
 

  

Abstract — In this paper the use of the neural network 
emulation technique, developed earlier by the authors, is 
investigated in application to ensembles of general circulation 
models used for the weather prediction and climate simulation.  
It is shown that the neural network emulation technique allows 
us: (1) to introduce fast versions of model physics (or 
components of model physics) that can speed up calculations of 
any type of ensemble up to 2 -3 times; (2) to conveniently an 
naturally introduce perturbations in the model physics (or a 
component of model physics) and to develop a fast versions of 
perturbed model physics (or fast perturbed components of 
model physics), and (3) to make the computation time for the 
entire ensemble (in the case of short term perturbed physics 
ensemble introduced in this paper) comparable with the 
computation time that is needed for a single model run. 

 

I. INTRODUCTION 
uring the last decade, ensemble techniques 
demonstrated a significant success in numerical 

weather prediction (NWP) [1,2] (Palmer et al. 2007, Buizza 
et al. 2005) and climate simulations [3-6](Broccoli et al. 
2003, Murphy et al. 2004, Staniforth et al. 2005, Yoshimori 
et al. 2005).  A traditional ensemble approach widely used in 
NWP consists of introducing perturbations in initial 
conditions because NWP problems (specifically, for short- 
to medium-term weather predictions) are the initial condition 
problems.  Hereafter we will call this kind of ensembles the 
perturbed initial condition ensemble (PICE).   

It was also found that, for both the NWP and climate 
applications, the spread of PICE forecasts is insufficient to 
systematically capture reality and perturbing of model 
physics has been proposed and introduced in some ensemble 
forecast systems [2,7] (Buiza et al. 1999, 2005).  Climate 
simulation problems are rather boundary condition and right 
hand side (r.h.s.) forcing problems than initial condition 
problems.  For this kind of problems, an ensemble approach 
based on perturbation of model physics (or perturbation of 
forcing) seems to be appropriate.  The perturbed physics 
ensembles are expected to be more effective for climate 
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simulations and projections [5] (Stainforth et al. 2005).   
In this paper we investigate different possibilities of using 

the neural network (NN) emulation technique, introduced in 
[8,9] Krasnopolsky et al. (2002, 2005) for speeding up 
calculations of model physics, in combination with ensemble 
approaches.  We discuss two types of perturbed physics 
ensembles: a long term perturbed physics ensemble (PPE) 
and a short term perturbed physics ensemble (STPPE).  We 
also show that the NN emulation technique can be efficiently 
used to create PPE and STPPE.  We show that all three 
aforementioned types of ensembles (PICE, PPE, and 
STPPE) can significantly benefit in terms of their numerical 
performance of using NN emulations of model physics; 
however,  STPPE becomes especially efficient (orders of 
magnitude faster than PICE and PPE) when the NN 
technique is used to produce the ensemble of perturbed 
realizations of model physics.   

In section 2, we briefly review the PICE and PPE 
techniques and introduce STPPE approach.  In section 3 we 
describe the NN emulation of model physics technique and 
introduce fast NN emulation based ensemble versions for 
PICE, PPE, and STPPE. In section 4, we compare fast 
STPPE with PPE and PICE using NN emulations for model 
physics, specifically for long-wave radiation (LWR) of the 
NCAR CAM.  Conclusions are given in section 5. 

II. ENSEMBLE APPROACHES IN NWP AND CLIMATE 
SIMULATIONS  

General circulation models (GCM) used for climate 
simulations and numerical NWP are complex nonlinear 
systems, which can be symbolically written as  
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∑=
k

k tptP ),(),( ψψ
 (pk are parameterizations of physical 

processes), etc.  Here ψ  is the atmospheric state vector.  
Each of these elements as well as boundary conditions can 
be considered as a specific component that has its own 
internal (natural) uncertainty.  Each of these components 
may be perturbed within its natural uncertainty to produce an 
ensemble of model realizations.  Each of these ensemble 
realizations produces a prediction which constitutes an 
ensemble member. 
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Formally, an ensemble forecast system may be 
represented as a set of numerical integrations, 
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where j = 1,…, N is the number of the ensemble member.  
All ensemble members are close but different.  The 
ensemble approach allows for integrating the specific 
information contained in the individual ensemble members 
into an ensemble that “knows” more/has more information 
about or represents the predicted climate or weather better 
than each of the individual ensemble members. 
 

