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Abstract

The potential of Neural Networks (NN) to provide accurate estimates of nonlinear interactions for wind

wave spectra by means of direct mapping is considered. Expanding on a previously reported feasibility

study, an Empirical Orthogonal Functions (EOF) based NN for single peaked spectra is shown to be much

more accurate than the well known Discrete Interaction Approximation (DIA), at the expense of a

moderate increase of computational costs. This Neural Network Interaction Approximation (NNIA) gives

reasonable results for modeled wave spectra, but is not yet capable of providing acceptable model inte-

grations. Methods to expand the NNIA to be suitable for model integration are discussed.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Wind waves on oceans, seas, and lakes are generally described with a wave energy or action
spectrum. Such spectra describe the distribution of wave energy over various wavenumbers,
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frequencies and directions. Following Hasselmann (1960), the spectral conservation equation for
wind waves generally has the form
3 E
DF
Dt

¼ Stot ¼ Sin þ Snl þ Sds; ð1Þ
where F is the spectrum, and Stot represents the sources and sinks, consisting of a wind input (Sin),
nonlinear interactions (Snl) and dissipation (Sds). The spectrum F is a density function describing
the distribution of wave energy or variance in spectral space. The spectral space is defined by the
wavenumber vector ~k and the corresponding (radian) frequency r, and hence is in principle a
three-dimensional space. However, using an inherently linear spectral description, the wave-
number k ¼ j~kj and the frequency r satisfy the linear dispersion relation
r2 ¼ gk tanh kd; ð2Þ

where d is the mean water depth. Hence the spectral space becomes two dimensional, and spectra
are typically defined as F ð~kÞ, F ðk; hÞ, F ðr; hÞ or F ðf ; hÞ, where h is the direction of~k and f ¼ r=2p.
The different spectral forms are related by straightforward Jacobian transformations. Source
terms are defined for the same spectral domain that is used to define F , and represent oF =ot for
the corresponding physical process. Following common practice in operational wave modeling,
we will present results here in terms of the variance spectrum 3 F ðf ; hÞ and its accompanying
source term. The units of this spectrum are m2/Hz/rad or m2s, whereas the units of the source
terms hence are m2.

Because Eq. (1) is inherently linear, nonlinear contributions (Snl) are represented as a source
term on the right hand side. These nonlinear interactions do not generate or dissipate momentum,
energy or action, but re-distribute it over the spectrum. For practical purposes Snl is negligible if
swell propagation over large distances is considered (e.g., Snodgrass et al., 1966). However, the
pioneering theoretical work of Phillips (1960) and Hasselmann (1962, 1963a,b) and experimental
validation in the JONSWAP project (Hasselmann et al., 1973), have identified the crucial role of
Snl in wave growth. The nonlinear interactions provide the lowest order mechanism to shift wave
energy to longer waves, and provide a stabilization mechanism for the shape of the spectrum.
Reviews of the interactions and their impact can be found in Phillips (1981), Young and Van
Vledder (1993) or Komen et al. (1994).

Nonlinear interactions as identified by Hasselmann (1962, 1963a), describe the resonant ex-
change of energy, momentum and action between four spectral components with wavenumber
vectors~k1–~k4 and (radian) frequencies r1–r4. Such a group of wave components is generally called
a quadruplet, and has to satisfy the resonance conditions
~k1 þ~k2 ¼~k3 þ~k4; ð3Þ
r1 þ r2 ¼ r3 þ r4: ð4Þ
The interactions are conventionally expressed in terms of the rate of change of the action
spectrum n � F =r as a function of the wavenumber vector ~k, as
rroneously named the energy spectrum in most wave literature.
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on1
ot

¼
Z Z Z

Gð~k1;~k2;~k3;~k4Þdkdr½n1n3ðn4 � n2Þ þ n2n4ðn3 � n1Þ	d~k2 d~k3 d~k4; ð5Þ
where ni is the action density at component i, ni ¼ nð~kiÞ ¼ F ð~kiÞ=r, G is a complicated coupling
coefficient (Webb, 1978; Herterich and Hasselmann, 1980), and dk and dr are delta functions
corresponding to the resonance conditions (3) and (4), respectively.

