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ABSTRACT

An approach to calculating model physics using neural network emulations, previously proposed and
developed by the authors, has been implemented in this study for both longwave and shortwave radiation
parameterizations, or to the full model radiation, the most time-consuming component of model physics.
The developed highly accurate neural network emulations of the NCAR Community Atmospheric Model
(CAM) longwave and shortwave radiation parameterizations are 150 and 20 times as fast as the original/
control longwave and shortwave radiation parameterizations, respectively. The full neural network model
radiation was used for a decadal climate model simulation with the NCAR CAM. A detailed comparison
of parallel decadal climate simulations performed with the original NCAR model radiation parameteriza-
tions and with their neural network emulations is presented. Almost identical results have been obtained for
the parallel decadal simulations. This opens the opportunity of using efficient neural network emulations for
the full model radiation for decadal and longer climate simulations as well as for weather prediction.

1. Introduction

One of the main problems in development and
implementation of state-of-the-art numerical climate
and weather prediction models is the complexity of
physical processes involved. Some of the model physics
parameterizations, such as radiation, are time consum-
ing even for most powerful modern supercomputers,
and because of that are calculated less frequently than
other model physics components and model dynamics.
This may negatively affect the accuracy of a model’s
physics calculation and its temporal consistency, which
may, in turn, reduce the accuracy of climate simulations
and weather predictions.

The calculation of model physics in the general cir-
culation model (GCM) used in this study, the National
Center for Atmospheric Research (NCAR) Commu-
nity Atmospheric Model (CAM), with the T42 (�3°)
horizontal resolution and 26 vertical levels (T42L26),
takes about 70% of the total model computations. Evi-
dently, this percentage is model dependent but full
model radiation is the most time-consuming component
of GCMs (e.g., Morcrette et al. 2007a,b). Such a situa-
tion is an important motivation for looking for new
alternative numerical algorithms that provide faster cal-
culations of model physics—in particular, of model ra-
diation—while carefully preserving their accuracy. We
used the NCAR CAM with the climatological sea sur-
face temperature forcing for the study as a test bed
available to the community for experimentation. It is
noteworthy that currently we are developing NN emu-
lations for radiation for a coupled ocean–atmosphere
model, namely for the National Centers for Environ-
mental Prediction (NCEP) Climate Forecasting System
(CFS) model. The preliminary results discussed in
Krasnopolsky et al. (2008a) show that neural network
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(NN) emulations for radiation produce positive results
for the coupled model, comparable with those pre-
sented here for CAM forced by climatological SST.

During the last decade new emerging NN techniques
have found a variety of applications in different fields
and, more specifically, to accurate and fast modeling of
atmospheric radiative processes (Krasnopolsky 1997;
Chevallier et al. 1998) and for satellite retrieval proce-
dures (e.g., Krasnopolsky 1997; Krasnopolsky and
Schiller 2003). The NN techniques have been success-
fully applied to development of a new longwave ra-
diation parameterization (“NeuroFlux”) for the Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF) model (Chevallier et al. 1998, 2000). Neu-
roFlux, which is 8 times as fast as the previous param-
eterization, consists of a battery of about 40 neural net-
works. NeuroFlux has been used operationally within
the ECMWF four-dimensional variational data assimi-
lation (4DVAR) system since October 2003.

A new approach based on the application of a statis-
tical learning technique—NNs—to emulation of model
physics parameterizations has been introduced to ocean
models (Krasnopolsky et al. 2002) and recently applied
by the authors to the NCAR CAM2 (version 2) atmo-
spheric physics parameterizations (Krasnopolsky et al.
2005). A new type of GCM, the hybrid GCM (HGCM),
has also been introduced (Krasnopolsky and Fox-
Rabinovitz 2006a,b). HGCM is based on a synergetic
combination of statistical learning and deterministic
model components. The approach uses a particular
kind of statistical or machine learning technique, NNs,
for accurate and fast emulation of model physics
components. The term “emulation” means a complete,
accurate, and robust functional imitation of the input–
output relationship or mapping that exists between in-
put and output vectors of model physics parameteriza-
tions (Krasnopolsky 2007a).