A. Ensembles with Perturbed Initial Conditions 
Because NWP model integrations (specifically, for short- 

to medium-term weather predictions) are based on solving 
the initial condition problems, a traditional ensemble 
approach, PICE, widely used in NWP consists of 
introducing perturbations in initial conditions [10] (Buiza 
1997); model physics is not perturbed and Pj are the same in 
eq. (1) for all ensemble members. Within this approach, each 
ensemble member run starts from uniquely perturbed initial 
condition ψj(0).  After running independently for some 
prescribed time T, the results of the ensemble member runs 
are compared with each other and with observations and 
averaged (see Fig. 1).   

 

 
 
Fig. 1 The PICE and PPE scenario 
 
Usually, the ensemble average describes better an actual 

weather or climate at the moment t = T than an individual 
ensemble member.   PICEs allow us to observe how small 
uncertainties in initial conditions develop over model 
integration time into significant/measurable differences in 
predicted atmospheric states.  For PICEs, the initial time step 
is the only time step for which an uncertainty is taken into 
account, i.e. perturbations is introduced in a deterministic 
NWP model.  PICE proved to be an effective tool for NWP; 
however, it was noticed that the spread of PICE forecast is 
often insufficient for providing a systematic improvements 
of NWP (Buizza et al. 2005).   
 

B. Ensembles with Perturbed Physics 
It was also shown that, for the NWP and climate problems, a 
perturbed physics ensemble may provide a larger spread and 
better results [2,4,7,11] (Buiza et al. 1999, 2005; Stensrud 
2000; Murphy et al. 2004).  For example, ECMWF 
operational ensemble forecast system has been already 

augmented by including perturbed physics ensembles [2,7] 
(Buiza et al. 1999, 2005).   

For climate models, which are not initial condition 
problems but rather boundary condition and r.h.s forcing 
problems, an ensemble generation approach based on 
perturbation of model physics (or perturbation of forcing) 
appears to be appropriate.  Uncertainties in model physics 
that arise from the fact that the sub-grid effects are taken into 
account only approximately in model physics 
parameterizations, which include many uncertain parameters 
and approximations, have a different nature and spatial and 
temporal scales than uncertainties in initial conditions.  In a 
sense, model physics parameterizations produce 
noise/perturbations at each GCM grid point at each time step 
of its integration.  The perturbed physics ensembles (PPE) 
are shown to be very effective for climate simulations and 
projections [3-6,11,12] (Kharin and Zwiers 2000, Stensrud 
et al. 2000, Broccoli et al. 2003, Murphy et al. 2004, 
Stainforth et al. 2005, Yoshimori et al. 2005).  Within this 
approach, each ensemble member uses a uniquely perturbed 
version of model physics Pj.  PPE can also be used in 
combination with PICE [5] (Stainforth et al. 2005) as it is 
shown in eq. (1). 

Several different approaches have been used for 
perturbing model physics: 

• Model random errors associated with physical 
parametrizations are simulated by multiplying the 
total parametrized tendencies P by a random number 
rj sampled from a uniform distribution between 0.5 
and 1.5 ( PrP jj ×= ) [2,7] (Buiza et al. 1999, 
2005).   

• One or several model physics parameters controlling 
key physical characteristics of sub-grid scale 
atmospheric and surface processes can be perturbed 
one or several at a time within the scope of their 
natural uncertainty [4,5](Murphy et al. 2004, 
Stainforth et al. 2005).   