The numerical solution of Eq. (5) is computationally expensive for two reasons: First, a six-
dimensional integration is required to obtain an estimate of Snl for a single wavenumber vector~k.
Second, the integration is complicated by singularities in G. Although major strides have been
made in optimizing calculations (see reviews by Young and Van Vledder, 1993; Hashimoto and
Kawaguchi, 2001; Van Vledder, 2002a), evaluation of Snl according to Eq. (5) still takes on the
order of 104 times more computational effort than all the other parts of a typical wave model
combined. This is simply unacceptable for operational wave models, which in essence require the
computational effort expended on Snl to be of the same order of magnitude as the effort expended
on the remainder of the model (or less).

To circumvent this problem, most early wave models used highly simplified approximations for
Snl (see review by the SWAMP group, 1985). Such simplified approaches generally focus on the
shift of energy to lower frequencies, but fail to capture the stabilizing influence of Snl on the
spectral shape. This implies that spectral shapes have to be explicitly assigned, and corresponding
wave models are generally denoted as second generation models (SWAMP group, 1985).

A major breakthrough in wave modeling was achieved with the development of the Discrete
Interaction Approximation (DIA, Hasselmann et al., 1985). In this parameterization of Snl only a
very small sub-set of resonant quadruplets is considered, for which a discrete analogue of Eq. (5)
is evaluated. This effectively replaces the six-fold integral in Eq. (5) with a single summation of
contributions from a small part of the spectral space, and also replaces the complicated function G
with a representative constant. The resulting algorithm proved to be sufficiently economical for
application in practical wave models, which made the development of the WAM model
(WAMDIG, 1988; Komen et al., 1994) possible. The WAM model was the first so-called third-
generation wind wave model. In this class of models, Eq. (1) is integrated without pre-assigned
spectral shapes. Since the development of WAM, several other third-generation wave models have
been built around the DIA (e.g., Tolman, 1991; Abdalla and Ozhan, 1993; Van Vledder and Dee,
1994; Booij et al., 1999).

When the DIA was introduced, it was clear that its approximation of the actual nonlinear
transfer had some systematic shortcomings. For example, it represents shifting of energy to lower
frequencies reasonably well, but has large systematic errors at higher frequencies (Hasselmann
et al., 1985, Fig. 7). The latter results in spectra with unrealistically high energy levels at high
frequencies, and with unrealistically broad directional distributions (Hasselmann et al., 1985, Fig.
12). Such deficiencies were acceptable in the context of our limited understanding of other source
terms when WAM was originally developed. Nowadays, however, our increased understanding of
the source term balance makes these errors less acceptable. This has resulted in a recently in-
creased effort to find more accurate (yet economical) parameterizations of Snl (e.g., Van Vledder
et al., 2000).

Within the above context, we are investigating the potential of NN to provide accurate yet
economical estimates for the nonlinear interactions. Development of a useful Neural Network
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Interaction Approximation (NNIA) is a complex interdisciplinary undertaking which involves
solving many particular problems both in wave modeling and in machine learning (NN) fields, as
well as developing an interface between the two fields. It is unrealistic to assume that all problems
encountered can be solved at once, and hence an iterative development approach is appropriate.
This paper therefore only presents results of the first step of research in a broader research plan.
To design an iterative development strategy, it is paramount to recognize main issues in both
fields.

From the wave modeling perspective, several critical issues can be identified. At first the
economy of the resulting algorithm has already been identified above. A second major issue, is
that NNIA should not only be able to produce accurate interactions for individual spectra, but
also be able to result in stable model integration in conditions describing wave growth. The exact
interactions tend to stabilize the spectral shape for frequencies above the spectral peak frequency
by smoothing local spectral perturbations at relatively short time scale (e.g., Resio and Perrie,
1991; Young and Van Vledder, 1993). The inability of many early parameterizations of the
interactions to reproduce this aspect makes them unsuitable for application in third-generation
wave models (e.g., Hasselmann et al., 1985). A third issue is the shear complexity of wave fields in
a general purpose wave model. Apart from an actively wind driven wave field (the wind sea), there
may be one or many wave fields present that have been generated elsewhere in the past (swell).
Wind seas and swells interact through the nonlinear interactions. Although generally, effects of
interactions on swell are small, they will also have to be realistic for a model to give good results.