The NN emulations are developed for the existing
(i.e., original) parameterizations of atmospheric phys-
ics. This allows us to preserve the integrity and the level
of sophistication of the state-of-the-art physical param-
eterizations of atmospheric processes. Because of the
capability of modern statistical learning techniques to
provide an unprecedented accuracy for emulations of
complex, multidimensional, and multiscale systems like
model physics, our NN emulations of model physics
parameterizations are practically identical to the origi-
nal physical parameterizations in terms of the func-
tional input–output relationship. They are usually sig-
nificantly (from one to five orders of magnitude) faster
than the original parameterizations (Krasnopolsky et
al. 2002, 2005). In other words, the underlying idea of
the approach is not to develop a new parameterization,

but rather to emulate a parameterization already care-
fully tested and validated by its developers. This is
achieved by using data for NN training simulated by an
atmospheric model run with the original parameteriza-
tion. Using model-simulated data for NN training al-
lows us to achieve an unprecedented accuracy of the
approximation because simulated data are free of the
problems typical for empirical data (a high level of ob-
servational noise, sparse spatial and temporal coverage,
poor representation of extreme events, etc.). The accu-
racy and speedup of NN emulations are always mea-
sured against the original parameterization. The devel-
oped NN emulation has the same inputs and outputs as
the original parameterization, which allows us to use it
as a functional substitute for the original parameteriza-
tion.

The key objective of this study is validating the effi-
ciency of developed NN emulations for the NCAR
CAM full-radiation block in terms of a close similarity
of decadal climate simulations using the original radia-
tion parameterizations (the control simulation) and
their NN emulations (the NN run).

In the study, we apply the NN approach to approxi-
mating both the longwave radiation (LWR) and short-
wave radiation (SWR) parameterizations in the NCAR
CAM [e.g., see the special issue of the Journal of Cli-
mate (1998, Vol. 11, No. 6)]. Calculation of the LWR
and SWR or the full/total model radiation is the most
time-consuming part of the atmospheric physics calcu-
lations. For example, the NCAR CAM T42 total radia-
tion (LWR and SWR) takes �70% of the time required
for calculation of model physics. Because calculation of
model physics takes about 70% of the total model com-
putations, the calculation of T42L26 full radiation takes
�50% of the total model calculation time. A descrip-
tion of NN emulations for LWR in the NCAR CAM
and results of their use in 10-yr climate simulations with
the model are provided in Krasnopolsky et al. (2005).
Also, the NN emulations for LWR and SWR are dis-
cussed in Krasnopolsky and Fox-Rabinovitz (2006a,b).
In this study, we will concentrate on a discussion of the
results of a decadal (50 yr) NCAR CAM climate simu-
lation using NN emulations simultaneously for both
LWR and SWR (i.e., for their combined application as
the full model radiation). The model simulation using
the combined NN emulations is compared with or ac-
tually validated against the control model simulation
using the original LWR and SWR parameterizations.

In section 2, the NN approach and developed NN
emulations for NCAR CAM LWR and SWR are
briefly described in terms of their design, accuracy, and
computational performance. In section 3, the results of
the two parallel decadal model simulations, one using
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the combined LWR and SWR NN emulations for full
model radiation and the other using the original model
radiation (the control) are compared in terms of close-
ness of their spatial and temporal variability character-
istics. Section 4 contains the conclusions.

2. NN emulations for the NCAR CAM radiation

a. Background information on NN emulations for
LWR and SWR

The NN emulations of model physics are based on
the following considerations. Any parameterization of
model physics can be formulated as a continuous or
almost continuous mapping (input vector versus output
vector dependence) and can be symbolically written as

Y � M�X�; X ∈ ℜn, Y ∈ ℜm, �1�

where M denotes the mapping, n is the dimensionality
of the input space (the number of NN inputs), and m is
the dimensionality of the output space (the number of
NN outputs). The NNs (multilayer perceptrons, in our
case) are a generic tool for approximation of such map-
pings (Funahashi 1989; Hornik 1991).

The NN is an analytical approximation that uses a
family of functions like

yq � aq0 � �
j�1

k

aqj��bj0 � �
i�1

n

bjixi�;

q � 1, 2, . . . , m, �2�

where xi and yq are components of the input and output
vectors X and Y, respectively; a and b are fitting pa-
rameters; and �(bj0 � �n

i�1 bjixi) is a “neuron.” The
activation function � is usually a hyperbolic tangent; n
and m are the numbers of inputs and outputs, respec-
tively; and k is the number of neurons in the hidden
layer. Definitions of NN terminology can be found in
many places, for example, in the recent book by Bishop
(2006) and in Krasnopolsky (2007a); however, Eq. (2) is
sufficient to understand the subject of this paper.

