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Abstract

This study represents a second part of a study into the potential of
the Discrete Interaction Approximation (DIA) for nonlinear interactions
in wind waves. After a brief review of the results of the first part of his
study, reasons for instability in the model integration of some DIAs are
assessed, and a phenomenological explanation is given. Effects of sampling
of spectral space are analyzed, and finally, a variety of DIAs is optimized
in the context of full model integration tests. Based on this ‘holistic’ opti-
mization, it is shown that a multiple DTA with a more complex definition
of the quadruplet can indeed lead to much more accurate model integra-
tions, when compared to the results obtained with an ‘exact’ interaction
algorithm. Finally, suggested work for part three of this study is discussed.
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1 Introduction

This study represents the second part of a study into the potential of the Discrete
Interaction Approximation (DIA) for the exact nonlinear interactions in a spectral
wind wave model. For a justification of this study and the for underlaying theory,
reference is made to Tolman (2003, henceforth denoted as Part 1) and to Tolman
(2004). Only a short review of the actual DIA will be presented here in section 2.2.

In Part 1 a review is given of previously suggested versions of the DIA. Fur-
thermore, some new modifications have been suggested. A set of tests was then
performed to determine the critical aspects of the DIA required to give an accu-
rate representation of the exact interactions. It was found that it is essential to
extend the flexibility of the original quadruplet layout, and that optimal results
are found with approximately four representative quadruplets. This method as
identified as the Multiple DIA (MDIA). An alternative method where free pa-
rameters in the DIA are allowed to vary with the spectral frequency f was also
found to show promising results. The latter approach is less accurate, but more
economical. This approach is called the Variable DIA (VDIA).

The study in Part 1 focuses mostly on the representation of the nonlinear in-
teraction source term S, for a given spectrum F'. It is, however, well known that
this source term is very sensitive to details of the spectral shape. Furthermore,
due to the strong nonlinearity, a good representation of an instantaneous source
term is no guarantee that a model based on such a source term results in model
integrations that converge with the corresponding results obtained with the ex-
act interaction. One good example of this is that the original DIA (Hasselmann
et al., 1985) represents the instantaneous interactions poorly, yet results in un-
expectedly good model results with respect to growth behavior in homogeneous
conditions. Conversely the VDIA shows much better representation of instanta-
neous interactions S,; than the DIA, yet (surprisingly) results in unstable model
integration behavior (see Part 1 and the present section 3).

The purpose of the present study is to analyze why the VDIA does not result
in convergent model integration, and, more generally, to assess the convergence
of model integration for different approaches. The layout of this report is as
follows. In section 2, a brief review of relevant aspect of wave models is given,
with an emphasis on the nonlinear interactions and the DIA. Because a detailed
review of the interactions is given in Part 1, only relevant details are presented
here. Because the present study represents a feasibility study, it is sufficient to
address deep water conditions only (as in Part 1). Generalization for application
in arbitrary wave model conditions will be the subject of the third part of this
study.

Section 3 takes off where Part 1 ended; problems with the integration con-
vergence of particularly the VDIA are illustrated and a phenomenological ex-
planation is given for this behavior. Based on these observations, a strategy is



developed for further research. In section 4, the impact of quadruplet layout and
sampling of spectral space is considered. It appears that some quadruplet layouts
are more likely to result in stable model integration. Such quadruplets are con-
structed in Section 5. In Sections 6 and 7 an attempt is made to optimize several
types of DIAs, using time and fetch limited wave growth calculations based on
the exact interactions as a benchmark. The main difference with previous studies
is that the optimization is performed on results of model integration, and is thus
not limited to individual interactions for individual spectra. Finally, a discussion
and conclusions are presented in Section 8.



2 Modeling wind waves

2.1 Wave model equations

The present study focuses on the feasibility of several DIAs to represent wave
growth when implemented in numerical wave models. Being a feasibility study,
it is sufficient to consider idealized conditions of deep water without currents.
In such conditions, the evolution of the spectrum F'(f,#) as a function of the
spectral frequency f and direction € can be written as (e.g., Hasselmann, 1960)

%+cQ.VF(f,9)=Sm(f,e)+Snl(f,9)+5ds(f,0) (21

where the right side of the equation represents the sources and sinks, consisting of
wind input (S;,), nonlinear interactions (Sy;) and dissipation (Sgs) source terms.
In the present study, this equation will be solved using an experimental version
of the WAVEWATCH IIT model (Tolman, 2002b). For the present study, this
model version is identical to the latest release (version 2.22), with the exception
of the necessary modifications to include alternative parameterizations for the
nonlinear interactions S,;. The main attention is focused on the nonlinear in-
teractions, which will be discussed in section 2.2. For input and dissipation the
standard options of this model are used (Tolman and Chalikov, 1996). Because
these are not the subject of interest in the present study, the equations are not re-
produced here. Relevant numerical aspects of this model will be discussed briefly
in section 2.3.

2.2 Nonlinear interactions

For a given wave spectrum F'(f,#), contributions to the nonlinear interaction
source term S,,; occur only for sets of four wave components (quadruplets) with
frequencies o; = 27 f; through o, and corresponding wave number vectors k;
through k, which satisfy the resonance conditions

ki +ky=ks+ky | (2.2)
o1+ 09 :O'3+0'4 . (23)

The calculation of the source term formally requires the evaluation of a six-
dimensional Boltzmann integral, as discussed in Part 1. In the present study
the Webb-Resio-Tracy (WRT) method is used as the benchmark representing
the exact nonlinear interactions (Webb, 1978; Tracy and Resio, 1982; Resio and
Perrie, 1991). Calculations are performed with the portable package developed
by Van Vledder (2002b)*.

I Model version 5.04 used here.



Table 2.1: Quadruplet definitions according to Eqs. (2.2) through (2.4) as
used in this study. k4 represents the discrete spectral wavenumber used
to sample spectral space.
is uniquely defined by kg4 and a, through a,, but varies with them.
DIA according to Hasselmann et al. (1985). VVDIA according to Van
Vledder (2001). The modified definitions (mod) are used in Sections 4

o as in Eq. (2.4). If Af is not given, it

and 5, respectively.
kg o A} a a9 as a4
DIA k1 o1 0 1 1 1+ A 1—A
Part 1 %(kl—i‘kg) %(01+02) 1+M 1—/1, 1+A 1—A
(mod) k, On, I+p 1—p 14X 1—2A
VVDIA k. o1 Af 1 T+ 14N 1N+
(mod) | Eq. (5.3) o A 1+pu 1—p 14X 1-A

In a DIA only a small number of representative quadruplets is considered for
each discrete wavenumber k; in spectral space. Each representative quadruplet
is defined by the above resonance conditions and by

01
)
03
04

02

a0
Qo0
aszo ; (2.4)
a40
0, £ Ad

where a1 + as = ag + a4 to satisfy Eq. (2.3) and where the necessity to explicitly
define Af depends on the actual definition of ¢ and a; through a4, and on the
relation between k; through k4 and k4. The latter relation also defines the actual
sampling of the spectral space by the representative quadruplet. A selection of
practical quadruplets is presented in Table 2.1.

For each representative quadruplet, the contributions 0.5, ; to the source term
are calculated as

0Snin -1
6Snl,2 _ 1 —1
6Snl,3 - 5
6Snl,4
[ FF,
(araz)*

C g *fit x

F; Fy FF, (F, F
S L2 2.5
(a§+a3> <a3a4>4<a%+a3>}’ (2:5)

where (' is a proportionality constant, f; is the frequency corresponding to kg,
and F; = F(f;,0;), with i identifying the four components of the quadruplet. The
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full source term contribution for each representative quadruplet is obtained by
summation the contributions 6.5,,;,; for all discrete spectral grid points (that is,
all ky), as well as for components at higher frequencies with contributions inside
the discrete spectral space. Note that this expression for contributions in the
DIA implies deep water and an exponential frequency grid as described in the
following section. Note, furthermore, that the factor 1/2 is introduced because
the quadruplet definition (2.4) has four solutions, whereas the original quadruplet
definition has only two solutions (see Part 1).

Because the four components of the quadruplet k; generally do not coincide
with the discrete spectral grid, F; is estimated by bi-linear interpolation

4
F; = Zwi,jFi,j , (2.6)
j=1

where j is a counter for the four surrounding spectral grid points, w; ; are the
corresponding bi-linear interpolation coefficients, and F; ; are corresponding dis-
crete spectral energies. Similarly, source term contributions .5, ; do not coincide
with the discrete grid, and are distributed consistently with (2.6)

55nl,i,j = Wi ; 5Snl,i ) (2-7)

where S, ;; are quadruplet contributions at actual discrete spectral grid points.

A multiple DIA is constructed by considering N separate quadruplet con-
figurations. Defining S, (f,#) as the DIA according to quadruplet configuration
n € [1, N], the multiple DIA (MDIA) becomes

N

Su(£,0) = 5 D2 Su(£,0) 23

n=1
where N is the number of representative quadruplets. Note that each represen-
tative quadruplet has a unique value of the constant C' in Eq. (2.5).
An alternative method suggested in Part 1 is the Variable DIA or VDIA,
defined with NV = 1, and with a quadruplet configuration that varies with fj.

2.3 Numerical implementation

The wave model solves propagation and source terms in separate fractional steps.
Propagation is calculated using either a simple first order scheme of the third
order ULTIMATE QUICKEST scheme of Leonard (1979, 1991). Details of these
schemes will not be discussed here. Source term integration is performed using
a semi-implicit scheme where the discrete change of the spectrum AF(f,0) is
calculated as



Stot (f, 0) At
1—aD(f,0)At
where At is the time step, D is the diagonal term, defined as the diagonal con-
tributions of 0S;;/OF, and where « is a constant. This scheme was introduced
in the WAM model (WAMDIG, 1988) with oo = 0.5. Recent refinements include
the dynamic adjustment of the time step (Tolman, 1992) and the introduction
of an off-center scheme with = 1 (Hargreaves and Annan, 1998, 2001). Both
modifications are incorporated in WAVEWATCH III.

The wave model can use either spherical grids or Cartesian grids in physical
space. The last option has been used here for fetch limited calculations. The
spectral grid is regularly distributed over the entire 360° of directional space.
The frequency grid is logarithmically spaced with

AF(f,0) = (2.9)

Jm1=X¢fm (2.10)

where X is a constant.

The contributions of the DIA to diagonal term D in Equation (2.5) are gov-
erned by the partial derivatives of the term in square brackets (K'), with respect
to Fj through F}

OK  FySu Py
8F1 B (a1a2)4 a‘f ’
OK _ FiSy Py
OF, (a1a9)* df ’
0K Py F, Sy
Ki=—_——="2_ 2.13
3 8F3 a§ (CL3(L4)4 ’ ( )

0K . Py F3 5,

(2.11)

(2.12)

K=—=—"- 2.14
4 8F4 ai (a3a4)4 ’ ( )
where
FF F3 Fy
Sp=—"t42 | Sy=-242
12 (1,‘]1_ + G,% ) 34 a§ + U/i )
FiFy FF,
Po= —5 Py =
12 (a1a2)4 ) 34 (a3a4)4

With this, the contributions to the diagonal D (§D; etc.) corresponding to
Eq. (2.5) become

5Dy ~K!
6D, 1 -K} —4 p11
5Dy K



These contributions also do not coincide with the discrete spectral grid. Applying
(2.6) and (2.7), discrete spectral contributions D; ; to the diagonal term become

1
D —wij (£K) Cg™*fH | (2.16)

i,j —

2
which again requires summation if multiple representative quadruplets are used,
as in Eq. (2.8).

2.4 Set up of WAVEWATCH III

All calculations performed with WAVEWATCH III reported in this study are
performed with the default model setup of model version 2.22 as described in
Tolman (2002b). Only non-standard model setting will be discussed here.

For all computations the default physics settings of the model are used, with
the exception of the parameterization of the nonlinear interactions. All compu-
tations are performed for deep mater, making the choice of the bottom friction
parameterization moot.

In Sections 3 and 4 results from time limited, single point computations from
Part 1 are reproduced. The wave field is assumed to be spatially homogeneous.
In such conditions, Eq. (2.1) reduces to

In WAVEWATCH III this equation is invoked by setting the propagation flags in
the file ww3_grid.inp to false (see Tolman, 2002b, for details). The four time steps
in the file ww3_grid.inp are set to 900, 900, 900 and 5 s, respectively. A spectral
grid is used with 36 directions (Af = 10°) and with 35 frequencies with and
increment factor X; = 1.07 and ranging from 0.0418 to 0.417 Hz. This spectral
resolution has been adopted to assure sufficient resolution for the computations
using the exact WRT algorithm. The wind speed at 10 m is kept constant at
Uio = 20 ms L.

In the second part of this study (Section 6 and following), the entire growth
behavior of a wave model with alternative interaction approximations will be con-
sidered, instead of interactions for selected spectra. As a baseline for such model
behavior, a time limited and fetch limited test based on the WRT interactions
are performed.

The time limited model setup is similar to the setup described above with
some small changes. The stability correction for wave growth is not invoked, thus
reproducing the results of (Tolman and Chalikov, 1996) for stable atmospheric
stratification when the conventional DIA is used. The initial conditions consist
of a JONSWAP spectrum with a peak frequency f, = 0.25 Hz, v = 2, and
aligned with the wind direction (using a standard WAVEWATCH III initialization
option). The integration is performed for 48 h. The overall model time step is

7



S

S = D W A N O

Fig. 2.1 : Wave height H, (solid line) and peak frequency f, (dashed line) of
the time limited growth test used as baseline in Sections 6 through 7.
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Fig. 2.2 : Number of source term integration time steps N per overall time
step At = 900 s as a function of time corresponding to Fig. 2.1.

set, to 900 s, and the minimum time step for source term integration is set to
1s. As above, 36 directions are used with a directional increment of Af = 10°,
and the frequency increment factor is set to 1.07. However, to assure that the
entire prognostic part of the spectrum is always resolved by the discrete frequency
space, 45 discrete frequencies are now used ranging from 0.040 to 0.785 Hz. The
resulting evolution of the wave height H; and the peak frequency f, are presented
in Fig. 2.1.

Using a new option in a test version of WAVEWATCH III, each spectrum and
corresponding source term S,; is saved for this run. Because the internal time
step is calculated dynamically, it can be much smaller than 900 s, particularly in
the initial growth stages. This is illustrated in Fig. 2.2, which shows the number
of time steps used in the source term integration to advance the solution over
each overall time step At = 900 s. By saving each spectrum and source term, a
total of 1111 tests spectra have been generated from this test, and the dynamic



time step in the initial stages of wave growth became as small as 3.2 s. Depending
on the optimization considered, all of these test cases or a subset will be used.
Additional relevant results of these computations will be addressed in Sections 6
through 7.

The second test scenario to be considered in the optimization is conventional
fetch limited wave growth. Such a test generally considers homogeneous condi-
tions in the y direction, with a straight coast line at + = 0. Wind is blowing
offshore at a constant speed with a constant direction perpendicular to the coast.
The steady state solution corresponding to such conditions can be calculated with
the reduced balance equation

oy F(1,0) = SilF,0) + Sul£,0) + Sun(£,0) (2.18)

where ¢, is the advection velocity in the offshore (x) direction. Two complica-
tions occur when fetch-limited conditions are computed with a convectional wave
model.