• Different model physics process parameterization 
schemes can be used to create various versions of 
perturbed model physics; the different versions are 
used in different ensemble members [11] (Stensrud et 
al. 2000).     

In section 3 of this paper a new method of generating an 
ensemble of perturbed physics is introduced that uses NN 
emulations of model physics [8,9] (Krasnopolsky et al, 2002, 
2005) as a tool to create different realizations of model 
physics. 

Usually the same scenario, as that depicted in Fig. 1 for the 
PICE with perturbed initial conditions, is followed for 
creating PPE.  A particular GCM ensemble member uses a 
particular version of the perturbed physics, Pj, throughout 
the entire GCM run, for a long time T.    Thus, in PPE 
different versions of perturbed physics (different realizations 
of the sub-grid physics) are used for different ensemble 
members, and each ensemble member exists and evolves 
over the entire GCM integration period T that is much longer 
than a characteristic time scale of sub-grid physical 
processes.   
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C.  Short Term Ensembles with Perturbed Physics 
However, using the perturbed physics approach for 

generating ensembles offers an opportunity to introduce an 
alternative ensemble approach, namely a new type of 
ensembles – a short term perturbed physics ensemble 
(STPPE) that is not possible in the framework of the 
traditional PICE approach.  In the STPPE mode, the 
ensemble of different realizations (perturbed versions) of 
model physics is introduced for a time interval comparable 
with the time scales of the sub-grid processes, namely during 
one time step (or for some parameterizations for several time 
steps) of the model integration.  Symbolically STPPE can be 
written as, 
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At each time step, an ensemble of different realizations of 
model physics is generated and averaged.  The ensemble 
average is used to integrate the model for producing the next 
time step.  The STPPE scenario is shown in Fig. 2.   

 
 

 
Fig. 2  The STPPE scenario. 
 
The major differences between a PICE or PPE approaches 

(Fig. 1) and STPPE (Fig. 2) are: 
• PICE and PPE consist of N independent model 

runs; STPPE consists of a single model run. 
•  In the PICE and PPE approaches, the ensemble 

averages for climate or weather characteristics are 
calculated at the end of all N model integrations 
combining climate or weather characteristics for 
all single ensemble member runs; within STPPE, 
the ensemble average is calculated at each 
integration time step, ∆t, for the outputs of the 
ensemble members composed of perturbed 
components of model physics.  The weather or 
climate characteristics obtained at the end are the 
results of this single STPPE run.  There is no 
additional averaging of weather or climate 
characteristics in this approach. 

• SLPPE may be significantly faster then PICE or 
PPE; if calculations of a perturbed version (or 

component) of model physics take about 
T

m
1=τ

 , 
where 1/m < 1 is a fraction of  T required for 
calculation of the model physics (or a particular 

component/parameterization of model physics 
that is perturbed), and T is the total time required 
for integration of one PICE member, then the 
STPPE run takes time                          
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whereas PICE or PPE runs take a longer time 
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The major technical difficulty in realization of all three 
discussed ensemble approaches (PICE, PPE, and STPPE) is 
their time consumption.  Both PICE and PPE cost N (N – is 
the number of ensemble members) times more than a single 
model run; that is N · T, where T is the time required for one 
GCM run.  STPPE costs significantly less time because only 
model physics is calculated N times.  For example, if the 
calculation of model physics takes 50% of the total model 
calculation time, STPPE will be about 2 times faster than 
PICE or PPE runs, assuming that the number of ensemble 
members is the same, N.  If model physics calculation time 
is reduced the STPPE becomes even more computationally 
efficient.  In the next section, we show that STPPE becomes 
very efficient (orders of magnitude faster than PICE and 
PPE) when the neural network (NN) technique is used to 
produce the ensemble of perturbed realizations of model 
physics.    