The major goals for developing NN emulation for
model physics are to obtain an extremely high accuracy
for NN emulation with practically zero biases or sys-
tematic errors. This is a necessary condition for obtain-

ing nonaccumulating errors during long-term climate
simulations with developed NN emulations. The choice
of an optimal version of NN emulation is based on
accuracy, not on a speedup of computation. All the NN
emulations obtained provide a very significant speedup
anyway. The most efficient and convenient way of de-
veloping NN emulations for model physics components
is to develop a single NN for a model physics param-
eterization. Such an approach has been introduced and
discussed in Krasnopolsky et al. (2005) and Krasnopol-
sky and Fox-Rabinovitz (2006b).

The LWR and SWR parameterizations together
compose the full model radiation. The LWR and SWR
parameterizations or the full model radiation have been
emulated using NNs in the NCAR CAM2. The function
of the radiation (LWR and SWR) parameterizations in
atmospheric GCMs is to calculate radiation fluxes and
heating rates produced by the LWR and SWR atmo-
spheric processes. The complete description of NCAR
CAM atmospheric LWR and SWR parameterizations
is presented by Collins (2001) and Collins et al. (2002).
A very general and schematic outline of these param-
eterizations, illustrating the complexity that makes
them a computational bottleneck in the NCAR CAM
physics, is given in Krasnopolsky and Fox-Rabinovitz
(2006b).

The input vectors for the NCAR CAM2 LWR pa-
rameterization include 10 profiles [i.e., atmospheric
temperature, humidity, ozone, CO2, N2O, CH4, two
CFC mixing ratios (the annual mean atmospheric mole
fractions for the halocarbons), pressure, cloud emissiv-
ity, and cloud cover] and one relevant surface charac-
teristic (i.e., the upward LWR flux at the surface). The
LWR parameterization output vectors consist of the
profile of heating rates (HRs) and several radiation
fluxes, including the outgoing LW radiation flux from
the top layer of the model atmosphere (the outgoing
LWR or OLR).

The NN emulation of the LWR parameterization has
exactly the same inputs [total 220 inputs; n � 220 in Eq.
(1)] and the same outputs [total 33 outputs; m � 33 in
Eq. (1)] as the original LWR parameterization. Kras-
nopolsky et al. (2005) have developed several NNs, all
of which have one hidden layer with from 20 to 300
neurons [k � 20–300 in Eq. (2)]. Varying the number of

TABLE 1. Statistics estimating the accuracy of HRs (K day�1) calculations and computational performance for NCAR CAM2 LWR
and SWR using NN emulation vs the original parameterization.

Bias (K day�1) PRMSE (K day�1) 	PRMSE (K day�1) Performance (times as fast)

LWR NN 50 3.0 
 10�4 0.28 0.20 150
SWR NN 55 �4.0 
 10�3 0.15 0.12 20
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hidden neurons allows us to demonstrate the depen-
dence of the accuracy of approximation on this param-
eter as well as its convergence, and as a result, provide
a sufficient accuracy of approximation for the climate
model.

The input vectors for the SWR parameterization in-
clude 21 vertical profiles (i.e., specific humidity, ozone
concentration, pressure, cloud cover, layer liquid water
path, liquid effective drop size, ice effective drop size,
fractional ice content within cloud, aerosol mass mixing
ratios, etc.), the solar zenith angle, and the surface al-
bedo for four different bands. The SWR parameteriza-
tion output vectors consist of a vertical profile of HRs
and several radiation fluxes. The NN emulations of the

SWR parameterization have 173 inputs and 33 outputs.
We have developed several NNs, all of which have one
hidden layer with from 50 to 200 neurons [k � 50–200
in Eq. (2)].

It is noteworthy that the number of NN inputs is less
than the number of input profiles multiplied by the
number of the vertical layers plus the number of rel-
evant single level characteristics. Many input variables
(e.g., all gases) have zero or constant values for upper
vertical layers. These constant inputs were not used for
NN training to improve the accuracy of the approxima-
tion. Constant inputs (zero or nonzero) do not contrib-
ute to the functional input–output relationship and
should not be used for the development of NN emula-

TABLE 2. Time (40-yr) and global means and their differences for model prognostic and diagnostic fields for the NCAR CAM2
control climate simulation with the original LWR and SWR, and for the parallel simulation with NN emulations for the full radiation
using NN 50 (LWR) and NN 55 (SWR). Sea level pressure (SLP), 2-m temperature (T2M), 200-hPa zonal wind (U-200), total
precipitation rate (TPR), total cloud amount (TCA), high-level cloud amount (HLCA), low-level cloud amount (LLCA), midlevel
cloud amount (MLCA), total gridbox cloud liquid water path (TGCLWP), total gridbox cloud ice water path (TGCIWP), top-of-model
net longwave flux (TOMNLW), top-of-model net shortwave flux (TOMNSW), and top-of-model longwave cloud forcing (TOMLWC).