From a machine learning (NN) perspective, several major issues can also be identified. The first
issue is that a direct mapping between spectra and nonlinear interactions would consider too
many degrees of freedom to be feasible, and would, by definition, be applicable only to one
discrete spectral resolution. To mitigate these problems, the number of degrees of freedom in F
and Snl needs to be reduced (although it remains to be seen if a NNIA can be made sufficiently
flexible to be applicable to multiple spectral resolutions). The second issue is to establish the
necessary complexity of the NN, which depends on the resulting number of degrees of freedom
remaining in the algorithm. The third issue is the joint optimization of the reduction of degrees of
freedom and the NN, with the corresponding balance between accuracy and economy. Inter-
spersed with the first three steps/issue, is the fourth issue of selecting a proper training data set.
Considering the natural complexity of wave spectra and the corresponding nonlinear interactions,
it is not clear if it is possible to generate a truly complete training data set. This implies that
generalization ability of the NN (or robustness of the complete NNIA) is expected to be a fifth
major issue.

The development of a practical NNIA is clearly a daunting task. To assess if an NNIA has any
potential at all, a feasibility study was performed (Krasnopolsky et al., 2001, 2002). In this study,
the spectra and source terms were decomposed using Legendre and Fourier decompositions, and a
simple NN (a feedforward, fully connected multi-layer perceptron) was developed using a training
data set consisting of a superpositions of Pierson–Moskowitz spectra (Pierson and Moskowitz,
1964). The following conclusions can be drawn from this study: (i) An NNIA can indeed
reproduce nonlinear interactions for complex multi-peaked spectra more accurately than the DIA,
at computational costs comparable to those of the DIA. (ii) The large majority of computational
costs in the NNIA is expended in the de- and re-composition of the spectra and source terms, with
typically less than 10% of the time expended on the actual NN. (iii) Due to the ad hoc nature of
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the training data set, and the fact that the appropriate scaling behavior was not built into the
NNIA, the resulting NNIA proved to have a very limited applicability.

Considering the above, several critical requirements for the development of a practical NNIA
can be identified. Probably the most critical aspect of an NNIA would be the capability to
reproduce wave growth for wind sea conditions. Furthermore, this NNIA will have to be suffi-
ciently robust to be applicable to arbitrary growth conditions. Once this capability has been
established, the NNIA needs to be generalized for application to arbitrary combinations of wind
seas and swell. However, before an NNIA can be developed specifically for wave growth con-
ditions, the basic mapping procedures for the NNIA have to be established, and need to be made
applicable to fairly general wind sea spectra. This is the subject of the present study.

Section 2 describes the basic design considerations for the NNIA, as well as the construction
of the training data set. For a basic description of Neural Networks in this context, reference is
made to Krasnopolsky et al. (2002). Results for several NNIA designs are presented in Section 3.
These results include testing of the NNIA on spectra not used for the training, and spectra
generated by a numerical model. The testing is expanded by performing limited model inte-
gration with the most promising NNIA. This model integration is not the main focus of the
present study. It has been added for completeness, and to facilitate the discussion of future
research in Section 4.
2. Neural network design and training

The present study is a continuation of work presented in Krasnopolsky et al. (2002, henceforth
denoted as KCT). A basic description of NN and the corresponding terminology used here can be
found in Appendix A of KCT. In the present approach, the NN is used to generate a direct
mapping algorithm from the spectrum F to the source term Snl
Snl ¼ T 0ðF Þ; ð6Þ

where T 0 is a nonlinear operator. In KCT, the mapping is applied directly between the spectrum
and the source term. Here we apply the mapping to nondimensional spectra eF and source termseSnl, using a normalization frequency fn, direction hn and energy density Fn
~f ¼ f �1
n f ; ð7Þ

