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Wind wave modeling at sea and near the coast generally considers the evolution
of the wind wave spectrum F in space and time. Away from the surf zone, only
the amplitude of the spectral components is considered, and a random spectral
phase is assumed1. Starting with Gelci et al. (1956, 1957) numerical wave models
predict the evolution of such a spectrum, generally using some form of the basic
balance equation as formally established by Hasselmann (1960)

∂F (f, θ; x, t)

∂t
+ ∇ · cF (f, θ; x, t) =

∑

S(f, θ; k, t) , (1)

where f and θ are a spectral frequency and direction, respectively (or alternatively
the wavenumber k and/or wavenumber vector k), x and t are physical space
and time, respectively, c represents the characteristic velocities in physical and
spectral space (possibly accounting for mean currents), and

∑

S represent major
sources and sinks of spectral energy. For the present study, only the mathematical
properties of the equation are relevant. Equation (1) is a hyperbolic equation
that is generally solved by describing the problem with discretized spectra (i.e.,
spectra with discretized f and θ) on a discretized spatial grid, while marching the
solution forward in time. Due to the multi-dimensional nature of the problem,
fractional step approaches (Yanenko, 1971) with explicit finite difference schemes
are used by virtually all wave models.

The above approach is effective in the deep ocean and in larger water bodies,
as the corresponding transient nature of the wave field solution requires the eval-
uation of the wave spectra in time. When smaller areas with higher spatial reso-
lution are considered, marching a solution forward in time becomes increasingly
expensive, as a reduction of spatial grid sizes by a factor β generally increases
computational efforts by a factor β3 if identical grid coverage and spectral reso-
lution are maintained. In small-scale coastal areas, this can make models based
on Eq. (1) prohibitively expensive. In such areas, however, information travels
rapidly through the entire grid due to the limited spatial extend of the grid. If
associated time scales are smaller than time scales at which environmental forc-
ing and boundary data change, a quasi-stationary approach can be used where
Eq. (1) reduces to

∇ · cF (f, θ; x, t) =
∑

S(f, θ; x, t) . (2)

Equation (2) is an elliptical equation that in principle requires massive matrix
inversions to achieve a solution. In practice, this matrix inversion is either simpli-
fied by considering “half-plane” solutions only, or requires some iterative solution
for generally applicable quasi-stationary models. The iterations are typically
controlled by dynamic convergence criteria, and/or by a maximum number of
iterations allowed. A prominent example of a latter general purpose model is the

1Phase resolving o time domain models as used in the surf zone are not considered here.
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SWAN model (Booij et al., 1999; Ris et al., 1999). The fact that features of both
type of equations are needed in practical wave models can be seen in the fact that
the SWAN model was extended for use at larger scale areas by re-introducing the
time derivative in Eq. (2), while retaining the iterative solution technique for
elliptical equations (e.g., Fraza, 1998; Holthuijsen, 2007, Section 9.5.2).

Quasi-stationary solutions can also be obtained from Eq. (1) by integrating
the model until stationarity is achieved. Clearly, such a computation is equivalent
to iterating toward a solution of Eq. (2), and in fact similar convergence criteria
can be used. An advantage of using this approach for the hyperbolic equations
is that the time for wave information to travel through the grid can be estimated
explicitly from the characteristic velocities of the dominant waves, with the caveat
that this will not be an ‘exact science’ due to the nonlinear interactions between
all scales in the spectrum. If the transient time of dominant information through
the grid is estimated as tt, the time scale for reaching stationarity ts becomes

ts = αtt , (3)

where α is a relatively small number larger than 1. With a numerical time step
∆tn in the hyperbolic model, the number of iterations ni then simply becomes.

ni = ts/∆tn . (4)

Such a fixed number of iterations may not be the most effective way to reach
stationarity, and may limit accuracy of the final solution, but is a benefit for
operational models as the model run time becomes predictable.