Field Control NN full radiation Mean diff RMS diff Min diff Max diff

SLP (hPa) 1011.48 1011.50 0.02 0.52 �2.04 1.57
T2M (K) 287.37 287.27 �0.1 0.26 �1.64 0.78
U-200 (m s�1) 16.21 16.29 0.08 0.86 �2.31 3.95
TPR (mm day�1) 2.86 2.89 0.03 0.2 �1.84 1.19
TCA (%) 60.71 61.12 0.41 1.42 �7.50 5.76
HLCA (%) 43.05 43.29 0.24 1.63 �7.52 8.01
LLCA (%) 31.67 31.93 0.26 1.06 �5.20 4.78
MLCA (%) 19.11 19.14 0.03 0.81 �4.86 4.39
TGCLWP (g m�2) 60.23 60.59 0.36 3.02 �19.43 14.95
TGCIWP (g m�2) 8.82 8.83 0.01 0.39 �1.69 1.45
TOMNLW (W m�2) 234.48 234.54 0.06 2.32 �8.37 11.56
TOMNSW (W m�2) 234.91 234.17 �0.74 2.17 �12.44 18.94
TOMLWC (W m�2) 29.33 29.07 �0.26 2.45 �15.59 7.64

TABLE 3. Time (40-yr) and global means for model prognostic and diagnostic fields for the NCAR CAM2 control climate simulation
with the original LWR and SWR, and the simulation with NN emulations for the full radiation using NN 50 (LWR) and NN 55 (SWR),
and their mean (bias), rms, min, and max errors vs observations* or reanalysis. Sea level pressure (SLP), 2-m temperature (T2M),
200-hPa zonal wind (U-200), total precipitation rate (TPR), surface LW downwelling flux (SLWDF), surface SW downwelling flux
(SSWDF), surface net LW flux (SNLWF), surface net SW flux (SNSWF), all fluxes are in watts per meter squared. In each cell two
errors, separated by a slash, are presented: NN full radiation vs observation and control vs observations.

Variable Bias RMS error Min error Max error

SLP (hPa) �0.12/�0.14 3.40/3.55 �29.44/�31.58 8.12/8.02
T2M (K) �0.32/�0.28 3.12/3.11 �26.30/�25.34 24.05/24.33
U-200 (m s�1) 1.01/0.93 4.56/4.73 �11.71/�11.42 15.03/15.36
TPR (mm day�1) 0.16/0.17 1.20/1.15 �5.41/�5.21 6.87/9.02
SLWDF (W m�2) �4.52/�4.66 13.35/12.68 �67.04/�66.72 45.23/43.32
SSWDF (W m�2) 2.04/2.08 18.23/19.03 �53.14/�61.55 72.35/68.77
SNLWF (W m�2) 14.84/14.70 20.61/20.62 �16.89/�15.62 85.23/87.78
SNSWF (W m�2) �0.84/1.80 16.54/16.3 �53.21/�55.7 70.49/71.43

* LW and SW observational data: International Satellite Cloud Climatology Project (ISCCP) (July 1983–December 2000). Other
observational data: sea level pressure (SLP) and U-200: NCEP–National Center for Atmospheric Research (NCAR) reanalysis
(1979–98; Kalnay et al. 1996; Kistler et al. 2001); T2M: Legates and Willmott (1920–80; Legates and Willmott 1990); TPR: Climate
Prediction Center (CPC) Merged Analysis of Precipitation (CMAP; 1979–98; Xie and Arkin 1997).
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tions. Moreover, if they were used, they would intro-
duce an additional noise (an approximation error).

The NCAR CAM2 (T42L26) was run for 2 yr to
generate representative datasets. The representative

dataset adequately samples the atmospheric state vari-
ability. The first year of simulation was divided into two
independent parts, each containing input–output vector
combinations. The first part was used for training and

FIG. 1. Zonal and time mean LWR HRs
(K day�1) for (top left) the NN LWR run
and (top right) the control run, and (bot-
tom) their difference.