III. NEURAL NETWORK ENSEMBLES WITH PERTURBED 
PHYSICS  

In this section, we discuss NN emulations as a tool for 
introducing fast versions of model physics and a promising 
approach for perturbing model physics.  The NN emulation 
technique allows us: (1) to introduce fast versions of model 
physics (or components of model physics) that can speed up 
calculations of any type of ensemble up to 2 -3 times; (2) to 
conveniently an naturally introduce perturbations in the 
model physics (or a component of model physics) and to 
develop a fast versions of perturbed model physics (or fast 
perturbed components of model physics), and (3) to make 
the computation time for the entire ensemble (STPPE) 
comparable with the computation time for one single model 
run.  In this section, we use NCAR CAM as a particular 
example of GCM and its LWR parameterization as a 
particular example of a model physics component, which 
can be accelerated and perturbed using NN emulations, to 
describe the NN perturbed physics ensemble technique. 
   

A. NN emulation technique  
The NN emulation technique [8,9,13] (Krasnopolsky et al, 

2002, 2005, Krasnopolsky and Fox-Rabinovitz 2006a) is 
based on the fact that the entire model physics as well as a 
single parameterizations of model physics may be 
considered mathematically as a continuous or almost 
continuous (like a step function) mapping between two 
vectors X (input vector) and Y (output vector) and 
symbolically can be written as: 

mn YXXMY ℜ∈ℜ∈= ,);(               (5)                      
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The simplest multi-layer perceptron (MLP) NN is a vector 
valued NN.  It is composed of nonlinear neurons  
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  Each element of the NN output vector is a linear 
combination of neurons 
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where k is the number of the neurons [14] (see Bishop, 2006 
and references therein).    

This NN has been used as a generic analytical nonlinear 
approximation or model for the mapping (5) [15,16] 
(Funahashi 1989, Krasnopolsky 2007a).  Accurate NN 
emulations for the NCAR CAM long wave and short wave 
radiation (LWR and SWR) parameterizations have been 
developed [8,13,17] (Krasnopolsky et al. 2005, 
Krasnopolsky and Fox-Rabinovitz 2006 a, b).  These NN 
emulations are 20 to 150 times faster that the original CAM 
SWR and LWR parameterizations correspondingly.   
 

B. Creating fast perturbed physics using NN 
emulations  

If we produce N perturbed versions of model physics 
adding some perturbations to the entire model physics or to 
one of its components (parameterizations), we can use these 
N perturbed versions to create PPE members following a 
traditional scenario of PICE (Fig. 1).  These N versions can 
also be used as members of STPPE following an alternative 
scenario presented in Fig. 2. 

The jth perturbed version of the unperturbed model 
physics, P, can be written as, 

j
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jj PPP ε+==

                               (7)                                                                   
where 

NN
jP  is a NN emulation number j of the original model 

physics, P, and εj is an emulation error for the NN emulation 
number j. As we have shown in our previous investigations 
[8,13,17] (Krasnopolsky et al. 2005, Krasnopolsky and Fox-
Rabinovitz 2006 a, b), εj can be controlled and changed 
significantly varying k (the number of hidden neurons) in eq. 
(6).  Not only the value but also the statistical properties of εj 
can be controlled.  For example, the systematic components 
of the emulation errors (biases) can be made negligible 
(therefore, εj are purely random in this case).  Thus, εj can be 
made of the order of magnitude of a natural uncertainty of 
the model physics (or of a particular parameterization) due 
to unaccounted variability of sub-grid processes (see also 
discussion in section 4).   

Using NN emulations will speed up calculations of all 
three kinds (PICE, PPE, and STPPE) of ensembles.  One 
PICE or PPE run with N ensemble members using N 
different NN emulations, each of which is n times faster than 
the original model physics, as perturbed versions of model 
physics will take time, 
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Thus, in the case of NCAR CAM, where m ≈ 3/2 to 2 and n 
≈ 10 to 100, using NNs for PICE or LTPPE will speed up its 
calculations about two to three times. 