First, conventional wave models propagate the solution forward in time, based
on Eq. (2.1). When this equation is reduced to Eq. (2.18), the equation becomes
elliptic rather than hyperbolic, and requires fundamentally different solution tech-
niques (see, for instance Booij et al., 1999). For a model like WAVEWATCH 111,
is is more convenient to solve the evolution of the wave field in time according to
Eq. (2.1), until a (quasi-) steady solution is reached.

Second, assuming that conditions are homogeneous in y direction allows for
wave components to travel along the coast indefinitely, and being turned back in
upwind directions by the nonlinear interactions. This requires the area of interest
to be much larger in y direction than in z (fetch) direction, which is not realistic.
More realistic results are therefore expected with a finite size of the test area in
y direction, while solving the full Eq. (2.1).

With this in mind the fetch limited test will consider an area of 500x 500 km?2,
resolved with Az = 10 km and Ay = 250 km, taking fetch limited results from
the perpendicular offshore line centered in the y direction. The overall and prop-
agation time steps are set to 360 s, and the minimum source term time step is set
to 1 s. It is well known that higher order propagation schemes when used in this
idealized test result in oscillations in the solution before reaching the quasi-steady
solution. This can be avoided by using the first order scheme, at a minor impact
to the overall results (see Tolman, 1992). Thus, the general model setup in the
fetch limited tests is identical to that in the time limited tests with the addition
of the first order propagation scheme.

As in the time limited test, a constant offshore wind speed Uy = 20 ms™
is applied. The WAVEWATCH IIT model is initialized with the same initial
spectrum as used in the time limited case. Note that this choice has in principle
no impact on the final fetch limited results, but makes it possible to assure

1
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Fig. 2.3 : Wave height H, (a) and peak frequencies f, (b) for fetch limited
test used as baseline in Sections 6 through 7.
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Fig. 2.4 : Number of source term integration time steps N per overall time
step At = 360 s as a function of fetch = corresponding to Fig. 2.3.

that the entire spectrum is always properly resolved in the discrete frequency
space. The spectral discretization of the time limited test is also adopted without
changes. The model integration is performed for 24 h, at which time the model
has practically reached the quasi-steady solution. The corresponding wave heights
H and peak frequencies f, after 1, 3, 6, 12 and 24 h of model integration are
presented in Fig. 2.3. The corresponding number of source term integration time
steps per 360 s model time step are presented in Fig. 2.4. Spectra and source
terms for all grid points as valid at 30 min intervals have been saved to be used

for the development of the DIA in the following sections.
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3 Model integration in Part 1

The final sets of tests performed in Part 1 consider incorporation of the VDIA
and MDIA in the WAVEWATCH III wave model (Tolman, 1991, 1992; Tolman
and Chalikov, 1996; Tolman et al., 2002; Tolman, 2002b) using a duration limited
test as described in section 2.4. The corresponding results were shown in Figs. 5.1
through 5.4 of Part 1. The final results after 6 hours of model integration are
reproduced here in Fig. 3.1. In the present figure, the spectra are displayed
in Cartesian representation, unlike the polar representation in Part 1, but are
otherwise identical.

Figure 3.1a shows the spectrum obtained with the exact interactions, whereas
Fig. 3.1d shows the conventional results obtained with the original DIA. Note that
in WAVEWATCH II1, the original DIA is rescaled to obtain better integration
results (see Tolman and Chalikov, 1996). The results obtained with MDIA are
presented in Fig. 3.1b. The MDIA shows consistent spectral growth with a real-
istic single-peaked spectrum, however, details of the spectrum differ clearly from
both the exact and DIA solutions. Somewhat surprisingly, the VDIA (Fig. 3.1c)
does not result in consistent spectral growth, in spite of the fairly accurate non-
linear interactions as calculated for individual spectra.

It is not necessarily surprising that the more accurate description of inter-
actions for a single spectrum do not immediately translate into more accurate
model integration. This is a typical aspect of nonlinear models. The opposite
was already observed by Hasselmann et al. (1985); in spite of the fact that the
original DIA does not do a particularly good job at representing individual inter-
actions, it nevertheless resulted in acceptable behavior when first applied in the
WAM model.

The observation in Fig. 3.1c that the fairly accurate? VDIA does not only
give poor results, but cannot even reproduce consistent single-peaked wind sea
spectra is nevertheless somewhat surprising. Many previous authors presenting
modified DIAs have not tested their parameterizations by incorporating them in
a practical wave model. The implicit assumption seems to have been that all
DIAs would automatically result in stable model integration. Figure 3.1c clearly
proves such an assumption to be wrong.

An important feature of the nonlinear interactions is their ability to stabilize
the spectral shape. Local perturbations, in particular for frequencies above the
spectral peak frequency, are rapidly smoothed out by a process that resembles
diffusion (e.g., Resio and Perrie, 1991; Young and Van Vledder, 1993). Because
Eq. (2.5) retains the diffusive character of the exact interactions (compare, for
instance, with Webb, 1978), it might be expected than any DIA has the proper
diffusive character to stabilize the spectral shape. This, in turn, would support
the suggestion that a DIA in principle should be able to stabilize the spectral

2 Accurate with respect to representation of interactions for individual spectra.
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Fig. 3.1 : Spectra F(f,0) from six hour model integration test from Part
1, for models with different parameterizations for Sy;. (a) Exact inter-
actions (WRT). (b) frozen MDIA. (c) frozen VDIA. (d) rescaled DIA.
Contours at factor 2 increment, with lowest contour level at 1 m?s!.
See also Figs. 5.1 through 5.4 in Part 1.

shape, and hence result in stable and/or convergent model integration.

Close inspection of the results presented in Fig. 3.1c, or in Fig. 5.3 in Part
1 suggest that the disintegration of the spectrum is not necessarily related to
the lack of diffusive behavior of the VDIA at high frequencies. In fact, the
problems appear to start close to the spectral peak early in the integration. It is
furthermore observed that the disintegration occurs in frequency space first. This
suggests that the sampling of the spectrum in frequency space may be one of the
reasons for the disintegration to occur. To assess if this could be an explanation
for the integration behavior of in particular the VDIA, contributions to S,; for a
single discrete frequency are presented in Fig. 3.2 for the DIA, the VDIA and the
MDIA, using the initial conditions of the integration tests of Fig. 3.1 with a peak
frequency f, = 0.15 Hz, and looking at the contributions for discrete frequency
bin 20, with foy = 0.151 Hz. Similar results for fo5 = 0.212 Hz are presented in
Fig. 3.3.

Two observations can be made from these figures. First, the DIA contribu-

12
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Fig. 3.2 : Contribution to the nonlinear interaction for a given discrete fre-
quency fg = 0.151 Hz only (red dashed line) for the initial conditions
used in the time integration test. (a) Spectrum. (b) DIA. (c) VDIA. (d)
MDIA. Contours at factor 2 increments starting at 10™' m?s™' (spec-
trum) or £107% (source terms). Blue identifies negative values.

tion for a single frequency (panels b in both figures) by definition has a three-lobe
structure with either a -/+/- or a +/-/+ signature. The VDIA contributions for
a single frequency (panels c), however, have a four-lobe structure, whereas simi-
lar MDIA contributions (panels d) have a more complex and variable structure.
Tentatively, it could be expected that the four-lobe structure of the VDIA contri-
bution for a given frequency requires a rather sensitive balance of contributions
of different frequencies to obtain an overall three-lobe structure of Sy;(f). The
much more complicated and variable structure of the MDIA could be expected
to be more versatile in this respect, whereas the three-lobe structure of the DIA
for a single frequency could be expected to more naturally result in a three-lobe
overall structure if a small number of frequencies dominate the contributions to
Shi-

Secondly, the VDIA by definition does not contribute to the nonlinear inter-
action at the discrete frequency f; (unless 1 + X or 1 + p are smaller than the
increment factor in the discrete frequency grid). In other numerical model prob-

13
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Fig. 3.3 : Like Fig. 3.2 with contributions of the discrete frequency fq =
25 = 0.212 Hz only.

lems such a disconnect is known to result occasional decoupled grid solution, for
instance with a so-called Leap-Frog numerical propagation scheme (e.g., Fletcher,
1988).

These two observations by no means explain in full why the VDIA as suggested
in Part 1 results in a disintegration of the spectrum when applied in a wave model.
However, it does indicate that the layout of the quadruplet and the way in which
the quadruplet is used to sample the spectral space is deserving further attention.
This will therefore be the subject of the following section.

14



4 Quadruplet layout and the sampling of spec-
tral space

The present section will address the effects of the quadruplet layout, and the way
in which this quadruplet is used to sample spectral space. This is most easily in-
vestigated using a single component VDIA or MDIA. Because the disintegration
of the model spectrum in Part 1 appeared to be related to the general quadruplet
layout, and not to the fact the the quadruplet layout varied in spectral space,
it is sufficient here to address single component DIAs with uniform quadruplet
layout throughout spectral space (i.e., the single component MDIA from Part 1).
In the following subsection, spectral shape and spectral sampling are discussed
first (Section 4.1). After this, the effects of spectral sampling on source terms
for selected spectra and on model integration are investigated (Section 4.2). In-
termediate conclusions are presented in Section 4.3, leading into the subjects of
investigation in the following sections.

4.1 Quadruplet shape and sampling

Quadruplets, whether used in the exact interactions or in a DIA, need to satisfy
Egs. (2.2) and (2.3). There are two ways in which the quadruplet layout can be
visualized. The first is by means of drawing the vectors k; + ks and ks + k4
either as vectors, or as loci of connection points between k; and k, or between k3
and k4 (e.g., Phillips, 1977, Fig. 3.7). A second way to display the layout of the
quadruplet is to identify the location of the quadruplet components k; through
k4 for a given discrete spectral component kg in the discrete spectral space (e.g.,
Van Vledder, 1990, Fig. 3.2). The latter display is typically adapted to the actual
description of spectral space in the model, that is (k, 6),,4 or (f,6)n,4. These two
ways of displaying the quadruplet are utilized in Figs. 4.1 and 4.2, respectively.

Figures. 4.1a and 4.2a show the quadruplet of the original DIA (A = 0.25).
Because k; = k1 = ko (O and e in Fig. 4.2a), a major contribution of a DIA
using such a quadruplet will be at the discrete wavenumber k,; that is considered.
This guarantees a strong coupling between the local spectral density (F'(ky)) and
the corresponding source term (Sy;(kg)). Close inspection of Eq. (2.5) as applied
to this quadruplet, in combination with the quadruplet layout of Fig. 4.2a also
makes it clear that each individual contribution to the DIA will always have
a -/+/- or +/-/+ signature in both the frequency (f) and direction (6) space.
These attributes of the original DIA quadruplet can tentatively be expected to
contribute to the success of the original DIA, although they by no means fully
explain it.

Figures. 4.1b and 4.2b show the extended quadruplet as used in Part 1, with
A =0.248 and p = 0.127. In this configuration, k3 and k, remain essentially un-
changed compared to the original DIA setup (compare dashed vectors in Fig. 4.1a

15



(a) (b)

Fig. 4.1 : Quadruplet layout in terms of vectors k for different quadruplet
definitions and for different sampling methods. (a) Original DIA quadru-
plet with A = 0.25. (b-f) Quadruplet of Part 1 with A = 0.248 and
M = 0.127. (b) kd = 05(’{71 + kg) as in Part 1. (C—f) kd = kl thI‘OUgh
k4. Solid vectors k, + k. Dashed vectors ks + k4. Red vector identifies
k4, which in turn determines the actual sampling of spectral space. kg
is part of the quadruplet in all panels except for (b).
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Fig. 4.2 : Quadruplet layouts in (f, 8) space for the six quadruplets and sam-
pling patters as in Fig. 4.1. O: Discrete spectral component (f,0),. e:
(f,0)1, (f,0)2. o (f,0)s, (f,0)s. Connecting lines identify individual
quadruplets. The gray lines identify the discrete spectral grid with a
frequency increment factor 1.07 and a directional increment Af = 10°.
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and b, and o in Fig. 4.2a and b). However, k; and k, (solid vectors or e) are
now defined differently, and no longer coincide with the discrete spectral fre-
quency (red vector or [J). Figure 4.2b identifies two major differences between
this quadruplet definition, and the original definition as used in the DIA (panel
a). First, when calculating contributions for k4, the corresponding contributions
to the interactions 6S,;(kqs) = 0. This may suggest some decoupling of the in-
teractions from the spectrum. However, since contributions of the interactions
are always redistributed to all spectral grid points from which spectral densities
are used to compute the contributions, such a decoupling cannot be complete.
As will be shown below, this apparent decoupling in fact does not exist. Second,
close inspection of Eq. (2.5) and Fig. 4.2b shows that individual contributions
0S,; for this quadruplet will always have a four-peaked structure in f space,
with a -/+/+4/- or +/-/-/+ structure. Both the potential decoupling, and the
four-peak structure of individual contributions are potentially detrimental to the
integration properties of the DIA with the new quadruplet layout as suggested
in Part 1.

Figures. 4.1 and 4.2 panels ¢ through f show quadruplet layouts and sampling
patterns for the new quadruplet with A\ = 0.248 and p = 0.127, but with a
different definition of k4. These figures show that for a given layout (A, ) of the
quadruplet, the sampling of spectral space (definition of k;) has a major impact
on layout of quadruplets considered for k4, and on the sampling pattern in (f, )
space. Several observations can be made from these figures. First, coupling
between F'(k;) and Sy;(kg) is restored at the level of individual contributions
dSni. Second, a four-peak structure for individual contributions Sy (k) remains
in f space, independent of the sampling. Third, the layout of the sampling
pattern for each of the four possible quadruplets remains essentially the same,
with a shift in directional space, and a factor multiplication of the frequencies
of the components of the quadruplet. The four individual quadruplets, however,
are generally shifted farther apart in (f,#) space, creating a sampling of a larger
area in this space.

On first inspection, Fig. 4.2 may suggest that different definitions of k; will
result in completely different interactions. This is not the case, however, because
a large number of k,; values supply contributions to the interactions at any given
frequency and direction, resulting in analytically identical interactions, irrespec-
tive of the actual choice of k4 in the quadruplet. This is illustrated in Fig. 4.3
using a degenerated quadruplet from Part 1 with A = 4 = 0.2. Note that only
one independent quadruplet satisfies this choice of A and p is used here. Fig-
ure 4.3a shows the corresponding sampling pattern for this quadruplet in (f,6)
space, using the original definition of k;. Only four spectral components are
included in this quadruplet. For simplicity ignoring the redistribution of con-
tributions §.5,; in Eq, (2.7) (i.e., assuming continuous spectral space), only four
quadruplets contribute to the interactions for a given spectral component. These
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(a) (b)

pit i

Fig. 4.3 : (a) Quadruplet layout in (f,6) space for quadruplet from Part 1
with A = = 0.2. (b) All quadruplets contributing to discrete spectral
grid point U], assuming continuous spectral space. Legend as in Fig. 4.2.

four quadruplets are displayed in Fig. 4.3b. It is obvious from this figure that the
contributing quadruplets for a given spectral component are independent of the
choice of k4 in the calculation of individual contributions. The same is obviously
true for more complicated quadruplets. However, the discrete spectral space will
have some impact on the necessary interpolations and redistributions of contri-
butions per component. Tentatively, this is expected to be a second order effect,
with small or negligible impact on the resulting interactions. However, due to
the highly nonlinear nature of the problem considered here, a practical test of
this assumption is appropriate. Such a test is provided in the following section.