FIG. 2. As in Fig. 1, but for the SWR.
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the second for tests (i.e., control of overfitting, control
of NN architecture, etc.). The second year of simulation
was used to create a validation dataset completely in-
dependent of both the training and test datasets. The
third part or the validation set was used for validations
only. All approximation statistics presented in this sec-
tion are calculated using this independent validation
dataset. The accuracy of the NN run (i.e., biases and
rmse) is calculated against the control run.

b. Bulk approximation error statistics

To ensure a high quality of representation of the
LWR and SWR radiation processes, the accuracy of the
NN emulations has been carefully investigated. Our
NN emulations have been validated against the original
NCAR CAM LWR and SWR parameterizations. To
calculate the error statistics presented in Table 1 and
the following figures of this section, the original param-
eterizations and their NN emulations have been calcu-
lated using a validation dataset. Two sets of the corre-

sponding HR profiles have been generated for both
LWR and SWR. Total and level bias (or mean error),
total and level RMSE, profile RMSE or PRMSE, and
	PRMSE have been calculated (Krasnopolsky et al. 2005;
Krasnopolsky and Fox-Rabinovitz 2006a). Some of
these statistics presented in Table 1 have been calcu-
lated as follows. The outputs of the original parameter-
ization and the NN emulations can be represented as
Y(i, j) and YNN(i, j), respectively, where i � (lat, lon),
i � 1, . . . , N is the horizontal location of a vertical
profile, N is the number of horizontal grid points, and
j � 1, . . . , L is the vertical index, where L is the number
of vertical levels.

The mean difference, B (i.e., bias or a systematic
error of approximation), between the original param-
eterization and its NN emulation, is calculated as fol-
lows:

B �
1

NL �
i�1

N

�
j�1

L

�Y�i, j � � YNN�i, j ��. �3�

The root-mean-square error has been calculated for
each ith profile:

prmse�i � ��1
L �

j�1

L

�Y�i, j � � YNN�i, j ��2. �4�

This error can be used to calculate the mean profile
root-mean-square error, PRMSE, and its standard de-
viation, 	PRMSE:

PRMSE �
1
N �

i�1

N

prmse�i � and

�PRMSE �� 1
N � 1 �

i�1

N

�prmse�i � � PRMSE�2. �5�

Table 1 shows bulk validation statistics for the accu-
racy of approximation and computational performance
for the best (in terms of accuracy and performance)
developed NN emulations: NN 50 [k � 50 hidden neu-
rons in Eq. (2)] for the LWR emulation and NN 55
[k � 55 hidden neurons in Eq. (2)] for the SWR emu-
lation.

The error profiles for LWR and SWR are shown in
Fig. 4 of Krasnopolsky (2007a). The NN emulations
developed for LWR and SWR are highly accurate.
They have practically zero bias and a quite small
PRMSE. Zonal mean differences between the NN
emulation and the original parameterization for radia-
tive fluxes at the top of the atmosphere and at the
surface have also been produced. The differences ap-
pear to be uniformly small for all latitudes, mostly
within 0.5 W m�2 and do not exceed 1 W m�2.

FIG. 3. Zonal and time mean 2-m temperature (K) for (top) the
full-radiation NN and control runs and (bottom) their difference.
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The NN emulations using 50 neurons in the hidden
layer provide, if run separately at every model physics
time step (1 h), a speedup of roughly 150 times for
LWR and 20 times for SWR as compared with the
original LWR and SWR, respectively. It is noteworthy
that the main reason for the smaller performance gain
for NN SWR versus NN LWR is that the original CAM
SWR parameterization is simpler and about 10 times
faster than the original CAM LWR.

Using NN emulations simultaneously for LWR and
SWR or for the full model radiation results in an overall
significant, 13-fold acceleration of calculations for the
entire/full model radiation block. It is worth clarifying,
for a better understanding of the overall speedup, that
for the usual control run the original LWR (including
time-consuming optical properties calculations) is cal-
culated less frequently, only every 12 h or twice a day,
and only computationally inexpensive heating rates and
radiative fluxes are calculated every hour. Notice that
all other inputs, including cloud cover, which is repre-
sented by a vertical profile of cloud fraction, are up-
dated hourly. For the model run using NN emulations,
LWR (including both optical properties and heating
rates and radiative fluxes) is calculated more fre-
quently, every hour, consistent with SWR and other
model physics calculations. We also performed an ad-
ditional costly control run with the original LWR cal-
culated every hour, as it is done in the LWR NN run,

for a limited period (10 yr). The results of the two
control runs appeared to be very close. The difference
between them is significantly less than the difference
between each of them and the LWR NN run. Because
of that we decided to validate the 40-yr full-radiation
NN run against the usual control run.