~h ¼ h � hn; ð8ÞeF ð~f ; ~hÞ ¼ F �1
n F ðf ; hÞ; ð9ÞeSnlð~f ; ~hÞ ¼ g4F �3

n f �11
n Snlðf ; hÞ: ð10Þ
Because we consider single peaked spectra only, it is natural to choose fn and hn to be the peak
frequency fp and direction hp, and to choose Fn ¼ F ðfp; hpÞ, so that eF ð1; 0Þ � 1. Eq. (6) then
becomes
eSnl ¼ T ðeF Þ: ð11Þ

This normalization ensures proper scaling behavior of the NNIA, independent of the approxi-
mation of T . To reduce the size of the mapping problem, and to make the mapping less dependent
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on the discrete spectral resolutions, the spectrum eF and source term eSnl are represented by a linear
superposition of two sets of orthogonal functions Ui and Wq. That is
4 V
eF �
Xn
i¼1

xiUi; eSnl �
Xm
i¼1

yiWi; ð12Þ
where xi and yq are the expansion coefficients. The orthogonality of Ui and Wq implies that
Z Z
UiUj ¼ dij ¼

Z Z
WiWj; ð13Þ
where dij ¼ 1 for i ¼ j and dij ¼ 0 otherwise, and where the double integral identifies integration
over the spectral (f ; h) space. Given Eq. (13), the expansion coefficients in Eq. (12) are given by
xi ¼
Z Z

FUi; yi ¼
Z Z

SnlWi: ð14Þ
Since each orthogonal sets of functions fUigi¼1;...;1 and fWqgq¼1;...;1 constitute a complete set, they
provide a basis to represent arbitrary functions in the spectral domain as assumed in Eq. (12).
Then the accuracy of the approximation depends only on the truncation of the sets at n and m
components in (12). Substituting (12) into Eq. (11) gives
~Y ¼ T ð~X Þ; ð15Þ
which represents a mapping of the finite vectors ~X 2 Rn and ~Y 2 Rm, and where T still represents
the full nonlinear interaction operator. This operator can be approximated with a NN with n
inputs and m outputs and l internal components (see Appendix A of KCT)
~Y � TNNð~X Þ: ð16Þ

The accuracy of the approximation TNN is determined by l, and can generally be increased by

increasing l. The NN approximation TNN of T is developed using a process called �training�. A
training data set is generated with pairs of vectors ~X and ~Y . This data set is then used to train the
NN that is central to TNN (see KCT). In our case, a representative set of spectra Fp has to be
generated with corresponding (exact) interactions Snl;p. Our exact interactions are calculated
according to the Webb–Resio–Tracy (WRT) method (Webb, 1978; Tracy and Resio, 1982; Resio
and Perrie, 1991), as implemented in the portable exact interactions package developed by Van
Vledder (2002b). 4 For each pair ðF ; SnlÞp, the corresponding vectors ð~X ; ~Y Þp are determined using
Eq. (14). All pairs of vectors are then used to train the NN to obtain TNN. Note that the training of
a NN is generally very time consuming. However, it needs to be performed only once, after which
the application of the NN is generally very fast.

After TNN has been obtained by training, the resulting NN Interaction Approximation (NNIA)
algorithm consists of five steps:
ersion 3 of the software used here.
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ii(i) Convert F to eF using Eq. (9).
i(ii) Decompose eF by applying Eq. (14) to calculate ~X .
(iii) Estimate ~Y from ~X using Eq. (16).
(iv) Compose eSnl from ~Y using Eq. (12).
i(v) Convert eS to eSnl using Eq. (10).

In the design of such an NNIA, two main issues need to be addressed: The first is the selection
of the type and number of basis functions. The second is the construction of the training data set.
Because a training data set is also required to assess the accuracy of selected basis functions, the
training data set will be discussed first.

The training data set has to provide an envelope of realistic spectra, to assure that the resulting
NNIA �interpolates� rather than extrapolates. Sources for training spectra could be observations,
models, or parametric spectral descriptions. Considering that in the present study we seek for a
natural envelope of spectra, observations might be considered appropriate. However, observed
spectra are less suitable, because the directional properties of such spectra are generally poorly
known, and are dependent on the data analysis techniques used.