This time scale can also be used to determine if a quasi-stationary approach
should be used. Assuming that an analysis of time scales of forcing and required
output frequencies dictates that model output should be available at solution
intervals ∆ts, quasi-stationary solutions can only expected to be valid if

ts � ∆ts , (5)

and otherwise a non-stationary approach will be required.
A full time-marching solution of the hyperbolic equations requires

nm = ∆ts/∆tn . (6)

numerical time steps to reach the next solution. In quasi-stationary conditions
where Eq. (5) is satisfied, nm > ni, and tentatively a reasonably accurate quasi-
stationary solution for the next output time can be obtained at a factor γ less
computational effort where

γ =
nm

ni

=
∆ts
ts

. (7)
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In the context of the hyperbolic equations, a set of quasi-stationary solution can
then be achieved by using a simple “time compression” approach, where for each
time step the spectral increments are computed as

∆F (f, θ) ∝ ∆tn
∑

S(f, θ) , (8)

but where the marching of physical time is accelerated by a factor γ, i.e.,

ti = ti−1 + γ∆tn , (9)

where ti and ti−1 are the present and previous discrete times, respectively. Equa-
tion (9) represents linear time compression. Alternatively, nonlinear compression
schemes can be devised, where γ represents the mean time acceleration per out-
put time step ∆ts. Finally, discontinuous time compression can be performed by
discontinuously incrementing the time before or after the dynamic calculations
so that the time the end of the computation interval s consistent with the time
increment ∆ts, for instance

ti = t0 + (nm − ni + i)∆tn , (10)

where t0 is the time at the beginning of the time interval ∆ts, and ti represents
the time after the ith of ni actually applied time steps.

If a set of nested grids is considered, this time compression with the acceleration
factor γ can be applied to all grids considered with the additional refinement that
γ by definition needs to be larger than 1, replacing Eq. (7) with

γ = max
(

1. ,
∆ts
ts

)

. (11)

This creates a natural transition from fully unsteady to quasi-steady approaches,
which becomes particularly elegant in the two-way nested or mosaic approach to
wave modeling as implemented in WAVEWATCH III r© (Tolman, 2008). This
will, however, require a subtle modification to the algorithm used to dynamically
determine time stepping in the individual grids (Tolman, 2008, Table 1). in
the original mosaic implementation, time stepping and synchronization between
grids is governed by the overall numerical time step associated with each grid.
For (quasi-) stationary grids, this time step has to be replaced by ∆ts as used
above, and thus ∆ts has to become an effective minimum grid synchronization
time interval.

One complication occurs when using a definition of γ compatible with Eq. (11)
for grids with prescribed boundary conditions (nesting). In traditional (non-
stationary) nesting, boundary data needs to be updated at the end of the time
step to be consistent with numerical finite difference schemes used in the model.
In the quasi-steady approach, however, boundary data needs to be consistent
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throughout the computation with the data corresponding to the time for which
the solution is to be obtained. In the context of time marching using the hy-
perbolic equation, the latter will be the boundary data at the end of the time
step. Note that the same considerations apply to all external model inputs (wind,
currents, water levels and ice).

In a typical wave model, the treatment of boundary and other input data is
governed by the model time, whereas the actual model time has no direct im-
pact on the model integration according to Eq. (8). Hence, proper treatment of
boundary and input data ranging from full time integration to quasi-stationary
approaches can, in principle, be controlled by a proper time compression scheme
replacing Eq. (9) with a nonlinear description with ni integration steps for Eq, (8).
Qualitatively similar results are obtained with the discontinuous time compres-
sion scheme (10), of which the degenerate form

ti = t0 + nm∆tn = t0 + ∆ts , (12)

will result in wave model behavior consistent with the fully stationary approach.

It is fairly trivial to implement the above time compression approach in the
WAVEWATCH III model. A time scale ts needs to be attributed to each grid,
and all time compression can be easily added in the main wave model routine
W3WAVE in the file w3wavemd.ftn. Minor modifications to the mosaic wave
model routine WMWAVE in the file wmwavemd.ftn by introducing a minimum
synchronization time ∆ts min interval as described above. The main effort will
be required for finding suitable time compression formulations that also properly
address the use of boundary and forcing data, as well as defining guidelines for
using non-stationary and stationary grids in a single mosaic.

With such a time compression algorithm, the main attention for obtaining
accurate yet economical model results will be required while setting up models.
The mosaic approach in WAVEWATCH III tentatively provides a unique way of
doing this systematically by first running the wave model in fully non-stationary
mode (ts = ∞ for all grids, ∆s,min = 0), and then systematically reducing ts

and increasing ∆s,min to realistic values until differences in results with the fully
non-stationary model become unacceptable. Alternatively, the model can first
be set up in a cheap way (small ts, large ∆ts,min), after which the model is made
incrementally more unsteady until no significant changes is results are seen. This
will make the development of mosaics more complicated, but the resulting models
better understood.
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