3. Validation of parallel decadal model simulations

The comparisons between diagnostic and prognostic
fields for the relatively short parallel model runs, one
using the original LWR or SWR (the control run) and
the other one using NN emulations for the LWR or
SWR parameterizations, are presented in Krasnopol-
sky et al. (2005) and in Krasnopolsky and Fox-
Rabinovitz (2006a,b). They show that the parallel runs
produce the results that are close to each other. There-
fore, both components of radiation, LWR and SWR,
can be successfully emulated using the NN approach.

These results opened the opportunity to use both NN
emulations, for LWR and SWR (or full model radia-
tion) simultaneously, in a multidecadal simulation using
NCAR CAM (T42L26), the results of which are dis-
cussed below. The results of multidecadal climate simu-
lations performed with NN emulations for both LWR
and SWR (i.e., for the full model radiation) have been
validated against the parallel control NCAR CAM
simulation using the original LWR and SWR. Below we

FIG. 4. Zonal mean vertical distribution of
time mean temperature (K) for (top left)
the full-radiation NN run, (top right) the
control run, and (bottom) their difference or
bias.
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estimate closeness of the results for these parallel 50-yr
climate simulations. Note that the first 10 yr of simula-
tions are not included in the validation to avoid the
impact of spinup effects, so that years 11–50 are used
for the validation. The spinup is done for the original
NCAR CAM; it is not related to the use of NN emu-
lations. We will analyze below the differences between
the parallel runs in terms of time and spatial (global)
means as well as temporal characteristics.

Table 2 presents comparisons between the parallel
control and NN emulation runs in terms of the time (40
yr) and global mean characteristics and the differences
between the results of the parallel runs. Basically, the
differences, in terms of their mean, rms, minimum, and
maximum characteristics, between the parallel runs, are
small. More specifically, there are small mean differ-
ences (bias), 0.02 hPa and �0.1 K, in sea level pressure
and 2-m temperature, respectively, between the NN
and control runs. For these fields, rmse, minimum, and

maximum differences are also small. Other time and
global mean differences presented in Table 2, including
such sensitive fields as total precipitation, total cloud
amount, cloud amounts for high, low, and midlevel
clouds, total gridbox cloud liquid and ice water paths,
top-of-model net longwave flux, top-of-model net
shortwave flux, and cloud forcing, also show a close
similarity, in terms of all presented difference charac-
teristics, between the parallel simulations. These differ-
ences are within typical observational and reanalysis
errors/uncertainties. Note that minimum and maximum
differences in Table 2 (and in Table 3) are not averaged
in space and time but rather are obtained from monthly
mean gridpoint values for the entire 40-yr simulations.

To further analyze the closeness of the parallel con-
trol and NN emulation runs, Table 3 presents their
mean (bias), rms, minimum, and maximum errors (i.e.,
validation results for the runs) versus observations or
reanalysis. Such a validation allows us to verify to what
degree the model simulation with the NN emulations
for full radiation can deviate from the control simula-
tion in terms of model simulation versus observation
errors [i.e., whether the deviation between the runs is
within the general uncertainty (or overall error levels)
for typical decadal model simulations such as those of
the Atmospheric Model Intercomparison Project
(AMIP; Gates et al. 1999)]. Both the prognostic (i.e.,
sea level pressure and zonal wind at 200 hPa) and di-
agnostic (i.e., 2-m temperature, precipitation, long- and
shortwave radiation characteristics) fields presented in
Table 3 show similar errors for the parallel NN and
control runs including sensitive minimum and maxi-
mum errors. The differences between the errors for the
parallel runs are smaller than the errors themselves for
each run. Also, the differences are smaller than those of
typical single or multimodel ensemble integrations
(e.g., Gates et al. 1999). In other words, the differences
between the errors for the parallel runs are well within
the general uncertainty of climate model simulations.

