameters.   

 

The NN ensemble mean (NNEM) is defined as in (3) where the input vector X is 

composed of the same n = 12 inputs as those used for WEM (4).  k = 7 was 

selected after multiple trials to avoid over-fitting (Krasnopolsky and Lin 2011).  

Both WEM and NNEM have one output – 24h precipitation forecast.  The same 

CPC analysis corresponding to the time of the forecast was used to train outputs 

in both cases.  It is noteworthy that the regression parameters for WEM and NN 

weights for NNEM are the same for all grid points and do not depend on time.  

After WEM and NNEM are trained, they are used with the same set of regression 

coefficients (or weights for NN) in any grid point of the ConUS grid at any time.  

Thus, the results depend on time and location only through their input parameters. 
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5. Results	and	Discussion		
 The WEM and NNEM have been developed using 2009 data (more than 

310,000 in/out records, Krasnopolsky and Lin, 2011).  They have been validated 

on independent data for the first half of 2010, e.g., the results shown in Figs. 2, 3 

and 4 have been calculated using these validation data.  Fig. 3 shows the binned 

scatter plot for the amount of precipitation over the ConUS territory during the 

first six months of 2010.  It shows the eight available models together with EM 

(1) results vs. CPC analysis.  Our validation showed that, for precipitation fields, 

WEM (4) does not significantly improve upon the regular multi-model ensemble 

EM (1).  In Fig. 4 these two ensemble means, EM and WEM, are shown by thick 

solid and dashed black lines correspondingly.  As can be seen from the Fig. 3 and 

4, all models, EM, and WEM are slightly wetter than the CPC analysis at lower 

precipitation amounts and significantly dryer than the CPC analysis at higher 

precipitation amounts.  The linear ensembles, EM and WEM, do not change the 

situation significantly (see both panel of Fig. 4).  Also the multiple linear 

regression ensemble, WEM, does not introduce any significant improvement upon 

EM.   

 

There is a significant difference between linear ensemble averaging techniques (1 

and 2) and the nonlinear one (3).  EM (1) is always unique.  WEM (2) provides 

always the unique solution for a given training set.  Nonlinear ensemble 
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averaging, and NN ensemble mean NNEM (3) in particular, provides multiple 

solutions for a given training set.  For accurate training data, different solutions 

have different approximation errors, and the best solution with the smallest 

approximation error can be selected.  For training data with the high level of 

uncertainty (noise), like our data shown in Figs. 2 and 3, multiple solutions have 

almost the same approximation accuracy close to the uncertainty of the data.  It 

means that all these solutions provide equally valid nonlinear averaging of the 

MME.   

 

In terms of the NN approach, we trained ten NNs (3) with the same architecture (n 

= 12 inputs, one output and k = 7 hidden neurons) but different initialization 

values for weights a and b (see eq. (3)).  The training of these NNs, which is a 

nonlinear minimization of an error function, leads to ten different local minima of 

the error function with approximately the same value of the approximation error.  

However, because these ten NNs have different weights a and b (see eq. (3)), they 

produce very different results in the areas where the uncertainty of the data is 

higher (higher levels of precipitations).   

 

The results of the application of different MME averaging procedures to the 

validation data set are shown in Fig. 4.  It shows binned scatter plots for EM (1), 

WEM (4), and ten NNEMs (3) (NNEMi, i = 1, …, m and m = 10).  The left panel 
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displays the whole interval of precipitation values from 0 to 145 mm/day and the 

right panel magnifies the lower precipitation area from 0 to 50 mm/day.  

   

Fig. 4 Binned scatter plots for EM (1) (black solid), WEM (4) (black dashed), ten 
NNEMs (3) (NNEMi, i = 1, …, m and m = 10, all blue), and MNNEM (red) that is 
defined by eq. (5) below.  The right panel shows the magnified lower precipitation 
area. 
             

All ten NNEMs are in a good agreement at the lower levels of precipitation.  They 

diverge significantly at the higher levels of precipitation.  Their large spread 

reflects the uncertainty in the data that is the uncertainty of MME, i.e., the 

differences in predicting higher levels of precipitation by the different members of 

the MME (see Fig. 2).  Also, it is noteworthy that in the training and validation 

data sets only less than 0.5% of the data records correspond to precipitation values 

greater than 50 mm/day and only a few records to precipitation values greater 

than 100 mm/day. 
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To improve statistical significance of nonlinear NN ensemble averaging 

(especially at higher precipitation values), we can consider the ten aforementioned 

NNs as an ensemble of averaging NNs and calculate the ensemble mean as, 

ܯܧܰܰܯ  ൌ ଵ

௠
∑ ௜ܯܧܰܰ
௠
௜ୀଵ                                                             (5) 

 where m = 10, and each NNEMi is one of ten NNEM (3).  Now we can use 

MNNEM as MME forecast.  It is shown in Fig. 4 by a red solid line.  MNNEM 

produces a significant improvement relative to EM and WEM results at higher 

levels of precipitations (Fig. 4, left panel); it significantly reduces the low bias at 

higher precipitation levels (35 mm/day and higher). It also improves results at low 

precipitation levels, significantly reducing high bias at lower precipitation levels 

(from 0 to 10 mm/day).  However, at medium precipitation levels from ~12 to 30 

mm/day MNNEM and the majority of NN members have lower bias than EM and 

WEM, which can be seen in Figs. 4 (right panel).  Thus, the nonlinear NN 

ensemble averaging approach is flexible enough to negotiate the wetness at lower 

amounts of precipitations with the dryness at the higher amounts.   