4.2 Impact on interactions and model integration

To assess the impact of the sampling pattern for a given quadruplet, consider a
single component MDIA with a two parameter quadruplet defined as A = 0.248,
p=0.127 and C = 1.81107. This represents the optimized quadruplet from Part
1 (see Table 3.1 in Part 1). This quadruplet is applied to the 6 h integration
test of Part 1, using different ways of sampling the spectral space with this
quadruplet. Considered are all five sampling patterns for this quadruplet as
analyzed in Figs. 4.1 and 4.2, panels (b) through (f).

Modifying the sampling patterns in a quadruplet has two impacts in the com-
putation of S,,;. Typically, the change of the discrete frequency can be expressed
in terms of a multiplication factor for the discrete frequency relative to the orig-
inal sampling pattern. This factor will be denoted as X4, with 04 new = Xq04,014-
Effectively this shifts the quadruplet by a factor X  in frequency space. This
modifies the factors a, in Eq. (2.4) by a factor X4, and hence modifies the contri-
butions to the interactions in Eq. (2.5) by a factor X; 2. An additional correction
factor is introduced because of the dependency of Eq. (2.5) on f;. This corre-
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Fig. 4.4 : Spectrum (a) and corresponding source term for single component
DIA with A = 0.248, ju = 0.127 and C = 1.81107. (b) kg = 0.5(k1 + k2),
(c) kg = k1, (d) kg = ko, (e) kg = k3, (f) ka = k4. Legend as in Fig. 3.2.
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Fig. 4.5 : Spectra after 6 h of model integration as in Part 1, from initial
conditions in Fig. 4.4. (a) Conventional DIA with A\ = 0.25 and C = 1107
(b-f) Single component DIA as in Part 1 wit A = 0.248, . = 0.127 and
C =181 107. (b) kd = 05(’{31 + kg), (C) kd = kl, (d) kd = kz, (e)
kq = ks, (f) kq = k4. Legend as in Fig. 3.1.
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sponds to an additional correction factor of X', bringing the total correction
factor to X, **.

Figure 4.4 shows the initial conditions for the model integration in panel (a),
and the corresponding source term S,; for the different sampling patterns of
spectral space in panel (b) through (f). As expected, S, is fairly insensitive to
the choice of kg, with only minor differences in the details of S,; in panels (b)
through (f).

Figure 4.5 shows the corresponding model results after 6 hours of model in-
tegration, with panel (a) showing the results of the standard WAVEWATCH 111
model as a reference (A = 0.25, u = 0, C = 1107). Differences between model
results in panels (b) through (f) are much bigger than might be expected from
differences in the source terms in Fig. 4.4. However, as discussed above, this
might have been expected due to the highly nonlinear nature of the problem
considered. In spite of the differences between the results, all sampling versions
result in spectra with similar deficiencies. It should also be noted that the results
from alternative sampling patters (panels ¢ through f) result in somewhat more
noisy spectra. This may be due to the fact that this quadruplet was optimized
for the sampling pattern in panel (b).

Note that the corresponding experiments with the frozen MDIA of Part 1 lead
to similar conclusions, and will therefore not be reported here.

4.3 Conclusions

The experiments with the different sampling pattens performed in this section
have lead to the following conclusions.

1) The quadruplet layout with two free parameters as introduced in Part 1
results in four-peaked individual contribution to the interactions for an
isolated frequency. Tentatively, this makes it more difficult to reproduce
a three-peaked overall structure of the interactions. For the original DIA,
the basic contribution for a given frequency mimics the overall structure
of the total interactions.

2) For a given quadruplet layout, the sampling method used for the quadru-
plet only has a minor impact on the instantaneous interactions.

3) Due to the nonlinearity of the problem, the impact in model integration
is larger. However, the basic characteristics of the model do not appear
to be influenced significantly by the sampling technique.

4) Alternate sampling patterns for a given quadruplet seem to add some
noise to the model integration, which tentatively might be attributed
to the fact that the quadruplet was optimized for the original sampling
pattern.
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The last three points suggest that the sampling pattern (choice of ky) for a
quadruplet can be chosen purely based on economic considerations.

Figure 4.2 shows that one quadruplet of the original DIA (panel a) requires
information from 5 wavenumbers k in the spectral space for the quadruplet to
be evaluated. Similarly the contributions of such a quadruplets are redistributed
to 5 wavenumbers k. For the new quadruplet with the original sampling pattern
(Fig. 4.2b), the number of wavenumbers involved in a quadruplet is 8, whereas
for all alternative sampling patterns (Figs. 4.2c through f) the number is 11.
Considering that the gathering and scattering of the information in the spectral
space represents a major part of the computation effort required for a DIA, it
can be expected that the original layout of the two parameter quadruplet from
Part 1 (Fig. 4.2) is potentially more economical than the alternative layouts, and
therefore is preferable, and will be used in the following sections.

The first conclusion indicates that the new quadruplet layout introduced in
Part 1 is not suitable for single component DIAs, due to the basic signature it
generates in spectral space, particularly in spectral frequency (f) space. Further
research into the DIA should consider quadruplet configurations that at least
tentatively are able to produce basic shape of the DIA. It is possible to design
a quadruplet layout that has a three-peaked layout in at least frequency space.
Such quadruplets will be considered in Section 5.
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5 Quadruplets with a three-peak signature

In this section alternative quadruplets with three-peaked signatures in the fre-
quency space will be investigated. Only single component DIAs will be consid-
ered in this section. In Section 5.1, possible quadruplet layouts are considered.
In Section 5.2, such quadruplets are applied in the WAVEWATCH IIT model.
Conclusions and an introduction to the remainder of the report are presented in
Section 5.3.

5.1 Quadruplet layouts

In order to investigate the possibility of creating quadruplets with a three-peak
structure of its elementary contributions in frequency space, it is prudent to start
with the most versatile quadruplet available. This is the quadruplet defined by
Van Vledder (2001), and in Table 2.1 and Egs. (2.2), (2.3) and (2.4). An example
of the layout of such a quadruplet with X' = 0.136, ' = —0.182 (corresponding
to A = 0.25, p = 0.10, as will be shown below) and Af = 15° is presented in
Figs. 5.1a and 5.2a. Comparison of these figures with Figs. 4.1 and 4.2 indicates
that this quadruplet lacks the symmetry and compactness of the quadruplet
introduced in Part 1. This symmetry can be introduced in the quadruplet by
modifying the sampling method in spectral space. First, however, the layout of
the quadruplet will be made equivalent to the quadruplet of Part 1. Substitution
of

S Sl

I+p’ Tp
results in the quadruplet definition on the bottom line of Table 2.1, which is
similar to the quadruplet definition introduced in Part 1. The only difference
in these quadruplets is the definition of ¢ in Eq. (2.4). For the quadruplet of
Part 1, it is assumed that k; = %(kl + ky) and 04 = %(01 + 03) satisfy the
dispersion relation. This uniquely defines Af. In the Van Vledder quadruplet,
this assumption is not made. Instead, Af is defined explicitly to uniquely define
the quadruplet.

To reproduce the symmetry of the quadruplet from Part 1, a proper sampling
quadruplet needs to be selected. It is easily verified that the symmetry of the
quadruplet is achieved for any k, satisfying

y (5.1)

kd = (kl + kg) . (52)
where « is an arbitrary constant. An analogy with the Part 1 quadruplet suggest

that o = 0.5. A marginally more elegant definition is obtained with

k
1

= e + ko] (k1 + k2) (5.3)
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Fig. 5.1 : Like Fig. 4.1 for the quadruplet layout of Van Vledder (2001) with
A = 0.25, p = 0.10 and A = 15° (corresponding to \' = 0.136, u' =
—0.182). (a) Original definition of k4. (b) Modified definition of k4 of
Eq. (5.3).

Fig. 5.2 : Like Fig. 4.2 for the quadruplets displayed in Fig. 5.1.

which guarantees that at least one of the components of the quadruplet (o)
always coincides with the spectral frequency grid. This layout is particularly ele-
gant for cases with 4 = 0 and A# # 0, in which case 01 = 09 = g4. This modified
Van Vledder quadruplet defined as in Table 2.1 and Eq. (5.3) is visualized in
Figs. 5.1b and 5.2b, and will be used as the generic quadruplet in the remainder
of this study.

Equation 2.4 indicates that a quadruplet with a three-peak signature of con-
tribution in the frequency space will require that exactly two of the factors a;
through a4 are identical. This requires that either A = 0 or = 0 in the generic
quadruplet definition. The sampling patterns in (f, #) space for such quadruplets
are illustrated in Fig. 5.3 for Af@ = 15°, and A and u alternately 0 or 0.25. These
two quadruplets are essentially identical, with only a shift in frequency space for
the sampling pattern. In the remainder of this section, the quadruplet will be
defined as =0, XA # 0 and Af # 0.

It should be noted that a special situation occurs when A = y, in which case
there are only two frequencies at which each quadruplet generates contributions.
In this case, only two quadruplets give non-zero contributions. Because this
quadruplet does not result in a three-peaked elementary contribution, it will not
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(a) (b)

Fig. 5.3 : Like Fig. 5.2 for the generic quadruplet with (a) A = 0.25, 4 =0
and A§ =15°, or (b) A =0, p=0.25 and Af = 15°.

be considered here.

5.2 Mapping and integration

The remainder of this section can be considered as an extension to Part 1. The
test case and optimization techniques from Part 1 are therefore adopted without
further documentation. After a quadruplet has been defined, it will be tested
in model integration as in Part 1. The goal in this section is only to show that
an alternative single quadruplet as developed in Section 5.1 can indeed result
in reasonable model integration. In this context, a VDIA based on this new
quadruplet will not yet be considered here.

Considering the present context, a detailed optimization for selected test spec-
tra is not relevant. Based on some simple tests, the new three parameter quadru-
plet will be defined with A\ = 0.2, Af = 15° and C = 1107. A more detailed
optimization of this quadruplet will be provided in the following sections. This
quadruplet has been applied in the model integration test from Section 5 of Part
1, and the results are presented here in Fig. 5.4. It is obvious that the model spec-
tra are generally well behaved, and that this quadruplet layout does not result in
the disintegration of the spectrum associated with the new quadruplet as defined
in Part 1. The three parameter quadruplet defined in this section can thus be
the basis for further optimization in the remainder of this report, particularly for
single component DIAs and VDIAs.

5.3 Conclusions

In the beginning of this section, the general quadruplet layout of (Van Vledder,
2001) is modified to make it symmetrical, without altering any of its features.
From this general quadruplet, an alternative three-peaked quadruplet is defined
where A and A# are variable, and where ;1 = 0. Application of this quadruplet
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Fig. 5.4 : Like Figs. 5.1 through 5.4 from Part 1 for the new three parameter
quadruplet layout with A\ = 0.20, A@ = 15° and C =1 10".
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in the WAVEWATCH III model indicates that such a quadruplet indeed results
in stable model integration. This supports the theorem that the new quadru-
plet from Part 1 results in non-stable model integration due to the four peaked
structure in frequency space of its basic contributions.

In the remainder of this report, several DIAs will be optimized in several
ways. First the optimum parameter settings of the DIAs for the previously
defined growth curves obtained with the WRT method will be considered us-
ing inverse modeling techniques as defined in Part 1. Although Part 1 and the
present study show the limitation of such an approach, it is nevertheless useful
to identify the expected or needed variability of the corresponding quadruplet
layouts of the DIAs. The present study expands on this ‘classical’ approach, by
optimizing both integral and detailed aspects of the growth curve computation
as a function of the free parameters in the DIA. Details of this optimization are
discussed in Appendix B. Section 6 starts with the simplest approaches possible;
single component DIAs with constant coefficients and quadruplet layouts form
the original DIA (), C), or as defined in the present section (A, Af,C).
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6 Single component DIA optimization

The general strategy for testing single component DIAs is already outlined in
the previous section. First, the free parameters in the two DIAs considered
here are optimized for individual spectra from the time and fetch limited test
cases. Second, these parameters are separately optimized using results of model
integrations.

6.1 Optimization for individual spectra.

To investigate the potential of DIAs with either A and C', or A Af and C as free
parameters, such parameters are estimated as in Part 1 for all spectra from the
time limited test and for the results after 24h for the fetch limited growth.

Results for the most simple DIA (A and C optimized) are presented in Fig. 6.1.
The optimization for each spectrum and corresponding exact source term are
initialized with A = 0.25 and the corresponding optimal C'. Solid lines represent
the optimum estimate for A\, dotted lines represent the corresponding estimate
for C'. Several observations can be made from Fig. 6.1.

First, in spite of the dramatic evolution of the spectra with time or fetch, the
optimum values of A and C' are remarkably well behaved. This implies implicitly
that spectra from the model are well behaved, and evolve systematically rather
than randomly. It also explains some of the success of the original DIA, because
the DIA appears similarly representative throughout time and fetch limited wave
field evolution. Neither of these observations are new.

Second, the optimum parameters appear to display bifurcation behavior, with
preferred values of A\ of approximately 0.16 and 0.20. To the knowledge of the
present author, such behavior has not been observed before in this context. At
least two potential sources can be identified for this behavior. First, nonlinear
optimization is typically more complicated than optimization for linear systems.
The bifurcation behavior might well indicate that there are several local error
minima, where the search process ‘randomly’ selects from these minima. Second,
there may in fact be truly different solutions for different spectra due to the highly
nonlinear nature of the interactions considered here.

Third, preferred values of A of about 0.16 or 0.20 are systematically lower
than previously used values in third generation wave models (A = 0.25). These
findings are nevertheless supported by previous Japanese results, where A = 0.19
was found as the optimum value for a single DIA (see, e.g., Hashimoto and
Kawaguchi, 2001).

Figure 6.1 does not address the quality of the fitted DIAs. In a quantitative
sense, this will be addressed with full model integration in the following subsec-
tion. A qualitative assessment is presented with example spectra from the time
and fetch limited tests is presented in Figs. 6.3 and 6.4. These figures present the
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Fig. 6.1 : Optimized parameters for a DIA with a quadruplet defined by A
only for the idealized time (t) and fetch (x) limited tests (panels a and
b, respectively). Solid lines: optimum A. Dotted line: optimum C.

0.5 30 0.5

Fig. 6.2 : Like Fig. 6.1 for a DIA with a quadruplet defined by A and A#.
Dashed lines: optimum A#.

exact (WRT) solutions, the original DIA, and this DIA with optimized C, and
the optimized DIA corresponding to Fig. 6.1.

A comparison of the different panels in Figs. 6.3 and 6.4 indicates that the
optimization of A and C simultaneously (panels e) results in a much better repre-
sentation of S,,; for frequencies around or below the spectral peak than is obtained
with the traditional setting of A = 0.25 (panels c). Nevertheless, systematic er-
rors in S,; remain at frequencies above the spectral peak frequency. The most
obvious shortcoming is the presence of a spurious positive peak just above the
spectral peak frequency. Note that this does not necessarily imply that this DIA
will result in unrealistic spectra. It will nevertheless be expected, that this will
result in systematic errors in spectral shapes.

Similar optimization results for the DIA with two free parameters defining
the quadruplet (A, Af) are presented in Fig. 6.2. Optimized values for A and
C follows the results of the more simple model presented above, in terms of
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Fig. 6.3 : Example spectrum and source terms for time limited test att = 9h.
(a) Spectrum. (b) Exact interactions (WRT). (c¢) Original DIA. (d) DIA
with optimized C. (e) DIA with optimized A\ and C. (f) DIA with
optimized A\, Af and C. Legend as in Fig. 3.1.
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Fig. 6.4 : Like Fig. 6.3 for fetch limited tests at x = 150km.
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the bifurcation behavior and optimum values. The directional gap A# shows a
more complicated bifurcation behavior with several preferred directions. If is also
noteworthy that the optimum values for Af between time and fetch limited cases
are not fully consistent.