Let us discuss the differences between the parallel
simulations in terms of spatial and temporal character-
istics. Zonal and time mean heating (or cooling) rates
for LWR and SWR are presented in Figs. 1 and 2,
respectively. The HR patterns (the top panels) are very
similar and their differences (the bottom panels) are
small. It confirms that the NN emulations for LWR and
SWR are very close to their original parameterizations
throughout the model simulations. It is noteworthy that
the HR differences in SWR and especially in LWR are
a bit larger near the surface because HRs are larger
there (Figs. 1 and 2). For the zonal means it is not easy
to distinguish between the ocean and land. However,
the differences seem to be larger over the mountainous

FIG. 5. Time mean temperature at 850 hPa (K) for (top) the
full-radiation NN run and (middle) the control run, and (bottom)
their difference.
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Antarctica region (60°–90°S) as well as over the North-
ern Hemisphere midlatitudes where the major moun-
tains are located (such as those in Europe, Asia, and
North America).

Figure 3 shows a very close similarity in zonal and
time mean 2-m temperature for the parallel simulations
(the top panel) where their differences are within the
�0.6- to 0.5-K range (the bottom panel).

The zonal and time mean vertical distributions of
temperature for the parallel runs (Fig. 4) are close to
each other and their difference or mean bias is practi-
cally zero, with minimum and maximal biases within
approximately 2–2.5 K by magnitude. This larger zonal
bias occurs in the stratosphere mostly over the south-
ern polar domain. However, it is comparable with
typical observational and/or reanalysis errors/uncer-
tainties (just as a reference) and also comparable with
the differences between the NCEP and ECMWF re-
analyses.

Close similarities have also been obtained for the

results of parallel runs in terms of time mean spatial
fields such as 850-hPa temperature presented in Fig. 5.
The horizontal fields presented in the top and middle
panels are close to each other. For the difference field
(the bottom panel), bias is very small (�0.06 K), RMSE
is small (0.34 K), and minimum and maximum values
(��1.6 and �0.9 K) are well within observational or
reanalysis errors/uncertainties.

In addition to global distributions such as shown in
Fig. 5 it is important to assess the differences between
the parallel simulations at a local (station) level, an
example of which is presented in Fig. 6. The vertical
distributions of time mean temperature are very close
for both runs at the local level as well.

Now we compare the results of the parallel simula-
tions in terms of temporal characteristics. Figure 7
shows the winter–summer differences for time mean
temperature at 850 hPa. Their patterns are very similar
and the minimum and maximum values are very close.
The global mean time series for monthly mean tem-

FIG. 6. Vertical profile of time mean temperature (K) at the Resolute, Canada, station for
the full-radiation NN run (the dashed line), the control run (the solid line), and observations
(the dotted line): (top left) January, (top right) April, (bottom left) July, and (bottom right)
October.
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perature at 850 hPa presented in Fig. 8 are very similar
throughout the entire decadal simulations for the par-
allel runs, with maximum differences not exceeding
0.3–0.5 K. These maximum differences occur in January
and July and are well below the observation and re-
analysis errors/uncertainties.

The annual cycle for global and time (40 yr) mean
temperature at 850 hPa is presented in Fig. 9. It shows
very small differences between the runs, with the maxi-
mum within 0.2 K for January. The precipitation annual
cycles shown in Fig. 10 are very close for both runs (the
top panels) and their differences or bias (the bottom
panel) is quite small. It is noteworthy that there still is
a coherent signal in Fig. 10; namely, the ITCZ precipi-
tation maximum is slightly stronger in the NN run, and
the subsidence regions north and south of the ITCZ are
slightly drier. These minor features may be related to
the prescribed SSTs (which strongly regulate the tropi-
cal convection) used for model simulations. Close simi-
larity has also been obtained for other model prognos-

tic and diagnostic fields in term of their spatial and
temporal characteristics.

The results obtained confirm the profound similarity
in parallel climate simulations, which justifies the pos-
sibility of using efficient neural network emulations of
full model radiation for decadal and longer climate
simulations as well as for weather prediction models.
The methodology developed can be applied to other
LWR and SWR schemes used in a variety of models,
process studies, and other applications.

4. Conclusions

In this study, we presented an approach based on a
synergetic combination of deterministic modeling
based on physical (i.e., first principle) equations and
statistical learning (i.e., NN emulation) components
within an atmospheric model. The statistical learning
approach was used to develop highly accurate and fast
NN emulations for model physics components. Here we

FIG. 7. Winter–summer difference for time mean temperature at 850 hPa (K) for (top) the
full-radiation NN run and (bottom) the control run.
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presented an NN emulation of the full atmospheric ra-
diation (i.e., for long- and shortwave radiation param-
eterizations used in numerical climate and weather pre-
diction models).