The acceleration of calculations of PICE and PPE due to 
the use of NN emulations of model physics is significant.  
However, the speed-up will be much more significant in the 
case of SLPPE.  When we use N NN emulations each of 
which are n times faster than the original model physics, the 
STPPE run takes time  
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                    (9)                      
It means that STPPE with N = n ensemble members (N 
different NN emulations of model physics taken as ensemble 
members) can be run as fast as a single ensemble member of 
PICE or PPE (see eq. (4)).   

Here, the legitimate question to ask is about the efficiency 
of STPPE.  Does it improve the accuracy of a climate 
simulation to a degree at least comparable with 
improvements provided by the PICE and LTPPE 
approaches?   This point is discussed in the next section. 

IV. COMPARISONS OF DIFFERENT ENSEMBLES USING 
PERTURBED NCAR CAM LWR 

For validation of our experiments, we use the NCAR 
CAM run using the original model physics and the original 
NCAR CAM initial conditions as a control against which all 
ensemble members for all three considered types of the 
ensembles and ensembles themselves are estimated.  In other 
terms, the climate obtained from the 15 years run of NCAR 
CAM with the original model physics (including original 
LWR parameterization) and original initial conditions is 
used below as a control climate. All ensemble members and 
ensemble averages for different ensembles (PICE, LTPPE 
and STPPE) are compared with these synthetic 
“observations”.  Than to create an ensemble of perturbed 
physics, we emulated the original LWR parameterization 
[18] (Collins et al. 2002) with six different NNs which 
approximate the original LWR parameterization with 
different limited approximation errors [8,13] (Krasnopolsky 
et al. 2005, Krasnopolsky and Fox-Rabinovitz  2006 a).   

The perturbed LWR parameterizations can be written as, 

j
NN
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where LWR is the original NCAR CAM LWR,  LWRj
NN is a 

NN emulation number j of the original NCAR CAM LWR, 
and εj is an emulation error for the NN emulation number j.  
Thus, the model physics that includes LWR NN emulation, 
LWRj

NN, can be considered as perturbed versions of model 
physics, Pj.   

There are many different approaches to creating different 
NN emulations of the same original parameterization (or NN 
emulation ensemble) [19] (Krasnopolsky 2007b).  We have 
selected a sufficiently diverse group of six NN emulations 
mixing two different approaches to create an NN emulation 
ensemble.  Five of these six ensemble members (NN 
emulations or realizations of LWR) have the same 
architecture, that is the same number of neurons (k = 150 in 
eq. (6)).  However, these NNs are different because: 



 

different initializations for the NN weights have been used to 
start the NN training; and the NNs have different weights 
(coefficients) and give slightly different approximations of 
LWR (i.e. realizations of LWR).  The sixth NN emulation 
ensemble member has a different architecture (k = 90 
neurons).  In terms of the accuracy of the approximation 
there is a significant spread between the ensemble members.  
The approximation rms error varies from 0.28 to 0.40 K/day 
for the ensemble member NN emulations.  It means that by 
using NN emulations instead of the original LWR 
parameterization, we introduced on average such a level of 
perturbation into the LWR model physics.   

The distribution of approximation errors (perturbations) is 
shown in Fig. 3.   It is obviously not normal.  For the normal 
distribution with the same mean value and standard 
deviation, the perturbation values would be very limited; 
however, because the distribution of εj is not normal, there is 
a small but final probability of larger perturbations.  If we 
compare this perturbations with mean value, µ and standard 
deviation, σ, of LWR itself (µ = -1.4 K/day and σ = 1.9 
K/day), we will see that the majority of perturbations belong 
to the interval µ ± σ; however, a very small amount of 
perturbations reaches the magnitude of about µ ± 3σ.  Such a 
distribution of perturbations is in a good agreement with the 
fact that the parameterizations of model physics on average 
describe the parametrized processes good enough and the 
level of errors introduced due to parameterization of sub-
grid effects is rather moderate; however, in some cases (e.g., 
rare or extreme events) the errors may be very significant.      
 

