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INFINITE ELEMENTS FOR WATER WAVE RADIATION
AND SCATTERING*

H. S. CHEN
NOAA/NWS/NMC, Ocean Products Center, 5200 Auth Road, Washington, DC 20233, U S.A.

SUMMARY

The infinite element method is employed to approximate the solutions of Webs?er’s hon} equation and

elth f"s equation for water wave radiation and scattering in an unbounded domain. Functionals based on
I;e:ﬁr:;t variational principle are presented. Two new infinite elements, which exactly satisfy the one- and
' o-dimensional Sommerfeld radiation condition, are presented; the simple shape functions are constructed
:’: the basis of the asymptotic behaviour of the scattered wave at infinity. All the integrals in the functi.onals
involving each infinite element are integrated analytical!y and, as a result, no nqmerical ir'ltegratlon is
required. The programming requirements and computational efficiency are essentially no different than
those of the conventional finite elemegt methoq. For the test cases presented, the numerical results are
acceptably accurate when compared with the existing solutions and laboratory data.

xey worDs Infinite element Unbounded domain Radiation condition Wave radiation Scattering

INTRODUCTION

The boundary value problem associated with water wave radiation and scattering of coastal or
offshore water is usually formulated in an unbounded domain, because the Sommerfeld radiation
condition must be imposed at infinity or at least at large distances from the origins of the
generating or scattering mechanism. This unbounded domain generally poses a difficulty in the
conventional finite element or finite difference analysis of the problem: it requires an unacceptably
large computational domain; moreover, the accuracy of the numerical solution is not warranted
because the solution is often affected by the location of the open boundaries where the domain is
artificially truncated for computational convenience.

In finite element analysis, despite the success of using the hybrid element method ( HEM)! -6
and the infinite element method (IEM)7~!2 in dealing with this unbounded domain problem,
both methods are complex in the programming and computation, which in turn may limit the
methods only to certain applications. HEM requires that an analytic solution, which allows
un}mpwn coefficients, be obtained in the far region and a functional based on the first variational
principle be constructed in the near region. In addition, the method tends to destroy the sparsity
of the matrices used in the conventional finite element method and increases the programming
and computational burden. On the other hand, while IEM preserves the same programming
effort and computational efficiency as that of the conventional finite element method, the use of

e
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correct shape and mapping functions and simple numerical integration remaing to be exploreq
further.

In this paper a one- and a two-dimensional boundary value problem for water Wave radiatiop
and scattering in an unbounded water domain are formulated. The governing equationg are
Webster’s horn equation for the one-dimensional problem and Berkhoff’s equation for the two.
dimensional problem. IEM is employed for solutions. The functionals, based op the firgg
variational principle, are presented. In IEM we use conventional finite elements in the near regiop
and a new type of infinite elements in the far region to approximate the solution, Two kinds of
infinite elements, which exactly satisfy the one-dimensional and two-dimensional Sommerfeld
radiation condition respectively, are presented. The attractive features of these infinite elemens
are: the shape and mapping functions are simple; all the integrals involving the infinite elements
can be integrated analytically; and no numerical integration is required. These features result in
simple programming and efficient computation. Applications are initially shown for the one-
dimensional boundary value problem, followed by the two-dimensional boundary value problem.

FORMULATION AND CALCULATION

In linear wave theory, if a wave varies with time as e ~i*", the wave motion can be characterized by

the function ¢(x)e~'“, where ¢ is the velocity potential, which is a complex function of x, x

represents the spatial co-ordinates and ¢ denotes time. Also, i=\/ (—1), o is the wave radian
frequency, k is the wave number, h(x) is the water depth and g is the gravitational acceleration.
Then the dispersion relation is w?= gk tanh kh, the phase velocity is c=w/k and the group
velocity is ¢, =dw/ok.