Unfortunately, the accuracy gained by adding the parameter Af to the opti-
mizations has been very limited. For practical purposes, there is no difference,
as is illustrated in Figs. 6.3 and 6.4. Due to the nonlinearity, this conclusion
cannot be ported automatically to the complete wave model. For this reason,
both the one and two parameter quadruplet layouts will be considered for full
model optimization in the following subsection.

6.2 Full model optimization.

Full model optimization assesses the performance of DIA approaches in the time
and fetch limited test cases as presented in Section 2.4. Considered will be 48
hourly spectra from the time limited wave growth test, starting with the spectrum
after 1 h of model integration, and all 50 spectra at the ending time (24 h) of
the fetch limited test case. Five error measures are considered, representing the
wave height (eg), the one and two dimensional spectra (eg; and €gs), and the
one and two dimensional steepness spectra (€51 and €59). The steepness spectra S
are defined as S = k%2E, where E is the energy or variance spectrum. These error
measures are internally normalized to give similar weight to conditions along the
growth curve, and are presented in detail in Appendix B.

For the original two parameter DIA, it is feasible to map the errors in the
DIA parameter (A, C') space. Such an exercise is useful to identify the potential
existence of multiple minima, and to address the general integration stability of
such a DIA as a function of A and C. This is achieved by computing all error
measures for A ranging from 0.12 to 0.30 at intervals of 0.005, and C ranging
from 0.9107 to 4.0 107 at intervals of 0.1 107. The resulting error distributions in
the (A, C)-space are presented in Figs. 6.5 and 6.6 for the time and fetch limited
test, respectively.

Errors in both figures are presented as percentages. The wave height errors
are internally normalized with the instantaneous and local reference wave height,
and hence can be interpreted as an average relative wave height error for the test
case considered. The spectral energy measures are similarly normalized. Hence,
ideally all errors would be in the single digit percentage range. For the wave
heights, such behavior can be achieved, with minimum errors for the time limited
growth of the order of 5% (Fig. 6.5a), and for the fetch limited growth of less
than 1% (Fig. 6.6a). For the spectral measures, however, relative errors are much
larger, and are of the order of 100% for the energy spectra, and of the order of
30% for the steepness spectra, Note that one- and two dimensional spectral errors
for either energy or steepness behave largely identical. The above indicates that
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Fig. 6.5 : Model integrations errors for two parameter DIA (\,C) for the
time limited test case as a function of A and C. (a) Wave height (e ).
(b) 1-D spectrum (€g1). (c) 2-D spectrum (egp). (d) 1-D steepness
spectrum (es1). (e) 2-D steepness spectrum (eg)
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Fig. 6.6 : Like Fig. 6.5 for fetch limited test case.
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Fig. 6.7 : Composite of error measures for two parameter DIA as a function
of A\ and C. Areas in parameters space are shown where the model
error is less that 1.1 times the minimum model error or 2% for the given
parameter. Shaded area: wave heights. Solid lines: one dimensional
spectra. Dashed lines: two dimensional spectra. Red: energy spectra.
Blue: steepness spectra. (a) Time limited test. (b) Fetch limited test.
2% error threshold used for wave heights in panel (b) only. Symbols
correspond to (A, C) combinations from Table 6.1.

the traditional two-parameter DIA is capable of reproducing the integral spectral
energy during wave growth accurate, but that this is accompanied by significant
errors in the spectral shape.

Figures 6.5 and 6.6 indicate that there is a large area in (A, C')-space for which
near optimum wave heights can be obtained. This implies that optimization by
search algorithms rather than be mapping of the full error space is likely to result
in significantly different optimum parameter setting for different initializations
of the search algorithm. It also is at least tentatively in accordance with the
bifurcation behavior of the optimization for single interactions as identified above.

Another apparent feature of Figs. 6.5 and 6.6 is that the areas of near-optimum
model behavior with respect to the different error measures do not coincide. This
is illustrated more clearly in Fig. 6.7, which identifies areas in (), C')-space where
the different error measures are less than 10% larger than their optimum value, or
less than 2% in general. Optimal areas for the wave height and spectral spectral
energy nearly coincide (gray areas and red lines). This indicates that the total
energy and the energy distribution in general can be optimized simultaneously.
The steepness spectra, however, (blue) lines show optimum behavior in a dis-
tinctly different part of parameter space. This implies that the high-frequency
part of the spectrum, on which the steepness error measures focus, cannot be
optimized simultaneously with the total energy or the spectral peak energy (on
which the spectral energy error measures focus). This is furthermore illustrated
in Table 6.1, which present resulting errors for several previously suggested pa-
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Table 6.1: Model errors for DIA with setting according to Hasselmann et al.
(1985, HHAB), Tolman and Chalikov (1996, TC), Hashimoto and
Kawaguchi (2001, HK) and from present study. First line per entry
represents errors of time limited test, second represents errors of fetch
limited test.

SOUI‘CG A C €g €1 €2 €51 €52
(-) (-) % N N N %
HHAB 0.25 3.0010" 12.9 193 165 33.6 34.0
13.0 180 148 34.0 32.2
TC 0.25 1.0010" 6.4 195 169 53.6 43.2
2.2 182 152 509 41.7
HK 0.19 297107 6.1 158 120 42.0 42.2
4.4 137 104 39.2 39.3
present 0.19 220107 5.1 145 110 54.9 49.4
1.0 124 94 50.2 46.6

rameter settings for this DIA, as well an near-optimal choice for both wave heights
and energy spectra as follows from the previous figures.

To illustrate the nature of the model errors introduced by the DIA, model
results obtained with the parameter setting of Table 6.1 are compared to the
reference (WRT) model results in Figs. 6.8 through 6.12.

Figure 6.8 present the resulting wave heights. For the HHAB parameter
settings, the wave heights H; are systematically underestimated. For the other
three model setting, the resulting wave height represent the reference results
excellently. Particularly interesting is the deviation of all DIA based wave heights
from the reference wave height (solid line) after about 30 h of model integration
in Fig. 6.8a. This appears to indicate that near full development of the wave
spectrum, the dominant scales in the exact interaction change. Because the
scales of the interactions in spectral space are fixed by the choice of A the DIA in
principle cannot reproduce this type of behavior. Note that in the fetch limited
test such wave conditions may not yet have appeared at the largest fetch, and
that the lack of this behavior in the fetch limited test is likely a result of limited
fetches considered. Note furthermore, that this behavior might be alleviated by
dynamically adjusting the parameter setting in the DIA as a function of the
development stage of the spectrum. This refinement of the DIA will not be
considered in the present study.

Figure 6.8 also leads to an interesting observation; if the interactions are
made weaker by reducing C, the resulting wave heights become higher. This
was confirmed with additional example computations, the result of which are not
reproduced here. This may seem paradoxical, because weaker interaction result
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Fig. 6.8 : Wave height H, for (a) time limited test as a function of time t
and (b) for fetch limited test as a function of fetch « for the WRT model
solution and various settings of the two parameter DIA as identified in
the legend and in Table 6.1.

in a slower shift of energy to low frequencies. However, after initial energy shifts
to lower frequencies, local wind input will become dominant. Stronger inter-
actions, however, also includes a larger flux of wave energy to high frequencies,
where this energy is dissipated. This at least qualitatively explains this somewhat
paradoxical behavior.

Figures 6.9 and 6.10 present one dimensional energy and steepness spectra
after 24 h in the time limited test and at 300 km in the fetch limited test,
respectively. Inspection of all test spectra indicates that these selected spectra
are representative for all spectra. This is illustrated here by the similar model
behavior both figures.

All DIA based models systematically underestimate the peak energy density
of the spectrum from the reference run (solid lines). The HHAB parameter
settings combine this with a general underestimation of the wave energy and
hence of the wave height in the previous figures. The other parameter settings
compensate for the lack of energy at the spectral peak by overestimating the
wave energy at high frequencies. The TC parameter settings (short dashed lines)
furthermore spuriously shift the spectral peak frequency to higher frequencies,
although energy at frequencies just below the spectral peak are well represented.
The steepness spectra (right panels of figures) indicate that the selection of the
parameter settings in the DIA has a large impact on the high-frequency energy.

Finally, Figs. 6.11 and 6.12 represent the two dimensional wave spectra corre-
sponding to Figs 6.9 and 6.10. Again, the fetch and time limited results are very
similar. All DIA approaches underestimate the spectral energy at the spectral
peak. The HHAB model settings (panels b) combine this with a moderate under-
estimation at higher frequencies, whereas the other three overestimate wave en-

40



E(f)
|

© (Hz)

0.25

S(f)
|

0.25

Fig. 6.9 : One dimensional spectrum E(f) (panel a) and steepness spectrum
S(f) = k?2E(f) for the time limited test after 24 h. Legend as in Fig. 6.8.
Spectra normalized with maximum value for WRT results. HK results

not presented for clarity.

1.2

£(r) (@)
"_
()

0.8 1
0.6 1
0.4 1

0.2 1

. 0.
s (Hz)

25

S(f)
" -

Fig. 6.10 : Like Fig. 6.9 for fetch limited test at 300 km.

41

0.25



(a)
90 1
6
45
()
O_
—45
790_
O.IO5 O:W O.I15 O:Z 0.25
f (Hz)
(b) (c)
90 A 90 A
6 6
45 A 45 A
(°) (°)
04 04
—45 —45
-90 -90
0.05 0.1 O.IW5 0.2 0.25 O:Z 0.25
f (Hz) (Hz)
(d)
90 A1 90 A1
6 6
45 A 45 A
(°) (*)
. o o
—45 —45
—-90 1 —-90 1
O.IO5 O:W O.IW5 0:2 0.25 O.IO5 O:W O.IW5 0:2 0.25
f (Hz) ! (Hz)

Fig. 6.11 : (a) Reference spectrum (WRT) after 24 from time limited test,
and differences with results for (b) HHAB, (c¢) TC, (d) HK, and (e)
‘present’ model runs (see Table 6.1). Contours at factor 2 interval with
highest contour at 0.5 times the maximum spectral energy density. Blue
shading identifies negative differences. Differences defined as WRT -
DIA results.
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Fig. 6.13 : Wave height error ey for the fetch limited test for the three pa-
rameter DIA as a function of A\ and C for (a) A8 = 0°, (b) A8 =2°, (¢)
AR = 4°, (d) A = 6°, (e) AP = 8°, and (f) Af = 10°. Legend as in
Fig. 6.5. C multiplied by 1075.

44



Fig. 6.14 : Like Fig. 6.13 as a function of A and A for (a) C = 1107, (a)
C=2107, (a) C =3107, and (a) C = 410".

ergy at higher frequencies. The TC model settings show a clear positive-negative
signature near the spectral peak, indicating a spurious shift of the spectral peak
to high frequencies.

For the three parameter DIA, the parameter space is also of sufficiently low
dimensionality to attempt to map the errors in the (A, A@,C) space. For eco-
nomical reasons this is done on a coarser resolution than for the two parameter
DIA. Error measures are computed for A ranging from 0.12 to 0.30 at intervals
of 0.01, Af ranging from 0° to 30° at intervals of 2°, and C' ranging from 1.0 107
to 4.0 107 at intervals of 0.2 10”. Some resulting error distributions for the wave
height (eg) are presented in Figs. 6.13 and 6.14 for the fetch limited test.

Figure 6.13 shows the wave height error in the (), C) plane for the lowest 6
discrete values of Af. Panel (a) corresponds to Fig. 6.6a. Differences between
these two figures are solely due to the reduced discrete resolution in Fig. 6.13.
With increasing Af, extremely large wave height errors (purple) develop. These
areas correspond to instability in the model integration. Thus, whereas the three
parameter DIA suggested in this study can result in stable model integration, it
lacks the robustness of the conventional two parameter DIA. This is furthermore

45



illustrated in Fig. 6.14, which shows error distributions in the (A, Af) plane, for
several values of C. This lack of robustness is generally unacceptable in practical
model applications. This is particularly true because it is suspected that the
robustness is sensitive to the discretization of the spectral domain, although this
has not been tested in the present study.

6.3 Conclusions.

The holistic approach to optimizing interaction parameterizations has resulted
in the following conclusions for the conventional two parameter (A, C), single
component DIA:

1) This type of DIA can reproduce idealized fetch and time limited wave
heights accurately for a range of values of A and C. It does, however,
not capture the apparent transition to other dominant interaction scales
near full development.

2) This type of DIA cannot accurately describe the spectral shape of either
the two or one dimensional spectrum. A systematic problem appears to
be the underestimation of the sharpness of the spectral peak.

3) The wave height and energy spectra can be optimized simultaneously.
The steepness spectra, however, are optimally represented for values of
A and C where significant wave height and spectral errors occur.

4) The present DIA settings as used in WAVEWATCH III (Tolman and
Chalikov, 1996) systematically shift the spectral peak to higher frequen-
cies. Modeling impacts of this behavior will be discussed in Section 8.

The same optimization approach has been applied to the new three parameter
DIA, where A, Af and C are free parameters. Whereas this approach can be used
successfully, it was shown to lack the desirable robustness. Similar conclusions
were found for another three parameter DIA (), x4, C) in Part 1. With this in
mind, it appears that more generalized single component DIAs as suggested by,
for instance Van Vledder (2001, 2002a) and in previous parts of this study, are
not viable in practical wave models.

In Part 1, a variable DIA was suggested. Considering that the results of
Part 1 indicate that it is crucial to extend the DIA to a three parameter DIA
to successfully improve interactions for individual spectra, it does not appear
likely that a VDIA based on the traditional two parameter approach will result
in a relevant improvement of the model results. Because, furthermore, the three
parameter DIA appears unfeasible, the VDIA will not be investigated in more
detail here. Consequently, the following section will immediately concentrate on
the multiple DIA (MDIA).
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7 MDIA optimization

The general strategy for testing and optimizing MDIAs in broad lines follows the
approach for single component DIAs in the previous section. First, optimization
of parameters for individual spectrum-source term pairs is considered to estab-
lish expected ranges of parameter values and general approaches. After that, the
holistic approach, optimizing the overall model results, is employed. The latter
optimization is more complicated than in the previous section, because the in-
herent number of free parameters in the MDIA prohibits brute-force mapping
of errors in parameter space. The inability to map errors in the full parameter
space, combined with the finding that not all DIAs result in stable model inte-
gration, requires that the stability of the optimized MDIAs has to be addressed
explicitly.

7.1 Optimization for individual spectra.

As in the previous section, the behavior of an optimal MDIA is first assessed with
the help of optimal parameter setting for individual spectra and the corresponding
exact interactions. Again, the results for each grid point at the end of the fetch
limited growth case are used. However, for the time limited test, only results at
15 min intervals are used. Optimization again is performed as in Part 1. Part 1
suggests that some MDIA approaches are less likely to be fruitful, for instance, an
MDIA based on the traditional one parameter (\) quadruplet layout. For several
reasons, such an MDIA is nevertheless considered here also. First, only this MDIA
appears to result in model stability for each of its possible components, and hence
should be unconditionally stable too. Second, the convergence behavior of this
DIA for the previous parametric spectra might not be representative for model
spectra. Third, such an analysis is necessary for obtaining a complete picture of
the potential of the MDIA in general.