 
Fig. 3.  Probability density function for εj.  Mean εj = 3. 10-4 K/day and 
standard deviation of εj is 0.35 K/day.  Dashed line shows a normal 
distribution with the same mean and standard deviation for comparison. 
 

In the case of CAM LWR the NN emulations are about n 
= 100 times faster than the original LWR parameterization.  
Since calculation of the original CAM LWR takes about 
30% of the model integration time T (m =3 in eqs. (3), (4), 
(8), and (9)), using LWR NN emulations in PICE and PPE 
speeds up calculations about 30%, reducing the time 
required for calculating CAM LWR n · m times.  For 
SHPPE the use of NN emulations provides a much more 
significant speed up of calculations.  Just as an example, a 

STPPE with N = 100 ensemble members (eq. (8)) runs as 
fast as a single ensemble member of PICE or PPE (eq. (4)).   

Also, to run a PICE that is used for comparison purposes, 
we created six perturbed initial conditions members by 
perturbing original initial conditions used for the control run.  
Then we performed a PICE run (see Fig. 1); six climate 
simulations have been run with NCAR CAM for 15 years, 
each with one of these six perturbed initial conditions.  Next 
we performed a LTPPE run (see Fig. 1); six climate 
simulations have been run with NCAR CAM for 15 years, 
each with one of the aforementioned six NN emulations 
(also used as the NN ensemble members for STPPE).  The 
results (climate fields and diagnostics) of each simulation 
(ensemble member) were compared with the control climate 
run of NCAR CAM performed with the original LWR and 
original initial conditions. The climate simulation errors - 
systematic (bias), rmse, maximum (an extreme positive 
outlier), and minimum (an extreme negative outlier) - have 
been calculated for prognostic and diagnostic fields for each 
ensemble member vs. the control climate.  These errors are 
shown by open circles (for PICE) and asterisks (for LTPPE) 
at Figs. 4 -6. Then the PICE and LTPPE averages were 
calculated (shown by filled circles and crosses respectively 
at Figs. 4 -6).   

Next, one STPPE climate run has been performed. For 
this run, six aforementioned NN emulations were applied 
and the LWR outputs are calculated as the mean of these six 
NN emulation outputs, at each time step and at each grid 
point throughout the entire model integration.  The results 
(mean climate and diagnostics) of these simulations (the 
SLPPE average/mean) are compared with those of the 
control run and shown by diamonds at Figs. 4 -9.  

 

 
Fig. 4.  Mean error (bias) and RMSE for the winter DJF (December through 
February) surface net LWR flux (FLNS).  Diamonds show PICE members, 
thick large diamond – PICE average; crosses show LTPPE members, thick 
large cross – LTPPE average; thick large star shows STPPE value. 
 
 



 

 
Fig. 5.  Min and max errors for FLNS climate.  Symbols as in Fig. 4. 
 

Figs. 4 and 5 show the winter DJF (December through 
February) surface net LWR flux (FLNS) errors, in W/m², as 
deviations from the control climate.  It is noteworthy that 
min and max errors shown in the right panel of this and the 
following figures are extreme outliers obtained for the entire 
15 years of the model integration.  Similarly, Figs. 6 and 7 
show the major LWR characteristics, the DJF TOM (top of 
the model) net LWR flux (FLNT) errors as deviations from 
the control climate (in W/m²). 
 

 
Fig. 6.  Mean error (bias) and RMSE for the winter DJF (December through 
February) top of the model net LWR flux (FLNT).  Symbols as in Fig. 4. 
 
Figs. 8 and 9 show errors for DJF pressure at the surface 
level (PSL) as deviations from the control (in hPa).  

The results presented in Figs. 4-9 clearly demonstrate that 
all three considered ensemble approaches give similar results 
in terms of improvement of the accuracy of climate 
simulations.  Also they show that LTPPE generates a 
significantly larger spread of the ensemble members that 
PICE with random perturbation of initial conditions. 

 

 
Fig. 7.  Min and max errors for FLNT climate.  Symbols as in Fig. 4. 
 