One-dimensional boundary value problem

The velocity potential in a channel of variable width b is given as a solution of

d do 24 (1)
& Abcc, O +beccgk? ¢ =0.
Here 1 is the friction factor,’
- ip, 9o iy ! @
l_(l+hsinhkhe ) ’

where f is the friction coefficient, 7 is the phase difference and a, is the incident wave a{an“dc‘
Equation (1) can be readily obtained by laterally integrating Berkhoff’s equation (17) given latef
in the two-dimensional problem. In general, A is a complex function; its imaginary part caus:s
wave damping and is a small positive value in most cases, If there is no friction, i.e. 4=1, th.en.( )
reduces to Webster’s horn equation. Without loss of generality we consider a channel conSli;l_:g
of a straight channel of constant width bo and a channel of fan shape as shown in Figure I(a) .

governing equation is Webster’s horn equation with h=constant (hence c and c, are constantsy

d¢ (&)

ib +bk?¢=0.

dx = dx
ator
The boundary condition at the left-hand end of the channel is specified as a wave gener:
such that

d¢ gka, @
—= ,» x=0.
dx o
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Figure 1. (a) Definition sketch and (b) network of finite and infinite elements of a one-dimensional channel

The Sommerfeld radiation condition is imposed at the right-hand end (at infinity) of the
channel:

hjg) Jx(:-x-ik)¢=o. (5)

This condition requires ¢ ~x~1/2e** at x—» 0.
The analytical solution of the boundary value problem can be obtained to be

cos k(x_xo)H?(kro)-}-Si.n k(x—Xo)Hi)(kTo) if OSXSXO R
b cos kxo Hy(kro) + sin kxo Hy(kro) (6)
iao HO(kr)

cos kxo Hy(kro)+sin kxq Ho(kry)

if xo<x,

i Where H

o »(*) and H;(-) are Hankel functions of the first kind and their derivatives respectively, x,
e le

ngth of the straight channel, 8 is the angle of the fan channel, r,=b,/0 and

by

6

r=—-+Xx—Xg. ™



558 H. S. CHEN

Also,

be by, 0<x<x,,
rf, xp<x<oo. ®)

Later, equation (6) is used for comparison with the infinite element solution.

Infinite element solution. The variational principle for the boundary value problem requires
that the following functional, I1,, be stationary with respect to an arbitrary first variation of é.
The functional is given as

1> (d¢\? 1 (= ka
I, (¢)= —3 fo b(ﬁ%) dx+§fo bk2¢2dx—|:gw—° b¢]x=o+% [ikbg?], - . ©)
The integrals in (9) involve integration over an infinite line domain, which makes the
conventional finite element discretization and solution invalid. In this example IEM is employed
to obtain the solution; we use the two-node linear elements in the near region, i.e. in the region
from the wave generator to some distance beyond the end of the straight channel, and one one.
node infinite element in the far region (Figure 1(b)). Since the two-node linear element has been

extensively described by Zienkiewicz!3 and others, only the one-node infinite element is sub-
y y y il

sequently described.

Infinite element. Inspired by the asymptotic requirement of the solution at x— o0, equation (5)
(also the asymptotic form of the Hankel function at kr— oo for (6)), we construct the one-node
infinite element specified by the following shape function:

N,1=\/('r~‘)exp[ik(r—rl)], 0<r, <r<oo, (10)

where r is the local co-ordinate with the origin O’ at the origin of the fan channel as shown in
Figure 1(a); the relation between x and r is given by (7). In this case r, divides the near and the.far
region; the location of r, is chosen for computational convenience but can be at any location
beyond the generating and scattering sources. The velocity potential of the infinite element is then
approximated by

¢=er¢la (“)

where ¢, is the nodal velocity potential to be solved. Also, N,, =1 (hence ¢ =¢,) at node r=r
which is a required nodal condition for the shape function; ¢ also exactly satisfies (5)-

Discretization and calculation. Next, the entire domain is discretized into the two-node llnC{lf
elements in the near region and one one-node infinite element in the far region as shown ;;‘
Figure 1(b). The calculation of the element stiffness matrices for the two-node linear elemcl.ll;
the near region is no different than the conventional finite element method, which is not l:urnls %
here. The calculation of the element stiffness matrices for the one-node infinite element in the
region is carried out for the first two integrals of (9) from x=x, to co:

1 (d)? Lo, (=f 1 .\*
= bl = - 2ik(r—r,)]dr
ZL, b(dx) dx 26r1¢1“l ( 2r+1k> exp[2ik(r—r4)]

12
= —3{ Y[1+e"E,(¥)]+1}64%, o

2), 2

r

{ fo ) o _ L vaz (13
7| bk ¢*dx=2k’r 067 | exp[2ik(r—r,)]dr=—4 Y041,

e b

i_
t
i
t
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= _ 2ikr,. In obtaining (12) and (13) we have invoked (7), (8), (10) and (11) and used the

where Y—exponential integral functions and their recurrence relations:'*

fouowing 0 o= 2t
E"(z)=f et" dt (1=0,1,2,3,...;Rez>0), (14)
1
Eqo(2)= -e; , (15)
Eyni@=1 e~ 2E,@)] (=1,23,..) (16)

Clearly, all the integrals involving t.he infinite ele'men_t are int_egrated analytica.llly in terms of the
nential integral functions involving no numerical integration. The subroutine CEXPLI from
c; NSWC library'® is used to calculate the exponential integral functions. Procedures to
;s:cmble the element matrices are sFraightforward,.similar to .those of tl3e conver'xtional finite
clement method. The numerical. solution is then pbtamed by ta}klng I, stationary with respect to
cach nodal ¢, followed by solvm_g a set of the s:multane.ous lipear equations. me? tha't the la§t
term in (9) is immaterial because it vanishes as x— o0 owing to the existence of friction (if there is
no friction, take x— 00 before letting A— 1) and thus is never calculated.
The numerical results of the absolute and real values of ¢ for kx,=125n are shown
in Figures (22) and 2(b). The absolute difference between the numerical results and the exact
solution (6) is less than 0-001.

Two-dimensional boundary value problem

The two-dimensional boundary value problem of water wave scattering by the presence of solid
boundaries of arbitrary geometry and variable depth, as shown in Figure 3, has been formulated
by Chen® and others. The governing equation is

0 dp 0 o

—_— —_— —_— —_— 2 =
Em Accy e +6y Acecg 2y +cc k* ¢ =0. (17)

Along the solid wall the following absorbent boundary condition is adopted:

) 1K,
——ad)—O, a—lkrl(r,

an (18)

where n is the unit normal vector outward from the water domain and K, is the reflection
coefficient of the wall.

Now let ¢, be the velocity potential of the scattered wave, which must satisfy (17) and be an
outgoing wave at infinity. It is the total wave ¢ less the incident wave ¢, i.e.

bs=9—o. (19)

In .the far region the Sommerfeld radiation condition is imposed at infinity to ensure a unique
solution. We consider both the one- and two-dimensional Sommerfeld radiation condition® in
“}ls problem; the one-dimensional Sommerfeld radiation condition applies to a channel (canal or
fiver) and the two-dimensional one to an open coast/offshore water. The one-dimensional
Sommerfeld radiation condition is

.k

. d
xl’l—?:o <§_171)¢s=0’ (20)
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Figure 2. Comparison of (a) the absolute value of the velocity potential, | ¢, and (b) the real part of the velocity
Re{¢} for kxy=125m —, analytical solution; & O O, IEM solution
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Figure 3. Definition sketch of the two-dimensional boundary value problem

where (x, y') are the local Cartesian co-ordinates as shown in Figure 4(a). This condition requires
¢.~exp[i(k/\/ A)x'] at x'—c0. The two-dimensional Sommerfeld radiation condition is

. o . k
'llnl \/r(_a;_lw)¢s_0’ (21)
where (, 6) are the local polar co-ordinates as shown in Figure 4(b). This condition requires
¢-“’(1/\/ nexp[i(k /\/ A)r] at r—co. Note that the expressions in parentheses for (20) and (21) are

0( ll!e same form as (5) and are those usually used in most water wave problems, except for the
friction factor 2.