With this in mind, an MDIA based on the traditional single parameter quadru-
plet is considered first. For all test spectra, optimum values of A and C are esti-
mated for each of the N components in the MDIA. The number of components
N is increased systematically from 1 through 5. The resulting errors e

1/2

= [ [ [swo-xoy aa| (7.1)

where S is the estimated source term and X is the exact source term, are pre-
sented in Fig. 7.1. In this figure the errors e decrease with increasing N. Thus
the results are ordered naturally with N increasing from top to bottom.

Several observations can be made form this figure. First, most errors show
a clear oscillation with either time or fetch. This appears to be related to the
actual location of the peak of the spectrum in frequency space relative to the
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Fig. 7.2 : The optimum values of \ (panel a) and C (panel b) for the fetch
limited test case for a four component DIA with a single parameter
quadruplet definition ()).

discrete spectral grid; each oscillation corresponds to the discrete spectral peak
shifting by one discrete spectral frequency.

Second, while going from N = 1 (top lines in figure) to N = 2 (second lines
from top) the resulting errors e reduce significantly, typically by about 30 to 40%.
Increasing the number components to N = 3 systematically reduces the errors by
another 10 to 15%, but further increase of N has only small incremental impacts.

Third, for the largest number of components considered (N = 5, bottom
lines), the oscillatory nature of the errors becomes more erratic, with occasionally
significant reductions of the error e.

For this MDIA with up to 4 components, the behavior of the optimum pa-
rameters show many similarities with the corresponding single component DIA
discussed in the previous section. This is illustrated in Fig. 7.2 with the optimum
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Fig. 7.3 : The optimum values of A for the fetch limited test case for a five
component DIA with a single parameter quadruplet definition ().

values of A and C for this MDIA with N = 4. For individual components, A and
C show a bifurcation behavior, but are otherwise well behaved. Furthermore,
the values of )\ remain well separated, and the bifurcation behavior of individual
components occurs simultaneously for A and C.

When the number of components is increased to N = 5, the behavior of the
optimum parameters for the MDIA changes systematically, with several compo-
nents having nearly identical values of A, as illustrated in Fig. 7.3. This behavior
was also observed in Part 1, and is accompanied by values of C that are larger
by one or two orders of magnitude, and with opposite signs (not illustrated here,
see Part 1). This changing behavior is probably responsible for the changing
behavior of the error e (that is, the error behaving more erratic) when going from
N <4to N =5in Fig. 7.1.

An example of the resulting interactions for this MDIA for the time limited
growth after 9 h, and for the fetch limited growth at 150 km are presented in
Figs. 7.4 and 7.5, respectively. These figures correspond to Figs. 6.3 and 6.4
in the previous section. The first two panels in these figures again present the
spectrum and the exact (WRT) interactions. Panels (c) through (f) correspond
to the optimum MDIA with the number of components /N increasing from 1 to
4. In creasing the number of components from 1 to 2, or from 2 to 3 has a clear
positive impact on the quality of the resulting MDIA. Increasing the number of
components further to 4 has a minor impact, for both the time and fetch limited
cases. Note that there remain clear deficiencies in the optimum MDIA with 3 or
4 components, particularly at frequencies well above the spectral peak frequency.

The logical next step is to address the error behavior and the corresponding
optimum source terms for MDIAs with increasingly complex definitions of the
quadruplet. The evolution of errors corresponding to Fig. 7.1 for the single com-
ponent quadruplet are presented in Figs. 7.6 through 7.8 for the two parameters
quadruplets (A, Af) and (A, ), and for the three parameter quadruplet (A, u, Af),
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Fig. 7.7 : Like Fig. 7.1 for two parameter quadruplet (A, p).

respectively. Corresponding example optimum MDIAs for the time limited test
case after 9 h of model integration are presented in Fig. 7.9 through 7.11.

Surprisingly, there is little difference in the resulting errors for all single com-
ponent optimum MDIAs (top lines in Fig. 7.6 through 7.8, panels (b) in Figs. 7.9
and 7.10). However, the resulting errors for the MDIA with multiple components
are clearly improved with the more complex quadruplet definition.

Going from a single parameter () quadruplet (Figs. 7.1 and 7.4) to a two-
parameter (A, Af) quadruplet (Figs. 7.6 and 7.9) has a limited impact. The
optimum errors for large N reduce moderately by a approximately 15%. The
error structure, as well as the qualitative deficiencies in the example spectra
remain largely unchanged (Figs. 7.4 and 7.9).

Going from a single parameter (A\) quadruplet (Figs. 7.1 and 7.4) to a two-
parameter (A, ) quadruplet (Figs. 7.7 and 7.10) has a more distinct impact. The
optimum errors for large N reduce significantly by typically more than 50%. Un-
like for previous quadruplet layouts, increasing the number of MDIA components
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to 4 now has a systematic positive impact. Qualitatively, this quadruplet layout
improves the performance of the MDIA significantly at high frequencies, albeit
at some deterioration of the qualitative behavior near the spectral peak (i.e., the
mild reintroduction of the ‘horseshoe shape’ of the positive lobe as identified in
Part 1, present Fig. 7.10).

Going from a single parameter (A) quadruplet (Figs. 7.1 and 7.4) to a three-
parameter (\, u, Af) quadruplet (Figs. 7.8 and 7.11) improves the fit of the MDIA
even more. For N = 4, the reduction of the error now is typically 70%, and for
about half of the test spectra, N = 5 reduces the error by nearly 85%. Figure 7.11
represents one of the cases where using 5 components has a distinct advantage.
Both the qualitative and quantitative improvement reached by this MDIA are
impressive.

The above results give some direction to the the full model optimization to be
performed in the following subsection. Starting with a MDIA based on the tra-
ditional single parameter (A) quadruplet is prudent, considering the established
stability of such an approach in model integration. For a two-parameter quadru-
plet layout, the (A, ) quadruplet as introduced in Part 1 appears to have signif-
icantly more potential than the (A, Af) quadruplet introduced here. This makes
the (A, u) quadruplet a logical quadruplet to be investigated next. The three
parameter quadruplet (A, u, Af) has even more potential. It should be noted
that the expected cost of the implementation of this quadruplet is expected to be
nearly identical to that of the (A, 1) quadruplet, as both require the evaluation of
the same number of discrete spectral densities. Thus, although the optimization
of the three parameter quadruplet will be more complicated than the optimiza-
tion of the two parameter quadruplet, it is nevertheless expected that they will
result in similar model economies.

It should be noted that in the approach chosen here, the layout of individual
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quadruplets are allowed to vary freely. Other methods could be contrived, for
instance, with a fixed distribution of one of the parameters, and others freely
varying. Although such approaches may be worthwhile to investigate, they are
not considered here for practical reasons.

7.2 Full model optimization.

An MDIA in almost any configuration will have a significant number of free
parameters that need to be optimized. Unlike for the single DIA as optimized
in the previous section, it is therefore not economically feasible to map the error
behavior in the full parameter space. Consequently, a search algorithm needs to
be established. A first step in doing so, is to define a single cost function based on
the five error measures for wave height and spectral shapes. This cost function ¢
will be defined here as a weighted average of these five error measures

(= agé€pg + Qp1€E1 + QE2€E2 + As1€51 + Q52652
B ag +ap1 + ap2 + @51 + Gs2

where the factors a represent the weight factors. The effects of these weight

factors will be addressed here using the error maps derived in the previous section.

In the following figures, maps of ¢ will be based on the lower resolution error maps

corresponding to Fig. 6.13.

To illustrate the behavior of the cost function (, it is displayed in Fig. 7.12
and 7.13 in the (), C) parameter space for the DIA considered in the previous
section. The weight functions are chosen to properly emphasize different errors.
First, the overall wave height error is of paramount importance, To assure that the
cost function focuses on the wave height, a relatively large weight ay is required.
Figure 6.7 indicates that the wave height and the spectral energy measures can
be optimized simultaneously. For this case an appropriate setting of the weights
could be a, = 10, and agy = agsy = 1, whereas the spectral steepness measures
are ignored by setting aso = asz = 0. The resulting cost function is presented
in Fig. 7.12, and indeed appears to have minima near the subjectively chosen
values of A = 0.19 and C' = 2.2107 from Table 6.1. Adding the error measures for
the steepness spectra will draw the optimum value of the parameters to higher A
and/or C. Considering that the error measures of the steepness spectra appeared
smaller than those for the energy spectra in the previous section, a somewhat
larger weight might be appropriate. However, because there appears to be no
reason to favor accuracy of the former spectra over the latter, identical weights
appear appropriate. A map of the cost function for a, = 10, ag1 = as1 =
ass = asz = 1 is presented in Fig. 7.13. Indeed, the optimum values of A and C
now are moved to higher values. Note that for both examples, the cost function
appears to have a well defined minimum, suggesting that most search procedures
should result in general in the global minimum of the cost function, in spite of

, (7.2)
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Fig. 7.12 : Cost function ¢ of Eq. (7.2) for MDIA with single parameter
quadruplet (\) and N = 1 as a function of A\ and C using a discrete
parameter resolution as in Fig. 6.13. ap = 10, ag1 = age = 1, a5 =
aso = 0. (a) All test data. (b) Time limited test only. (c) Fetch limited
test only.

0.30

the nonlinear nature of the problem. This, however, proved not to be the case
for MDIAs with more components. Therefore, additional attention has been paid
to the search algorithms employed. Ultimately, the optimization was performed
using a combination of genetic and steepest descent methods, as described in
some detail in Appendix B.

First, the most simple MDIA based on single parameter quadruplets is con-
sidered. Because there appears to be no stability issued with this quadruplet, a
consistent set of MDIAs can be developed starting with N = 1, and increasing
N until no further gain in accuracy can be achieved, or until the behavior of
the quadruplets becomes erratic as in the previous section. The results of such
optimizations are gathered in Table 7.1.

Results for N = 1 in Table 7.1 provide a baseline for all other MDIAs. The
optimal cost function for the traditional DIA thus becomes ( = 26.0%. Note
that both this cost function and the corresponding values of A = 0.212 and
C = 1.88 107 correspond well with the results presented graphically in Fig. 7.13.
This tentatively validates the search algorithm(s) as described in Appendix B.
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Fig. 7.13 : Like Fig. 7.12 with ap, = 10, ag; = ags = a51 = a5 = 1.

Increasing the number of components in this MDIA to N = 2 has a dramatic
positive impact on the model results (Table 7.1). The cost function ( is reduced
from 26.0% to 16.3%, an error reduction of 37%. The gain in accuracy occurs in
all error measures, but is mostly due to an improved description of the steepness
spectra (e5; and €49, error reductions of approximately 50%), and in the energy
spectra (€1 and €po, error reductions of approximately 38%). Note, however,
that the errors in the energy and steepness spectra remain at an unacceptable
high level. The improvement of the wave height error is more moderate (eg, error
reduction of order of 10 to 15% on average), but this is less relevant, because the
wave height errors were already in an acceptable range.

Increasing the number of components in this MDIA further to N = 3 has a
minute impact on the quality of the MDIA, reducing the overall cost function ¢
by only 1.1%. This improvement was mainly obtained by a better description of
the wave height, and is accompanied by a small deterioration of the description of
the steepness spectra. However, from a practical perspective, all error measures
are essentially unchanged when going from N = 2 to NV = 3 for the MDIA with
a quadruplet defined by A only. Increasing the number of components further to
N = 4 also has no benefit (see Appendix B.4).
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Table 7.1: Optimum parameter settings (\,C), corresponding cost function
¢ and errors € as a function of the number of components N for an MDIA
based on the one-parameter quadruplet definition. First and second lines
of error values correspond to time and fetch limited cases, respectively.

N ¢ A C € €r1 €E2 €s1 €52
%) | () x107 1 (%) (B) (%) (%) (%)
1 |26.0]0.212 1.88 4.77 148. 117. 41.2 39.1
2.23 133. 102. 38.3 364
2 116.31]0.127 3.84 |4.27 93.2 74.0 19.9 20.3
0.278 1.83 1.89 80.3 63.5 18.8 19.0
3 |16.1 ] 0.024 4.88 3.93 93.8 74.3 21.0 20.7
0.127  5.60 | 1.27 79.5 63.0 19.8 194
0.279  2.58

The next step in refining the MDIA is to increase the complexity of the quadru-
plet to the two-parameter (A, p) definition. As discussed above, this is not a
generally stable configuration for N = 1. The genetic search algorithm indi-
cates that an MDIA version of this quadruplet nevertheless shows stable model
behavior over large parameter ranges. Considering the optimization results for
individual spectra, the more complex quadruplet definition is expected to start
to provide benefit over the single parameter definition for N = 3. The optimiza-
tion experiments were therefore started with N = 3. Results are summarized in
Table 7.2. The entry for N = 1 in this Table present results for y =0 and N =1
for reference purposes only.

Comparing this MDIA to the baseline of the optimized traditional single com-
ponent MDIA (compare N = 3 and N = 1 entries in Table 7.2), the improvement
is dramatic. The overall cost function ( and the wave height error ey are reduced
by 55%, the spectral errors are reduced by approximately 60%, and the error s
in the steepness spectra are reduced 30 to 50%. More interesting, however, is
the comparison between this MDIA based on the (A, ) quadruplet with three
components, with the MDIA based on the A-only quadruplet with three com-
ponents (Compare N = 3 entries in Tables 7.2 and 7.2, respectively). Going
to the more complicated quadruplet definition with the same number of compo-
nents in the MDIA reduces the cost function ¢ by 28%. The improvement in the
spectral errors e is even more impressive at 40 to 45%, However, the error in
the two-dimensional steepness spectrum egs increases by 20 to 30%, whereas the
errors in the one-dimensional steepness spectra ez, remain largely unchanged.
This implies that the definition of the quadruplet influences both the overall cost
function ¢, and the distribution of the errors € in the cost function (.

Increasing the number of components to N = 4 for the MDIA with the two-
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Table 7.2: Like Table 7.1 for two-parameter quadruplet (\, ). First line of
Table 7.1 is reproduced for reference purposes.

N| ¢ A o C €H  €E1  €g2 €1 €
B | ) ) x0T R) (K (K (%) (%)
1 ]26.00.212 — 1.88 | 4.77 148. 117. 41.2 39.1

2.23 133. 102. 38.3 364
3 111.6 | 0.063 0.009 12.1 |2.11 586 494 251 19.6
0.184 0.028 240 |1.09 46.3 422 26.3 21.8
0.284 0.128 5.33
4 112.1|0.127 0 5.01 |2.62 639 543 240 183
0.133 0.032 0.353 | 0.74 50.7 43.5 24.8 19.2
0.253 0 1.55
0.278 0.151 6.48

parameter (A, x) quadruplet definition does not result in a lower cost function
for the resulting quadruplet layout (see Table 7.2). This suggests that with the
present optimization setup, the optimal model behavior has been reached. It
furthermore suggests that although the genetic algorithm may sample the opti-
mization space fairly efficiently, there is no guarantee that the absolute optimum
setting is found; a ‘perfect’ algorithm would be able to find the solution that is
comparable to the optimum solution for N = 3 or better.

The final stage of optimization for the present study considers an MDIA with a
quadruplet defined by three parameters, A\, u and Af. For reasons of computa-
tional economy, only MDIAs with NV = 3 and N = 4 could be considered here. In
fact, the most complicated MDIA thus considered required the dedicated use of a
16 processor Linux cluster for nearly two months to complete the genetic search
algorithm. The results are summarized in Table 7.3. As with the two parameter
quadruplet definition, the experiments are started with N = 3.