This study has shown the practical possibility of using
highly efficient NN emulations for the full model radia-
tion block for decadal (50 yr) climate simulations. A
high accuracy and increased speed of NN emulations
for the NCAR CAM full radiation (LWR and SWR)
has been achieved. The systematic errors introduced by
NN emulations of full model radiation are very small
and do not accumulate during the decadal model simu-
lation. The random errors of NN emulations are also
small as is shown in section 2. Almost identical results
have been obtained for the parallel 50-yr climate simu-
lations as shown in section 3. These results show the po-
tential of developing efficient NN emulations for model
physics components and the entire model physics.

The NN emulation approach presented here is very
robust. It was applied to both LWR and SWR param-
eterizations in different models with different dynami-
cal cores and with different resolutions. For example, in
addition to the NCAR CAM applications presented
here, this approach was applied to the National Aero-

FIG. 9. Annual cycle for global and time (40 yr) mean tempera-
ture at 850 hPa (K) for the full-radiation NN run (the dashed line)
and the control run (the solid line).

FIG. 8. Global mean time series for monthly mean temperature at 850 hPa (K) for the full-radiation
NN run (the dotted line) and the control run (the solid line).
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nautics and Space Administration’s (NASA’s) Sea-
sonal-to-Interannual Prediction Project (NSIPP) model
and to the NCEP CFS model, using NN emulations of
the LWR parameterizations (Krasnopolsky and Fox-
Rabinovitz 2006a; Krasnopolsky et al. 2008a). In all
these cases, the systematic errors introduced by NN
emulations are negligible and the random errors are
very small, similar to errors presented in this paper. The
computational speedups achieved in all these cases are
also similar (about two orders of magnitude).

Applying the NN emulation approach, which allows
such a significant speedup with preservation of the ac-
curacy and functional integrity of the model physics,
may present some challenges that can be resolved using
the tremendous flexibility of statistical learning tech-
niques and of the NN technique in particular. Because
NN emulations are statistical approximations, there ex-
ists a small probability of larger approximation errors
or outliers. The major reason for larger errors is high
dimensionality n of the input space of the mapping in
(1), which reaches several hundreds for NCAR CAM
and approaches 1000 for models with higher vertical
resolution. It is impossible to sample uniformly a do-

main in such a high-dimensional space. Far corners of
the domain may remain underrepresented in the train-
ing set. During the NN run, if input vectors, which be-
long to these underrepresented far corners, are encoun-
tered, they may cause larger errors in the NN outputs.
These larger errors can be successfully controlled using
a compound parameterization technique with a quality
control procedure for removing larger errors (Krasnop-
olsky 2007a; Krasnopolsky et al. 2008b) or using the NN
ensemble approach with NN emulations (Fox-
Rabinovitz et al. 2006). The compound parameteriza-
tion technique can also be used as a method of enrich-
ing the training dataset by inclusion of underrepre-
sented atmospheric states (Krasnopolsky et al. 2008b).
The NN emulation technique is sensitive to the resolu-
tion of the model used, especially to vertical resolution,
which determines the NN emulation architecture (i.e.,
the number of inputs and outputs). Every time the ver-
tical resolution of the model is changed, the NN emu-
lation needs to be retrained. It is noteworthy that NN
retraining can be done routinely and takes limited time
and effort once the practical framework for a specific
model is developed.

FIG. 10. Annual cycle for precipitation
(mm day�1) for (top left) the full-radiation
NN run, (top right) the control run, and
(bottom) their difference or bias.
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In some applications of the developed NN emulation
(e.g., in a data assimilation system or for an error and
sensitivity analysis) not only the NN emulation but also
its first derivatives (i.e., NN Jacobian) are used. High
accuracy of a NN emulation does not automatically
guarantee the accuracy of the NN Jacobian. An ap-
proach that allows us to calculate accurately the NN
Jacobian was developed by Krasnopolsky (2007b).

As mentioned above, the NN emulations described
in this study have been developed only for the existing
model parameterizations. Extension of the NN ap-
proach to developing new parameterizations goes be-
yond the scope of this study and could be done as a
collaborative effort with parameterization developers
interested in implementation of more sophisticated and
realistic model physics, which are now computationally
prohibitive. Also, it is noteworthy that the NN emula-
tion technique can be applied to accelerate calculations
of the model chemistry.
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