Infinite element solution. Extension of IEM, used in the one-dimensional boundary value
::‘::hm, to .the_ twp-dimensional boundary value problem presents no conceptual difficulties. The
far l‘t'i0mam is divided into three regions as illustrated in Figure 3: A is the near reion; R, is the

Tegion of the one-dimensional Sommerfeld radiation condition; and R, is the far region of the



562 H.S. CHEN

(r‘, 02)

(b)

Figure 4. (a) Infinite element for the one-dimensional Sommerfeld radiation condition in R, and (b) infinite element for
the two-dimensional Sommerfeld radiation condition in R,

two-dimensional Sommerfeld radiation condition. In F igure 3 the lines A separate A and
R, UR,; and their locations are chosen anywhere beyond the scattering origins; the lines 6B. are
wall boundaries in the near region; the lines 9B, , (=1, 2) are wall boundaries in the far reglons
R;; and the lines R are at infinity. The functional I , for the boundary value problem using IEM
for a solution is constructed as follows:

1
I, == [Accg(Vo)* —cc k*$21dA L ahcc,@*dL
2Ja 2 )
d
+1 [Acc,(Vé, )2 —cek?¢21dA— | cc,d, 2oL @
2 RiUR> A anA
1 1 k
- odec, 2 dL—= f i cc 2 dL,
2 .LB,,uaB,, : 2 Jor,uer, 71 o J
where d4 and d are the area and line differential operators respectively and n, is the unit n:e:man
vector outwards from region A. Again, the integrals involving regions R, and R, are oli 4.1n

infinite domain, making direct application of the conventional finite element method ;?\:Z-n
IEM we use three-node triangular linear elements in the near region and a new type © o been
infinite elements in the far region as approximations. The three-node linear element has
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ively described°13 thus only the two two-node infinite elements for R, and R, are described
ensively &€ ;
ie: tthe following section.

ite elements. In R, the infinite element of semi-infinite rectangular shape as shown in

'In "'4(3) s used; the element domain is 0< x' < o0 and y; <y’ <y%. On the basis the asymptotic

Fl%,m;our of ¢ at x' -0 We construct the two-node infinite element specified by the following
peha

shape functions:

1 1
y2—y
Nypyy =>2—+ N, Nyyp,=2—

7 x's (23)
y2—Y1 2=V

where

k
= i ! <x'< o0, 24
N, exp(ly—lx ), 0<x (24)

and (x> y') are the local Cartesian co-ordinates as shown in Figure 4(a). The shape functions
satisfy the nodal condition: N,..,,1=1 an_d Ny 2.=0 at ©, y1) .Nx,y,.1=0.and Nyya=1 at
(0,y3)- The (scattered wave) velocity potential of the infinite element is written in terms of the two
m')dal velocity potentials ¢,; and ¢, as follows:

¢s=Nx’y'1¢sl +Nx’y'2¢52’ 0<x'< o0, y'l S}"SY'z (25)

Clearly ¢, of (25) exactly satisfies (20).

In R, the infinite element of the shape of a sector outside a circle as shown in Figure 4(b) is
used; the element domain is 0 <r; <r< oo and 0, <0<8,. The corresponding shape functions are
02 - 0 0 - 6 1

N, N

" 0,0,

“5,-0,

er ’ (26)

where

N'1=\/(%)exp(i7kz(r—rl)>, O<r;<r<ow, 27

and (r, 0) are the local polar co-ordinates; r, is the radius of dA as shown in Figure 4(b). The shape
functions satisfy (21) as well as the nodal condition. The (scattered wave) velocity potential of the
infinite element is written as follows:

¢s=Nr01¢sl+Nr92¢sz’ 0<r1<r<oo, 61S6<62 (28)

In the evaluation of IT,, analogous to the one-dimensional boundary value problem, the
calculation of the integrals over each element in the near region poses no difficulty; it is carried
out using the same procedures of the conventional finite element method, procedures which we do
not expound upon in this paper. In the far regions R, and R,, by choosing (25) or (28) for each
type of the infinite elements and invoking (14) through (16), the third, fourth and fifth integrals in
(22) are integrated respectively as follows. In region R, the third integral becomes

1 92 oo
> J J , Accg(wss)zrdrde%{da}(xcc,)[fl’ Z]{@}T, (29)