This quadruplet with N = 3 components again provides a notable improve-
ment over the corresponding MDIA with a two parameter quadruplet (12% reduc-
tion in (), and a large improvement over the single parameter quadruplet with 1
or two components (54% and 37% reduction of ¢, respectively). Compared to the
two-parameter quadruplet, the improvement in the error is mostly obtained due
to improved behavior for the spectral error measures, with a slight deterioration
of the error measures for spectral steepness. Unlike with the previous approaches,
adding a fourth component systematically improves the behavior of this MDIA
(a reduction of ¢ by 6% by going from N = 3 to N = 4). This improvement is
obtained in both spectral and steepness error measures.
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Table 7.3: Like Table 7.2 for three-parameter quadruplet (A, u, Af).

N | (¢ A 7 A6 C €H €m1  €E2 €1 €52
B ) @ ) xRk (B (K (%) (%)
1 ]26.0]0.212 — 1.88 | 4.77 148. 117. 41.2 39.1
223 133. 102. 383 36.4
3 110.210.108 0.013 244 6.21 1.28 453 40.5 27.6 23.8
0.233 0.262 34.5 11.4 | 0.55 39.0 41.5 26.2 22.6

0.254 0.106 15.1 4.49
3 110.3]0.104 0.007 2.7 450 |1.89 49.1 486 235 22.2
0.236 0.270 304 129 |[0.76 34.4 39.9 21.8 19.0

0.252 0.064 21.5 3.03
41 9.6 | 0.065 0.167 82.2 832 |2.19 41.7 43.5 22.6 20.2
0.111 0.237 52.0 3.74 |[0.76 30.5 35.6 22.7 19.1

0.127 0 4.0 5.14

0.302 0.195 4.9 3.45

S

© o~ N W A L N N 00 O

'WRT solution.
1 parameter quadruplet, N = 1
1 parameter quadruplet, N =2
- 2 parameter quadruplet, N=3
3 parameter quadruplet, N = 4
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Fig. 7.14 : Wave height H for (a) time limited test as a function of time t
and (b) for fetch limited test as a function of fetch = for the WRT model
solution and various settings of the two parameter DIA as identified in

the legend.
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7.3 Comparison of approaches.

In the previous (sub) sections, optimized MDIAs are judged only by their cost
function (. In practical applications, however, the actual behavior of physical
parameters like the wave height H, and the (steepness) spectra are equally im-
portant. Therefore, such parameters are compared briefly in the present section,
similar to the comparison between various conventional DIAs as presented in
Figs. 6.8 through 6.12.

Figure 7.14 shows the resulting wave height for the time and fetch limited
test for several optimized MDIA, starting with the optimized conventional DIA
(quadruplet based on A only, single component), and ending with the most com-
plex MDIA (quadruplet based on A, p and Af, four components). The wave
heights are excellently represented by all optimized MDIAs. The only notable
error occurs with the less complex MDIAs at the later stages in the time limited
growth (panel a). The MDIA here tend to overestimate wave growth, more so
for the less complicated MDIAs, but still notable for the most complex MDIAs.

Figures 7.15 and 7.16 show the 1-D energy and steepness spectra after 24h
in the time limited test, and at 300km in the fetch limited test, respectively. In
both cases, the wave heights for all model runs are virtually identical, making
differences in the figures purely due to differences in spectra shape. In spite of the
close total energy contents (Hj) of the spectra, there are significant differences in
the spectral shapes. The most simple DIA available underestimates the spectral
peak energy by nearly 40% (a panels in both figures). By increasing the com-
plexity of the MDIA, this deficiency is systematically reduced to less than 10%
for the two most complex MDIAs. However, the improvement in the description
of the spectral peak is accompanied by a deterioration of the description of the
(steepness) spectra at higher frequencies, as is clear from the corresponding lines
in the b panels of both figures.

Finally, Figs. 7.17 and 7.18 present the corresponding two-dimensional spec-
tra. These spectra show a systematic improvement with increasing complexity of
the spectrum.
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Fig. 7.15 : One dimensional spectrum E(f) (panel a) and steepness spec-
trum S(f) = k?E(f) for the time limited test after 24 h. Legend as in
Fig. 7.14. The two-parameter quadruplet with N = 3 is replaced by a
red line for clarity. Spectra normalized with maximum value for WRT

results.
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Fig. 7.16 : Like Fig. 7.15 for fetch limited test at 300 km.
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Fig. 7.17 : (a) Reference spectrum (WRT) after 24 from time limited test,
and differences with results for (b) HHAB, (c¢) TC, (d) HK, and (e)
‘present’ model runs (see Table 6.1). Contours at factor 2 interval with
highest contour at 0.5 times the maximum spectral energy density. Blue
shading identifies negative differences. Differences defined as WRT -
DIA results.
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Fig. 7.18 : Like Fig. 7.17 for fetch limited test at 300 km.
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7.4 Robustness of approaches.

The robustness of MDIAs with alternative definitions of the quadruplet has been
identified as a possible problem in the previous sections. Two observation have
been made from the optimization experiments regarding the robustness of such
MDIAs.

First, for the two parameter MDIA with N = 3 the initial populations in
the genetic search algorithm show a large number of unstable solutions. Loosely
defining an unstable solution as a solution with ¢ > 100%, the initial generation
includes roughly 75% unstable solutions. This rapidly reduces to about 15% in
generation 10, and stabilizes between 10 and 15% for later generations. All other
MDIAs with the multi-parameter quadruplet definition and N > 3. Show similar
behavior.

Second, in the steepest descent algorithm, unstable solutions never resulted
from (small) perturbations to the parameter setting for each MDIA.

Considering that the genetic search algorithm focuses on areas with low costs
functions, both observations suggest that there is a sufficiently large area in
parameter space of stable solutions around the optimum solution for the stability
of these more complicated MDIAs not to be a practical problem. However, this
hypothesis will need to be addressed in more detail in upcoming studies.

7.5 Conclusions.

The holistic approach to optimizing interaction parameterizations has resulted in
the following conclusions for the multi parameter, multi component MDIA:

1) Increasing the complexity of the quadruplet definition, as well as the
number of components N as considered in an MDIA, systematically im-
proves the behavior of such MDIAs.

2) Saturation of improvement occurs at relatively small numbers of com-
ponents N for the present model and optimization approaches, and is
roughly consistent with the results presented in Part 1.

3) Different definitions of the quadruplet do influence individual error mea-
sures for wave heights, spectra and steepnesses differently.

4) Robustness is a potential problem for more complex quadruplet defi-
nitions, but does not appear to be a practical problem in the present
experiments.

5) The genetic algorithm used for the present optimization proved power-
ful, but also has clear economic and accuracy limitations for the most
complex MDIAs considered here.
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As a side note, it is interesting to observe that optimization of the MDIA to
individual spectra will lead to bifurcation behavior in the optimized parameter
values. Such behavior has not been observed explicitly in holistic approach.
However, the apparent existence of many local minima of the cost function in
parameter space may well be a reflection of this bifurcation behavior.
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8 Summary and conclusions

The present study starts with the definition of a general, multiple DIA, which
represents the maximum flexibility of previous DIAs presented in literature. The
only omission from previous literature is the definition of individual proportion-
ality constants for individual terms in the equation for the interaction strength
(Ueno and Ishizaka, 1997; Hashimoto and Kawaguchi, 2001) and the variable
DIA (Part 1). The omission of these approaches is based on results presented
in Part 1. Because the results published in Part 1 indicate that accurate inter-
actions for an individual spectrum do not guarantee stable or accurate model
integration, a basic time and fetch limited growth test are set up. Benchmark
results for wave heights and various spectral parameters are obtained by using
the exact (Webb-Resio-Tracy) algorithm for S,,;. Furthermore, individual spectra
from these computations are used occasionally for optimization of individual in-
teractions. Such spectra are expected to be more representative for wave models
than previously used parametric spectra.

In Section 3 an attempt is made to understand why some DIAs do not result
in stable model integration. A possible explanation is the basic signature of con-
tributions to S,; for a given discrete frequency. The traditional DIA results in
a three-lobed structure, that can be an obvious building block for a three-lobed
overall interaction. Other quadruplet layouts do not incorporate this basic fea-
ture, and may therefore have more problems representing the three-lobed struc-
ture of the interactions for more arbitrary spectra. Furthermore, the different
sampling characteristics of the spectral space for more complex quadruplets sug-
gests that grid decoupling may occur. However, the results presented in Section 4
prove the latter to be a moot point.

In Section 4 the effects of the quadruplet layout and the way in which the
quadruplet is used to sample spectral space are addressed. It is shown that the
way in which a quadruplet is used to sample spectral space only influences inter-
action at the level of the necessary interpolations and redistributions in spectral
space. This has negligible impact on interactions for individual spectra, but may
have a larger impact on spectra obtained by model integration due to the non-
linearity of the problem. Given the small impact of the sampling on the results,
it is advisable to use a symmetric quadruplet layout, as this is most conducive to
numerical economy (see Section 4.3).

In Section 5 alternative quadruplets with a three-peaked signature are consid-
ered. For this purpose, the Van Vledder (2001) quadruplet is first reformulated
in a symmetric form. It is shown that by defining a quadruplet with 4 =0, A # 0
and Af # 0, such a signature can be achieved. A simple integration test with the
WAVEWATCH III model shows promising results. Unfortunately, more rigorous
optimization efforts in the following sections show that this approach also often
results in unstable model integration.
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In Sections 6 and 7 single and multiple DIAs are optimized by optimizing
time and fetch limited model results. This holistic optimization approach leads
to systematically improved model behavior, unlike optimization techniques based
on individual spectra and interactions as used in previous studies and in Part
1. An optimization for each individual model spectrum for the time and fetch
limited runs nevertheless shows interesting results. Such optimization leads to
bifurcation behavior of optimized model parameters, which at least qualitatively
explains why better interactions for individual spectra do not necessarily lead to
better model behavior.

Section 6 concentrates on single component MDIAs. It is show that only the
conventional quadruplet layout results in unconditionally stable model integra-
tion for such MDIAs. The low dimensionality of the optimization process allows
for a full mapping of the error behavior of the wave model in parameter space.
It is shown that the wave height and the energy spectrum can be optimized si-
multaneously, but that this always leads to sub-optimal behavior for steepness
measures. It is furthermore shown that the wave height can be represented accu-
rately, but that significant errors remain in the spectral shape, even for optimized
MDIAs.

In this section, previously suggested parameter settings for the conventional
DIA are compared with present optimized settings. Particularly interesting are
the settings as used in the default WAVEWATCH III model. Such settings result
in the spectral peak to be spuriously moved to higher frequencies, whereas the
low frequency flank of the spectrum is relatively well represented (see Figs. 6.11
and 6.12). This explains an apparent paradox that has been observed in WAVE-
WATCH III results. Initial swell arrival times appears reasonable well repre-
sented, whereas peak periods in wind sea conditions appear systematically under
estimated by roughly 10%. The latter deficiency has been reported at several
conferences, but to the knowledge of the present author has not been published
in detail.

Section 7 concentrates on more complex MDIAs. It is show that by increasing
the complexity of the MDIA, and by using a holistic optimization technique, it
is possible to dramatically improve the quality of the model results when com-
pared similar results obtained with the exact interaction algorithm. Nevertheless,
notable errors remain the the present approach. Furthermore, it is clear that dif-
ferent quadruplet definitions lead to different error focuses in the cost function.
Finally, it appears that for MDIAs with at least N = 3 components, there is no
serious robustness issue, in spite of such issues with the underlying MDIAs with
N =1 components.

The above results clearly identify the holistically optimized MDIA as a much

more accurate alternative for the traditional DIA, although the economy of such
approaches has not been adequately addressed yet. In this feasibility study,

70



the final optimization capabilities have been limited by numerical economy of
approaches, an a lack of a detailed analysis of the optimization procedures itself.
A significant part of the economical limitations are due to the fact that a non-
optimized MDIA implementation was used. Also missing from the present study
are a detailed assessment of the robustness of the approaches, and an assessment
into errors for more complex / realistic wave conditions. With this in mind,
additional studies regarding this MDIA should consider the following issues:

1) Having established the MDIA with the expanded quadruplet layout as
a viable alternative to the conventional DIA, a numerically optimized
version of this MDIA needs to be developed to facilitate further numerical
experiments and optimization. Actual or future incorporation of shallow
water effects needs to be considered.

2) Having established the genetic algorithm as a viable method for holistic
optimization of the MDIA, a detailed assessment of this optimization
procedure appears essential. Eiben and Smith (2003) provide a plethora
of avenues to do this. Included in this are the need to re-evaluate the
costs function ¢, and the allowed range of parameter values (particularly
negative values of C).

3) The resulting MDIA will need to be applied to more realistic wave con-
ditions, to assure that the improvements for idealized conditions carry
over to more practical model applications.

4) The robustness of the MDIA needs to be addressed in more detail.

5) The final economy of such MDIAs needs to be addressed. Note that
in the context of the dynamic integration scheme in WAVEWATCH III
(Tolman, 1992, 2002a) the economy is a function of both the computa-
tional costs for individual interactions, and the resulting time steps in
the integration scheme.
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A Quadruplet layout

A.1 General considerations

In the present study, the (deep water) quadruplet with unlimited versatility is
defined from Eqs. 2.2 through 2.4 and the bottom line in Table 2.1 as

\

or = (14+p)o
09 = (1-po
g3 = (1 + )\)0’
o = (1-X)o [ (A1)
kl + kz = k3 + k4
92 = 91 :l: AQ )
where the definition of Af depends on the actual quadruplet layout selected.
Furthermore, the wavenumber £ = ||k|| and the frequency o satisfy the (deep
water) dispersion relation
o? =gk . (A.2)

Symmetric sampling of frequency space furthermore suggests that k;+k, are lined
up in direction with a discrete spectral wavenumber for which the contributions
are computed. Thus, the quadruplet angles #; through 6, are given relative to
the corresponding discrete spectral direction. From Eqs. (A.1) and (A.2), the
wavenumbers of the quadruplet become

ki o= (1+p)o’g!
ke = (1-p)o’qg!
k3 — (1 + /\)2 0.2g—1 ’ (A3)
ki = (1-=X?0%g7!

which in nondimensional form, defining k; = gk;0 2, becomes

ko= (1+p)?
kr = (1-p)?
- A4
ks = (142 (A-4)
ky = (1-))?
For convenience, k, is defined as
/~§c=g||k1+k2||072=g||k3+k4||072 ) (A.5)

The internal quadruplet angles 6; through 6, are needed to compute discrete
interaction contributions. These angles are defined by the two triangles, with
sides (k1, k, k.) and (ke, ks, k4), respectively. The actual quadruplet layout chosen

Al



(one, two or three parameters versions) define k1, ky and A6, and hence k.. From
this the angles 63 ad 6, always follow as

720 12 _j2
f; = + arccos (%) : (A.6)
c V3
7.2 | 1.2 _ 1.2
6, = F arccos (%) : (A.7)
c v4

Not every value of A results in a valid quadruplet configuration. First, identical
quadruplet layouts are found for A and —\ (or p and —p). Therefore, it is
sufficient to consider A > 0, 4 > 0 and # > 0 only. Considering, furthermore,
that k3 + k4 is a monotonically increasing function of A, upper and lower bounds
of A are defined by

IN IV

2 "

c

\/max (0., %fcc — 1) <A<

These general considerations will be used in the following section to define several
practical quadruplets

which corresponds to

ke (A.9)

=~ =

A.2 Practical quadruplets

Four practical quadruplets will be considered here in some more detail. These are
the conventional DIA quadruplet, the two parameter quadruplet from Part 1, the
two parameter quadruplet from Section 5, and the three parameter quadruplet.