 

Using an ensemble of NN MME means (NNEMs) has an additional advantage.  It 

allows us to calculate the uncertainty of MME forecast as the standard deviation 

of NNEMs, 

ߪ ൌ ටଵ

௠
∑ ሺܰܰܯܧ௜
௠
௜ୀଵ െ  ሻଶ               (6)ܯܧܰܰܯ
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Figs. 5 and 6 demonstrate two case studies that show advantages of nonlinear NN 

ensemble forecast, MNNEM, as compared with the regular ensemble forecast, 

EM.  Here we do not show WEM (4) results because visually they are not 

distinguishable from EM results.  The CPC analysis for the time corresponding to 

the forecast is used for verification.  Also, manual 24h forecast produced at the 

Hydrometeorological Prediction Center (HPC) by human forecasters is also 

presented for comparison.  To produce the HPC forecast, a forecaster uses the 

model forecasts as well as all available observations and satellite data (including 

sequential satellite images) (Novak et al., 2011).    

 

 Fig. 5.  Comparison of three 24h forecasts: EM (upper right), MNNEM (lower 
left), and HPC (lower right) vs. CPC analysis for October 24, 2010.  Red ellipses 
show high precipitation areas and blue ellipses show low.  
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As figs. 5 and 6 demonstrate, the nonlinear NN averaging of MME improves 

positioning of precipitation features inside the precipitation fields.  It removes 

significant areas of false low level precipitations produced by a standard EM (1) 

technique.  It sharpens the features, enhances precipitation fronts and maximums.  

The MNNEM technique provides a forecast that is comparable with the HPC 

forecast while using much less resources and time. 

 

Fig. 6. The same as in Fig. 5 but for January 4, 2011. 

In conclusion of the discussion, the statistical results that characterize the 

accuracy of positioning precipitation features are shown in Fig. 7.  The statistics 

covers the period of eight months from November 15, 2010 to July 15, 2011.  The 

ETS measures that fraction of observed events that are correctly predicted, 
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adjusted for correct predictions that are due to random chance.  Possible ETS 

ranges from -1/3 to 1 (perfect forecast would have a score of 1 for every  

 

 

  

Fig. 7 EQ-THT score (upper panel) and BIAS score (lower panel) for the period 
of eight months from November 15, 2010 to July 15, 2011.  Five different 24h 
MME forecasts are presented: EM (1) – solid red, WEM (4) – dashed pink, HPC 
forecast – dashed blue, MNNEM (5) – dashed light blue, and one of NNEM (one 
member of the NN ensemble (5)) forecasts – dashed brown. 
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precipitation threshold).  Bias score is simply the ratio of areal coverage of 

forecast vs. observed precipitation exceeding a given threshold.  An ideal forecast 

would have a bias score of 1 at every threshold. 

 

Summarizing, the MNNEM forecast is comparable with the HPC forecast and 

significantly better than EM at the threshold values less than 0.1 inch/day and 

more than 1. inch/day, which is in a good agreement with the statistics presented 

in Fig. 4.  

6. CONCLUSIONS	
 In this paper we introduce a nonlinear NN ensemble approach to improve 

24h multi-model ensemble precipitation forecast.  This straightforward 

application of NNs to the problem produced promising results.  We showed that 

our NN ensemble improves upon simple linear ensemble: 

1. It significantly reduces high bias at low precipitation level 

2. It significantly reduces low bias at high precipitation level 

3. It sharpens features making them closer to observed ones. 

It is noteworthy that the NN multi-model ensemble forecast works at least as well 

as HPC forecast produced by human analysts without using any additional 

information that is available to the analyst and it is less time and resource 

consuming.  
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The presented study is actually a pilot study; we implemented NN in a simple 

way, supplying it with the same information which the linear multi-model 

ensemble uses.  The flexibility of the NN approach allows us to introduce in 

future studies more sophisticated NN approaches.  For example, we are planning 

to introduce information available to a human analyst (and HPC analyses itself) as 

additional input to our NN.  We are also planning to implement a field-wise 

approach taking inputs from several neighborhood points etc. 

 

The nonlinear NN averaging approach that we developed in this paper is a generic 

approach.  Although here we applied it to precipitation fields, it is clear that it can 

be applied to other fields as well.  Also here we applied this approach to calculate 

the MME mean; it can be applied as well to calculate nonlinear ensemble mean in 

a single model EPS.  
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