8, r

L [ e0? 1 1 21
—5_[ jn El_g)_ ¢? rdrd6=§ {d’s}ﬁ.(lcchX) l:l 2:| {6,)7, (30)

6,
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where {@,} is the array of the nodal (scattered wave) velocity potential of the infinite element g q
the superscript T is the transpose of the array, such that

?,
{¢s} = {¢sls ¢52}’ {¢5}T={¢s: } (n
Also,
A ' 1
=15 {1+ X[+ Ex(X)]} +5 [1- X e*E, (X)), (3
A 1
=57 {1+ X[1+E,(X)]} -4 [1-X e*E,(X)] (3
and X
A=6,—9,, X=—ﬁvqn. (34

The fourth and fifth integrals are

o2 0% d¢o rAafl
——J‘ol (}.CCBF"— ¢s>’=n rl dO—{(ﬁs}(—XCC,F e T 1 ’ (”} 1
1= '
-3 Jl (2Aecg92)g on a8, dr=4[—adcc,r, €*E (X)) ¢2 ]y on 3By, (%)
In region R, the integrations for the third, fourth and fifth integrals are
P ace v avay =2 gvee)[ 2 7 s o
205 e T 2B g [P
1% (*ew? , ., 1 1 A2 1 T o1
_EJ‘ny‘o o s dx'dy —5{4’;}%(100;)()[1 2]{4’;} , i
¥z ¢, , ¢, A1 o
-J () or-wa(-eadt) {1 |
1 (= 2 , 1 —adecc A, (@
3 L (adecy 6y on om,, 9% =3 <T & )y’ .
where we define £
’—£+i '_X_L (‘”
P=evxr  1TTuTx -
and
.k @
AI= J — 7 I_____ — I.
Y2—V1, X 217IA

Therefore all integrals for each infinite element now are integrated analytically with ',‘j ;
given in terms of the exponential integral function E,(-); again, no numerical integrat
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Figure 5. Network of finite and infinite elements for a circular cylinder

required. The last integral of IT, is immaterial for the same reason given in the one-dimensional
boundary value problem. In performing the variational procedures to obtain the solution, we
have used (19) and 6¢,=6S¢ on OA (4 is the variational operator), i.e. ¢, =0 since the incident
wave is a given function. Now, for a given incident wave ¢, and d¢,/on on dA, an efficient

solution is then obtained through the same procedure as that of the conventional finite element
method.

Examples. Numerical results are shown for two cases: one for a vertical circular cylinder and
!he other for a rectangular harbour. For the former case the network of finite and infinite elements
1 shown in Figure 5. In the calculation a plane incident wave train is given as

b0 = —220 exp[ikr cos (69— o)1, G
Where 0, is the incident wave angle. We also assume that there is no friction (A= 1) and a perfectly

:il]egting_ wall (K, =1). The absolute difference between the numerical results and the analytical
Ution is less than 003 as indicated in Figure 6. For the latter case the network of finite and
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Figure 6. Comparison of analytical and IEM results for a circular cylinder
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Figure 7. Network of finite and infinite elements for a rectangular harbour; b=6-04 cm, /=31-11 cm, water depth
h=2572cm
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Figure 8. Comparison of the amplification factor |¢|/2a, at the centre of the back wall of the harbour

results,»* except near the resonance peaks where the difference in peak value and phase s
discernible, as also indicated in Figure 8.

CONCLUSIONS

The mathematical formulations of the one- and two-dimensional boundary value problems f°f
water wave radiation and scattering in an unbounded domain are presented, along with theif
functionals. The functionals are constructed assuming that IEM is used to obtain a solution: The
two new infinite elements are constructed on the basis of the asymptotic behaviour of the
scattered waves at infinity. The shape functions are simple and satisfy the nodal condition as ¥
as the Sommerfeld radiation condition. The integrals of the functionals for the infinite elemc.llls
are integrated analytically without the need to employ numerical integration. The progfamm'ns
and computational efforts are similar to those of the conventional finite element method. FOB §
test cases presented the numerical results are acceptably accurate when compared with the d8
and exact solutions,
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