The DIA quadruplet is defined by © = 0 and Af = 0. With this, k. =2, and
the internal angles of the quadruplet become

01 = 92 = 0 , (AIO)

B A+ N +4-(1-N)"
3 = + arccos < T 0? : (A.11)

(1= +4—(1+N)*
= A.12
6, = F arccos ( =) : ( )

and valid quadruplet configurations can be found for

0<A<05 . (A.13)
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The quadruplet from Part 1 is defined by A and yu, whereas Af follows from
the assumption that k. = 2. With this the internal angles of the quadruplet
become

0p:imm%<“+“fai;§_“y), (A.14)
0f2$M%%<“_M§ai;§+ﬂy), (A.15)
%zimm%<a+A§ai;§_Af>, (A.16)
6, = T arccos <(1 - A)i(“; ‘:)(21 * W) (A.17)

Note that close correspondence to the layout of the DIA quadruplet above. Note,
furthermore, that the signs of #; and A, are opposite, as are the signs of #3 and
6,4, resulting in four possible quadruplet configurations. Cyclic exchange of A and
i results in the same quadruplet, so that unique quadruplets exist for

0< < A<05 . (A.18)

The two parameter quadruplet from Section 5 is defined by 4 = 0, and A and
A6 used defined. With this,

k. = 2cos(0.5A0) (A.19)
and the internal quadruplet angles become

0, = i%AH , (A.20)
0 =F500 | (A.21)

4 2 —_ (1 =)\
3 = £ arccos <(1 * )\)4 l_oj(c()OSSA(()Gf(Alej- /\)(21 ) ) , (A.22)

4 2 4
4 = F arccos <(1 ) 1 1_0;1(00(?; A((;;ﬁoz ;)(21 ) ) (A.23)

The addition of Af# to the DIA quadruplet does not change the lower limit of
valid values for A, but it does change the upper limit. Valid values for A are given
as

0 <A <0.5c08(0.5A8) . (A.24)
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For the full three parameter quadruplet layout, k. becomes

ke = [(1+ m)" +2(1 + p)°(1 — )% cos(A8) + (1 — w)*]""* | (A.25)

The corresponding internal angles become

1 4 12 1 — )%
6, = £ arccos (1+p) il ke = (L= p) : (A.26)
2ke (14 p)?
1— )t 7.2 1 4
6 = F arccos (1= ~+ ke = (0 +p) : (A.27)
2ke (1 —p)?
L+ +E2 - (1- M)
05 = + arccos (1+d ~+ e ) , (A.28)
2k (14+ 1)
1— AN+ k2= (1+ M)
6, = F arccos ( el Ch ) (A.29)
2k (1—N)?
For reasons of symmetry, the values of u and A@ are limited to
0 < A6 <180° , (A.30)
0<p<l . (A.31)

The limits of A then follow from Eqs. (A.9) and (A.25). Note that, depending
on the values of y and A, the lower limit for A can be much larger than 0.
Furthermore, there is no symmetry that commands that yu is always smaller than
A or vise versa.
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B Growth curve optimization

B.1 Error measures

An integral way of tuning and testing parameterizations for the nonlinear interac-
tions is to optimize the results of model integration, rather than the approxima-
tion to the interactions for given spectra. The most detailed and basic predicted
parameter of a third generation wave model is the energy density spectrum E(f, 6)
as it evolves in space and time. More robust and integrated parameters obtained
from this spectrum are the one dimensional frequency spectrum E(f) and the
significant wave height H,

E(f):/ B(f.0)d0 (B.1)

HS:4[//E(f,0)dfd0]l/2:4\/E , (B.2)

where F; is the total wave energy. These three parameters could all form the
basis of the optimization of model results. If the wave height is considered, only
the total energy is considered. If the one dimensional spectrum is considered, the
focus is on both the integral energy, and the location of the spectral peak. With
the full spectrum, directional properties of the spectrum also become important.
These three measures, however, concentrate on the peak of the wave spectrum.
Particularly the high frequency flank of the spectrum, however, is important
for many processes governing air-sea interactions. This part of the spectrum
is not well represented in the above error measures. Additional error measures
that focus more on the high frequency part of the spectrum would be the one
and two dimensional steepness spectra, which for deep water can be defined
as k’E(f) = (2m)*¢~2f*E(f) and its one dimensional form integrated over the
directions.

Ideally, the optimization gives equal wight to model behavior during the entire
model evolution. To assure such behavior of the error measure, errors should be
normalized on a spectrum by spectrum basis. With this in mind, the following
five root mean square error measures have been defined in the present study

N 9 1/2
1 (Hs,m — Hs’a)
en = [N S Wer = ol ] , (B.3)
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€Ep2 =

N 2 1/2
_ |1 fos {E:(f) — Ea(f)} df
€s1 — [N . Stg’m ] I (B6)

N 9 1/2
652_[ s LIS, )S (£,0)} dfd0] e

N 2 1/2
1 J J{E:(f,0) — Eu(f,0)} dfdd

Where N is the number of output points considered in the optimization, where
the suffices x and a denote the exact and approximated solutions, respectively,
and where

S, = / / FAE(F,0) df do (B.8)

is the integral steepness, computed over the discrete spectral domain only (ignor-
ing the constant factor (2m)*¢g~2 as in the remainder of the error computation).
Because all these error parameters are internally normalized for each spectral
data point, the errors are in fact relative errors. Ideally, such errors should be in
the percentile range, or even better.

The error measures are computed separately for the time and fetch limited
cases, which contain 48 and 50 reference spectra, respectively. For each of the
five error measures the composite error €. can be computed from the errors of the
time and fetch limited cases (¢; and €y, respectively) as

48¢7 + 5031/
€c = [ 03 ] (B.9)

In order to obtain an optimum MDIA, these errors need to be evaluated in a
subset of one (N = 1) or more (N > 1) (A, u, Af, C)-spaces. If this parameter
space is of sufficiently low dimensionality, it is possible to map errors by a brute
force method in discretized parameter spaces. This is useful for nonlinear prob-
lems like the one considered here, because such nonlinear problems potentially
have several local error minima in parameters space, which poses problems for
conventional optimization algorithms.

For many MDIAs, the number of free parameters in the parameterization
prohibits full mapping of the errors in parameter space. Hence, search algorithms
need to be employed. In such search algorithms, a composite error or cost function
needs to be defined and minimized. In the present study, this cost function ( is
defined as a weighted average of the five previously defined errors in Eq. (7.2). In
the following section, the two optimization techniques utilized here are discussed.
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B.2 Optimization by steepest descent

The first optimization technique utilized is a straightforward steepest descent
method, similar to the one used in optimizing the MDIA for individual spectra
and their exact interactions. The following search strategy is employed.

First, the quadruplet layout and the number of quadruplets is selected. Sec-
ond, the the quadruplets are initialized by choosing initial values for each param-
eter defining the quadruplet, and the corresponding cost function ¢ is computed.
After initialization, all parameters defining a single component of the MDIA are
perturbed to estimate the partial derivatives of the cost function with respect
to all the parameters defining this component of the MDIA. From these partial
derivatives, a steepest descent path is estimated, and a single discrete search of
the minimum cost function along this path is performed. The parameter settings
with the overall lowest cost functions from the initial MDIA settings, or from
individual parameter perturbations and or from the descent path search is then
retained. A single search step is performed for each individual quadruplet of the
MDIA in succession, after which the procedure is repeated for each quadruplet.
After no further convergence can be achieved in this way, the search increments
in parameter space are incrementally reduced.

This optimization differs from the optimization for individual spectra and
sources in two major ways. First, for the optimization of individual sources, a best
fit for all values of C can be found explicitly by matrix inversion, directly giving a
best fit solution for each (set of) quadruplet configuration(s). In the optimization
of model results, C' needs to be found iteratively, like all other parameters of the
MDIA. Furthermore, the procedure employed for individual sources allows C' to
vary freely. In the model optimization, the increment procedure is set up such
that the quadruplet parameters always result in valid quadruplets, and that C
will always remain positive.

Initial experiments with this optimization technique indicated that its results
may be sensitive to initial conditions, particularly for MDIAs with several compo-
nents. This implies that there are multiple local minima of the cost function ( in
the parameter space of the MDIA, making a descent method less suitable to find
the global minimum of the cost function, and hence the global best parameter
settings of the MDIA. To provide an objective way to sample the entire parame-
ter space for minima in the cost function in an economical way, a genetic search
algorithm was employed. This algorithm is described in the following section.

B.3 Optimization by genetic algorithm

As an alternative to a steepest descent algorithm, a so-called genetic algorithm
has been constructed (e.g., Eiben and Smith, 2003). Genetic algorithms loosely
take their search strategy from natural selection in biology. Some advantages of
such an algorithm for the present study are
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1) Genetic algorithms sample the entire parameters space for local and
global minima of the cost function, and are therefore in principle less
(or not) sensitive to initial conditions.

2) They do not depend on the cost function to be differentiable in param-
eter space. Figure 6.6a indicates that particularly ey is not particularly
smooth in A\ space, which will hamper the efficiency of a descent algo-
rithm.

3) Such algorithms are more efficient than random search or full mapping
of the cost function in parameter space.

A disadvantage of a genetic algorithm is that it is efficient to approximate the
optimal choice, but that the final convergence may be slow. Furthermore, the
genetic algorithm (as adopted here) features a built-in discrete resolution, whereas
a steepest descent algorithm can provide the results at arbitrary resolution. For
this reason, the genetic and steepest descent algorithms are used here in tandem.
The genetic algorithm is used to map the general optimum behavior of the MDIA
in full parameter space, and is used to provide near-optimal initial conditions for
a subsequent steepest descent method. The remainder of this section will be used
to describe the genetic algorithm used here.

In a genetic algorithm, a set of parameters to be optimized is described as a single
string of bits. For the present application, a single component of the MDIA is
described with A and C, and optionally with 4 and Af. To convert this into
a single bit string, these parameters are described discretely with a minimum
value, a maximum value, and an increment. The binary description makes it
convenient to define the increment indirectly from a predefined number of bits
and the minimum and maximum values of the parameter. For instance, setting
the minimum and maximum values of A at 0 and 0.5, respectively, and describing
) with 6 bits results in 2% = 64 discrete values, and a linear increment of 0.0079.
1 and Af are discretized similarly, whereas C' is discretized logarithmically, with
a constant increment factor between consecutive discrete values. The actual
discretizations used here are gathered in Table B.1. Note that the discretization
is fairly coarse. This will speed up the convergence of the search algorithm, and
is justified by the fact that the genetic algorithm is used here only to find areas
in parameter space close to the global optimum settings. If such points cannot be
found with relatively coarsely discretized parameter space, this probably implies
that the optimum settings are very sensitive. This suggests that such settings
will probably be specific for spectral resolutions, and is generally not conducive
for accurate practical applications.

Having the individual parameters described as bit strings, the entire set of
parameters needs to be transformed into a single bit string. For a single com-
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Table B.1: Discrete description of parameters in the genetic algorithm for
optimization of MDIAs. Increments are linear, except for the factor
increment for C'.

parameter minimum maximum bits increment

A 0 0.5 6 0.0079
I 0 0.5 6 0.0079
Al 0° 180° 6 1.43°
C 1108 2108 7 1.043

ponent of the MDIA, the order of the parameters in the bit string is always set
as

A=[p—-[A0]-C

where the square brackets indicate the inclusion of the parameters for the appro-
priate quadruplet configuration. For an MDIA with more than one quadruplet
configuration, the corresponding bit strings are combined in a single string. This
is done randomly, without sorting individual quadruplets in any way. In this
way, an MDIA with a single component and a quadruplet defined by A only is
described with a string of 13 bits. For instance, the bit string

0011000111110
translates into an MDIA defined approximately by

A=0.095 , C=1.33107

With this configuration, 2'3 = 8192 discrete values of (), C) are distinguished,
which could all be tested by brute force as in Section 7. Extending this MDIA
to two components extends the length of the bit string to 26 bits. For instance,
the bit string

01101110110100011000111110
translates into an MDIA defined approximately by

A =0214 , C, =4.27107
A =0.095 , Cy=1.33107

With this configuration, 23 ~ 67 10° discrete options exist, which cannot practi-
cally be assessed by brute force. For more complicated quadruplet configurations,
or larger numbers of components, the number of options to be considered obvi-
ously becomes even more untenable from a brute force perspective.
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After an individual MDTA can be described as a bit string, the next step in
the present genetic algorithm is to define a population size M. Each member of
this population is then initialized randomly. For each member the cost function
¢ according to Eq. (7.2) is then evaluated. For each member of the population
a ‘score’ is then defined as 1/¢. This completes the processing of the initial
population.

From the initial or subsequent generations new generations are generated,
together with there scores. After experimentation with an MDIA with two com-
ponents and a quadruplet defined by A only, the following ‘procreation’ strategy
was developed:

1) After sorting the population by the score 1/(, a fraction of the popula-
tion with the best scores is transferred to the next generation without
modification. This fraction is set here to 1/6.

2) Members of the present generation are allowed to become ‘parent’ in the
new generation if their cost function ( is less then 2(,i,, where (i, is the
cost of the best scoring member of the present population. At least 1/4 of
the present population, but no more than 1/2 of the present population
are allowed to become parents.

3) Pairs of two parent are chosen from the thus established group of parents.
Pairs are selected with a probability proportional to 1/¢ — 1/(nax, where
Cmax corresponds to the cost function for the allowed parent with the
highest cost function.

4) For each pair of parents two offspring are generated by randomly choosing
a part of the bit string for each separate component of the MDIA, using
each part of each parent exactly once. Within the part of the string
representing one component of the MDIA |, the 'genes’ are allowed to cross
over 0, 1 or 2 times, with probabilities of 0.5, 0.25 and 0.25 respectively.
Furthermore, each bit of each child is allowed to mutate to its opposite
value with a probability of 0.1. New MDIA configurations thus generated
are added to the new population unless one of the following criteria is
met:

e The quadruplet configuration does not satisfy the resonance con-
ditions.

e The bit string is identical to a bit string that has already been put
in the new population.

e The MDIA configuration is identical to one already included in the
population. Note that this requirement differs from the previous as
it includes sorting of parameters, and combination of components
with identical quadruplet configurations.
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Table B.2: Population sizes M and number of generations L as used in the
genetic search algorithm for various quadruplet layouts and number of
components N. Table displays pairs (M, L). Empty slots in table con-
sider configurations that have not been analyzed.

N N A p) (A p AB)
1 (60,6)

2 (180,20)

3 (300,50) (300,80)  (900,75)
4 (300,50) (600,75)  (900,75)

5) For all new members of the population the cost function ( is evaluated,
and the population is sorted with respect to (.

Population size and number of populations to be evaluated are determined sub-
jectively, and are gathered in Table B.2. The case of N = 1 for a quadruplet
based on A is trivial, and is considered for basic testing of the algorithm only.
The corresponding case with NV = 2 has been used here to experiment with the
algorithm, and will furthermore be used to illustrate the behavior of the genetic
algorithm.

This example MDIA has four free parameters; A1, C1, Ay and Cs. It is therefore
impossible to visualize the entire parameter space at once. Instead, the evolution
of generations will be illustrated here with the evolution of (A;, Ay), which are
presented in Fig. B.1 for selected generations. All 180 members of each generation
are presented, using color coding to identify the lowest cost functions in each
generation. Note that in the bit string, a distinction is made between MDIAs
where the first and second component are exchanged, but that such MDIA in a
physical sense are identical. Therefore, the components in Fig. B.1 are sorted so
that A\; < Ag. Degenerated MDIAs with A\; = Ay and hence N = 1 in physical
space are not shown in the figure. Such MDIAs make up a negligible part of each
population, with more frequent occurrences in earlier generations.