  
Fig. 8.  Mean error (bias) and RMSE for the pressure at the surface level 
(PSL).  Symbols as in Fig. 4. 

V. CONCLUSIONS AND DISCUSSION 
In this study we introduced a NN emulation technique as a 

tool for creating perturbed model physics for using in 
perturbed physics ensembles.  We also introduced a new sort 
term perturbed physics ensemble (STPPE) approach.  It is 
shown that the neural network emulation technique allows 
us: (1) to introduce fast versions of model physics (or 
components of model physics) that can speed up calculations 
of any type of ensemble up to 2 -3 times; (2) to conveniently 
an naturally introduce perturbations in the model physics (or 
a component of model physics) and to develop a fast 
versions of perturbed model physics (or fast perturbed 
components of model physics), and (3) to make the 
computation time for the entire ensemble (in the case of 
short term perturbed physics ensemble introduced in this 
paper) comparable with the computation time for one single 
model run. 



 

 
Fig. 7.  Min and max errors for PSL climate.  Symbols as in Fig. 4. 
 

Preliminary results presented here show that all three 
ensemble approaches, the perturbed initial conditions 
ensemble (PICE), the long term perturbed physics ensemble 
(LTPPE), and STPPE, give similar results: the use of any of 
these ensembles in the climate simulation significantly 
reduces the systematic error (bias); it also reduces the 
random error making it close to that of the best individual 
ensemble member.  The same is true for the extreme (min 
and max) errors.   

All three considered ensembles demonstrate similar 
improvements of the climate simulation accuracy.  Using 
NN emulations of model physics significantly improves the 
computational performance of any of investigated ensemble 
techniques.  However, it is important to emphasize that 
STPPE is significantly faster than PICE and LTPPE.  It is 2 
N times (12 times for the case of N = 6 ensemble members 
considered in our study) faster than PICE and N times (6 
times in our study) faster than LTPPE.  Also, our results 
indicate that LTPPE using NN perturbed physics provides a 
significantly larger spread of ensemble members than PICE 
with randomly perturbed initial conditions.   

This study is actually a pilot study that introduces and 
preliminary evaluates NNs as a tool for perturbing model 
physics and for using it in perturbed physics ensembles.  
This study also introduces STPPE as a new kind of ensemble 
approach.  Some additional issues should be (and will be) 
investigated to obtain a more complete picture of advantages 
and limitations of using this approach: 

• In this work we evaluated aforementioned 
ensemble techniques using the basic statistical 
metrics like bias, rmse, min and max errors.  
Various statistical metrics specifically designed for 
evaluation of ensemble prediction systems (EPS) 
[1,2] should be applied to perform enhanced 
quantitative comparison between PICE, LTPPE, 
and STPPE. 

• It was shown that the perturbation εj introduced by 
NN emulation technique can be controlled and 
changed not only in terms of its value but also in 

terms of its statistical properties.  A broader sample 
of NN emulations with a broader spread of error 
statistics should be considered and evaluated. 

• In this study we used an unperturbed NCAR CAM 
run with the original parameterizations of physics 
as a control run or “synthetic observations”.  
Similar evaluation should be performed with real 
observations. 

• A climate model, NCAR CAM, was used to 
evaluate aforementioned ensemble techniques in 
climate simulation environment.  Similar evaluation 
should be performed in the framework of a 
numerical weather prediction EPS to evaluate these 
techniques for their advantages for the weather 
prediction. 

• More realistic perturbation technique like used in 
[1,2] should be applied to create PICE for 
comparison with LTPPE and STPPE.   

• Some parts of the climate/weather numerical model 
like convection physics, or full physics (containing 
boundary layer, land, and ice models), or model 
chemistry are not so well defined as the model 
radiation that we perturbed in this study; they 
introduce larger uncertainties in model calculations.  
These components may be even better candidates 
for perturbing them using the NN emulation 
technique.  
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