In the first generation (Fig. B.1a), the generation more or less evenly occupies
the (A1, A2) space, with no clearly preferred areas with better cost functions (see
rank legend in the figure). After three to six generations (Figs. B.1b,c), members
of the population with better scores start to cluster in (A1, Ay) space, particularly
preferring combination where either A; or A, is close to the optimum value for a
single component MDIA (i.e., A &~ 0.21). In generation 6, the first members with
low cost functions are found near the eventual optimum solution with A\; ~ 0.13
and Ay &~ 0.27. With subsequent generations, the members of the population
with the lowest cost functions cluster more and more in this part of (A1, A9)
space, abandoning earlier preferred locations.
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Fig. B.1: )\ as a function of A\, for selected generations of the genetic search
algorithm for an MDIA with two components (N = 2) and a quadruplet
defined by A only. The rank number is based on the value of the cost
function ( of each member of the population, rank number 1 being the

member with the lowest cost function.
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The ‘final solution’ of generation 20 (Fig. B.1f) is the ultimate goal of the op-
timization procedure, It is, however, instructive to look at previous generations in
some detail. As already mentioned above, it is clear that the initial preferred con-
figurations mimic the single component MDIA. Furthermore, around generation
10 (Fig. B.1d), good solutions also cluster around A; ~ 0.2 and Ay = 0.4. This
suggest that there might be a local minimum in the cost function for such config-
urations of the MDIA. Inspection of the corresponding costs functions shows that
¢ = 0.22 in this region, which is much larger than for the ‘final’ optimum results
(¢ ~ 0.17). Hence there appears to be no reason to further investigate this area in
parameter space. The example nevertheless indicates that the genetic algorithm
can identify multiple near-optimal solutions, and that it is prudent to follow the
evolution of the generations through time to identify these. In this context it is
also prudent to map the evolution of MDIA configurations as a function of the
cost function (, and will be done in the following section.

B.4 Composite search results

The hybrid method to find the optimum parameter setting for several MDIAs
consists of three steps:

1) Run a genetic search algorithm to identify promising initial estimated of
parameter settings for each MDIA.

2) Use such settings as initial conditions for a descent search algorithm for
the corresponding minimum in the cost function ¢, and the corresponding
MDIA settings. This procedure can be repeated with different initial
conditions as indicated by the results of step 1.

3) Re-establish errors and ¢ with rounded values of the parameters set-
tings to assure that the optimization is not overly sensitive to the exact
parameter values.

In the main report, the main attention is focused on the final MDIA settings
obtained with this method. In this appendix, some more attention will be given
to the results of the genetic optimization procedure. In Table B.2, some additional
information on the genetic optimization procedure has already been presented.
In Table B.3 the initial conditions as used in the final descent optimization are
gathered. In the remainder of this appendix, these initial conditions will be
discussed in more detail. Finally, Table B.4 presents the final cost functions of
the best initial condition as determined from the genetic algorithm, the final score
of the descent algorithm, and the final score of the rounded parameter settings.
The improvement of the first score to the second score indicates the accuracy
of the genetic algorithm, which is limited by the limited number of generations
considered (convergence), and the relatively poor discrete resolution used. The
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Table B.3: Initial conditions used in the steepest descent MDIA optimization
procedures corresponding to the results presented in Tables 7.1, 7.2 and
7.3. Columns represent 1, 2 and 3 parameter quadruplet, respectively.
Initial conditions for N = 1 not based on genetic algorithm.

NT X C ) 7 C p) u A0 C
] () x1007"] () () x0T () () () x1077
110250 2.00
2 10127 4.27
0.278  1.93
310024 648 |0.063 0008 10.7 | 0.103 0.008 24 597
0.127 549 |0.175 0.040 248 |0.230 0262 36 116
0278 2.38 |0.278 0151 597 |0.262 0111 14 4.84
0.127 0 393 [ 0095 0008 4 484
0.246 0.032 1.12 |0.230 0.279 34 116
0.270 0.143 5.97 |0.254 0.056 19 2.59
0.127 0.008 3.77
0.262 0.016 1.22
0.262 0.151  6.48
i 0.127 0 549 | 0071 0127 81  8.68
0.143 0.008 0.272 | 0.111 0.230 53  2.38
0.254 0.008 151 |0135 0 1 572
0.278 0.151 6.48 |0.302 0.183 9  3.19

increase of the cost function from the second to the the third value provides an
indication of the sensitivity of the cost function to the actual parameter settings
of the MDIA.

In the optimization experiments, MDIAs with increasing complexity are con-
sidered, The experiments started with the single parameter quadruplet definition,
defining the entire MDIA by A and C'. Such an MDIA with a single component
(N = 1) is added for completeness, and to provide a baseline of performance
for more complicated MDIAs. Due to the simplicity of this MDIA, and the well
documented behavior of its errors in the full parameter space, only a single arbi-
trary initial condition has been used for the descent algorithm (see Table B.3).
This explains the large drop in cost function from the initial conditions (33.4%)
to the optimized values (26.0%). The effects of the round off of the optimized
parameter valued are negligible (a difference of 0.003%), as would be hoped for.
For all other settings, the initial settings result in errors that are relatively close
to the results of the steepest descent methods, and the round off has little impact.

The MDIA based on A and C only benefits greatly form adding a second
component (N = 2). The genetic algorithms shows convergence to a single
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Table B.4: Optimum cost functions ¢ in % for optimized MDIAs with vari-
ous numbers of components N and quadruplets defined by 1, 2 or three
parameters. Cost functions from left to right per table entry correspond
to initial conditions taken from the genetic search algorithm, the corre-
sponding final result of descent algorithm, and cost function for MDIA
after rounding off of parameters as found by the descent algorithm.

N quadruplet definition

(M) (A, 1) (A, 1, A)
11334 26.0 26.0
16.8 16.3 16.3
31163 16.0 16.1|124 11.5 11.6|12.5 10.1 10.2
12.8 12.1 121|127 10.2 10.3
12.8 12.2 12.3
41162 — — [124 120 121|120 96 9.6

\)

dominant minimum of the cost function (, as discussed in the context of Fig. B.1.
Adding a third and fourth component adds little to quality of the MDIA. This
is illustrated in Fig. B.2 with the values of A for the highest ranked (lowest ()
members of generation 50 of each experiment. Note that convergence behavior of
the genetic search algorithm with the population size and number of generations
as identified in Table B.2 suggest that the algorithm has come close to the optimal
solution. This is tentatively confirmed by the small additional improvement as
achieved by the descent algorithm (see Table B.4).

For this MDIA with 3 components (Fig. B.2a), several near-optimal solution
types can be identified. The three best members of the population (¢ < 16.35)
combine the optimum MDIA with N = 2 with third component with A = 0.02.
Such an MDIA has a cost function that is only marginally better than the corre-
sponding optimal MDIA with NV = 2, both in the genetic search procedure, and
in the descent method (see Table B.4, note that the second and third cost func-
tion for the MDIA differ by only 0.04%). A second near-optimal solution type
identified in Fig. B.2a corresponds to the optimum two-component MDIA with
the third component extremely close to either A = 0.127 or 0.278. In essence,
these can be considered as degenerated two-component solution, particularly be-
cause the score of such MDIAs are not improved compared to the scored of the
corresponding three component MDIAs. A third near-optimal solution adds the
third component more balanced between A\ = 0.127 and 0.278. Additional steep-
est descent experiments starting from such initial conditions indicate that such
solution also do not improve upon the first type of solution identified here, al-
ways resulting in ¢ > 16.3 (figures not presented here). More importantly, none
of these solutions provide results that improve upon the two component MDIA.
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Fig. B.2 : X\ as a function of ( for the highest ranked members of generation
50 of the genetic search algorithm for an MDIA with the quadruplet
defined by A only for (a) N = 3 and (b) N = 4. Symbols and colors

identify A\, through )4, as sorted by value.

The initial conditions presented in Table B.3 for this MDIA represent the first
type of solution as identified in Fig. B.2a.

Adding a fourth component to this MDIA (Fig. B.2b) produces results that
are very similar to those of this MDIA with N = 3 (Fig. B.2a); the additional
component has a value of A that generally lies close to a previously established
value of A, hence producing near-degenerated MDIAs with effectively N = 3 or
N = 2. This is convincingly demonstrated by the fact that the highest ranked
member of this population actually represents a truly degenerated MDIA with
N = 3, that is, two of the components have identical A and can therefore be
combined in a single MDIA component. Because this highest scoring MDIA has
a cost function ¢ that is consistent with the optimal results for the corresponding
MDIA with N = 3 (see Table B.4), it was not deemed necessary to investigate
this MDIA with N = 4 further.

Next, the MDIA with a quadruplet defined by A and g will be addressed.
The investigation starts with N = 3, as described in the main body of the report.
The genetic search algorithm identifies several potentially optimal solutions that
have been used as initial conditions for the steepest descent algorithm. This is
illustrated in Fig. B.3 with the values of A and p for the highest ranking members
of population number 80. The three different initial conditions are identified as
A through C in the figure.

Initial conditions A in Fig. B.3 consist of three distinctly different values of
A. For the MDIA components with the lowest A, the values of y are generally
low. For the third component, however, p is substantial. Initial conditions B
have similar general characteristics, with the second and third value of A more
similar, and with generally distinctly different from the values of initial condi-
tions A. Initial conditions C are similar to B in character and values, with the
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Fig. B.3: X (panel a) and u (panel b) as a function of { for the highest
ranked members of generation 80 of the genetic search algorithm for an
MDIA with N = 3 and the quadruplet defined by A and p. Symbols

and colors identify \; through A3, as sorted by value.

distinction that Ay = A3, whereas p» is small and pj3 is substantial. Although this
initial condition in many ways is similar to conditions B, it has been considered
separately for the sake of completeness. The optimization results from the three
initial conditions after the steepest descent method and the rounding off of the
parameter settings are gathered in Table B.5.

Several interesting observations can be made from the data presented in Ta-
ble B.5. First, the best initial conditions do result in the best optimized MDIA
following the three step approach used here. Second, the three different initial
conditions lead to different optimized MDIAs, confirming the fact that a straight-
forward descent algorithm is highly unlikely to find the global optimum settings
for an MDIA, and that it is essential to use the genetic search algorithm to find
suitable initial conditions for a descent algorithm. This is even true for the fairly
similar initial conditions B and C, which converge to similar but not identical
final optimized MDIAs. Third, the three optimized MDIAs do share a similar
structure of the errors ¢ underlying the cost function (, suggesting the the dis-
tribution of errors € in the cost function ( is less sensitive to the final layout of
this MDIA, than the actual cost function (. Considering the above, only the
optimized MDIA A has been used in the body of this report.

Note that the difference of the errors in Table B.4 between the initial con-
ditions and the final results are substantial. This might be due to insufficient
convergences in the genetic algorithm. To test this, the number of generations
was increased from 50 to 80 (Table B.2). However, this has no impact on the best
scores used as initial conditions, which, in fact, all had been found at generation
50. This could mean two things; first, this may be due to the impact of the rela-
tively course discretization of parameter space in the genetic algorithm. Second,
it may identify a lack of diversity in the populations in the genetic algorithm.
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Table B.5: Like Table 7.2 for two-parameter quadruplet (A, ) with N = 3
for initial conditions A through C. in Fig. B.3.

initial | ( A 7 C €g €g1  €E2 €1 €52
cond. | (%) | () () x107| (%) (B) (%) (%K) (%)
A 11.6 | 0.063 0.009 12.1 2.11 586 49.4 25.1 19.6
0.184 0.028  2.40 1.09 46.3 42.2 26.3 21.8
0.284 0.128 5.33
B 12.1 | 0.127 0 3.83 | 2.52 64.1 54.2 248 18.8
0.248 0 1.12 | 0.64 50.8 43.4 25.6 19.6
0.275 0.146 5.19
C 12.3 1 0.127 0.006 3.86 | 2.51 64.7 54.4 253 19.8
0.261 0 1.22 | 0.64 52.0 43.7 26.0 20.0
0.270 0.153 5.61

The latter would require a larger population. Considering the large cost involved
with the genetic algorithm, the experiment has not been rerun with a larger pop-
ulation, but the population size has been increased for similar experiment with
larger N (see Table B.2).

The logical next step is to consider the MDIA with the (A, 1) quadruplet def-
inition and with N = 4 components. Figure B.4 presents the best performing
members of population 75 for the corresponding genetic experiment. A compar-
ison with the results presented in Fig. B.3 shows two things. First, the highest
ranking members of both generations have very similar scores (. Second, the
quadruplet layout for N = 3 and N = 4 with the lowest costs are significantly
different, with the N = 4 solution not appearing to degenerate into a N = 3
solution. This suggest that there may be more accurate solutions for N = 4 that
have not yet been found. However, with the present model setup, the genetic
experiments already become prohibitively expensive. Because the present study
is, furthermore, still to be considered a feasibility study, it will presently be as-
sumed that no significant progress can be made for N > 4. This assessment will
need to be reconsidered in the followup studies.

Figure B.4 shows a single best initial condition to be used. These initial
conditions are presented in Table B.3, the resulting errors (¢) of the three step
optimization are presented in Table B.4. As already observed, the results are
very similar to those for N = 3, and in fact represent a deterioration compared
to the case with N = 3. Hence, further complications by increasing /N further
will not be considered at this stage.

The final step is to consider the three parameter (A, u, Af) quadruplet, again
starting with N = 3. The population size and number of generations (Table B.2)
are now fully governed by the economics of the computations. In fact, the com-
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Fig. B.4 : Like Fig. B.3 for generation 75 and N = 4.
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Fig. B.5: X (panel a), u (panel b) and A@ (panel c) as a function of ¢ for the
highest ranked members of generation 75 of the genetic search algorithm
for an MDIA with N = 3 and the quadruplet defined by A\, u and A#f.
Symbols and colors identify Ay through A3, as sorted by value.
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Fig. B.6 : Like Fig. B.5 for generation 75 and N = 4.

putations for the genetic experiments with N = 4 took two months two complete
on a 16 processor Linux cluster, clearly pushing the limits of practical feasibility.

Figure B.5 shows A, ;4 and Af of the highest scoring members of generation
75 for the corresponding MDIA with N = 3 components. The five highest scoring
members of the population show near-identical distributions of A, and very similar
distributions of . The second ranked member, however, shows clearly different
behavior of the angles Af when compared to the other four members displayed
in this figure. Considering this, two different initial conditions have been used
for the steepest descent algorithm. These two initial conditions are presented in
Table. B.3 and the resulting minimum cost functions ( in the three step optimiza-
tion procedure are presented in Table B.4. The two initial conditions both lead
to much more accurate DIAs after the steepest descent optimization, suggesting
a limited accuracy of the genetic search. Both initial conditions furthermore lead
to nearly identical cost functions (, although the way in which the low cost func-
tion is achieved is somewhat different ways, as discussed in the connection with
Table 7.3.

Figure B.6 shows A, i and A# of the highest scoring members of generation 75
for the corresponding MDIA with N = 4 components. The four highest scoring
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members of the population all show clearly different parameter settings. Only
the best initial conditions have been used here. As with the case of N = 3,
the steepest descent method greatly improves the cost function of the optimum
MDIA. Furthermore, the addition of the fourth component adds additional accu-
racy, and the rounding off has of the parameter values has no discernible impact
on the results.
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