Because the NNIA is ultimately intended to replace the exact interactions in a wave model,
modeled wave spectra could be considered ideal for developing the NNIA. However, two practical
aspects hamper generating such a training data set. The first is the prohibitive cost of running a
wave model with exact interactions, the second is that there are no properly tuned and validated
input and dissipation parameterizations available to be used with the exact interactions. Finally,
the nonlinear interactions are known to strongly regulate the spectral shape. We therefore expect
that a set of modeled spectra and source terms form a less broad envelope of conditions than can
be generated with parametric spectra. It is expected that a broader envelope of training conditions
will result in a more expensive NNIA. For this reason, a training data set composed out of
parametric spectra has been considered here.

It is unavoidable that a parameterically generated training data set cannot incorporate all
typical peculiarities of model wave spectra. It may therefore be expected that a reasonable
description of source terms for fairly arbitrary spectra can be found, but that such an NNIA
cannot yet result in a stable model integration. Taking into account the intended scope of the
present study, this is considered acceptable here.

The parametric spectra used here for training the NNIA consist of several components. A
general description is given here, whereas details of the corresponding equations are given in
Appendix A. The basic description of the frequency spectrum is provided by the commonly used
and versatile JONSWAP formulation (see, e.g., Hasselmann et al., 1973). To obtain a full two-
dimensional spectrum, directional distributions of Hasselmann et al. (1980) and Ewans (1998) are
used. The former represents a classical directional distribution. The latter represents a more
modern view, allowing for bimodality in the directional distribution. A review of recent direc-
tional distributions can also be found in the latter paper. To this parametric spectrum a direc-
tional shear is added. To make these spectra even more general, random noise is added with a
given relative magnitude and with given scales in spectral space. With this parametric spectral
description, sets of 15,000 spectra and source terms have been generated using Monte Carlo
realizations of the relevant parameters of the spectrum (See Appendix A). 10,000 of these spectra
were used for generating basis functions and for the training of the NN. The remaining 5000
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spectra were used to control and stop the training, and to avoid overfitting (as will be discussed in
detail below). An independent set of 10,000 spectra and source terms was generated to validate the
resulting algorithm.

Two approaches have been used for the basis functions: The first is a mathematical basis taken
from KCT, with the normalization as discussed above added for the present study. As is common
in the parametric spectral description of wind waves, separable basis functions were chosen where
the frequency and angular dependence were separated. For example, for Ui in Eq. (12) this implies
Uiðf ; hÞ ) Uij ¼ /f ;iðf Þ/h;jðhÞ: ð17Þ
A similar separation was used for Wq. Considering the strongly suppressed behavior of F and
Snl for f ! 0 and the quickly decreasing asymptotic behavior for f ! 1, generalized Laguerre�s
polynomials La

i (Abramowitz and Stegun, 1964) are used to define /f and wf :
/f ;i ¼
i!

Cða þ iþ 1Þ

� �1=2
f a=2e�f =2La

i ðf Þ; ð18Þ
where wf ;i is defined similarly. Because in KCT no directional preferences existed in the training
data set of F and Snl, Fourier decomposition was used for /h and wh.

The advantage of this choice of basis functions is the simplicity of the generation of the bases.
Disadvantages are the slow convergence of the decompositions (12), as illustrated below, and the
necessity to use large values for a to sufficiently suppress basis functions for f ! 0. The value of a
is limited from above by the numerical stability of the procedure used to generate the basis. This
choice of basis functions will henceforth be denoted as the �mathematical� basis.

As an alternative, a second approach to the basis functions has been investigated in the present
study. In this approach, Empirical Orthogonal Functions (EOFs) or principal components are
used (Lorenz, 1956; Jolliffe, 1986). EOFs have previously been used in wave modeling to describe
nonlinear interactions by Allender et al. (1985) and Hasselmann et al. (1985), but without the
rigorous optimization and fitting procedures presently available in the NN field. EOFs are created
from the fields to be decomposed and form a statistically optimal basis. In the present case, the
basis functions Ui and Wj are functions of two variables f and h. The set of spectra F and source
terms Snl, which are used for the training of the NN, are also used to generate the EOFs for
decomposing F and Snl. When using EOFs, the basis generation procedure is computationally
expensive, with the cost increasing as the resolution of F and Snl increases. However, like the NN
training, the basis generation needs to be performed only once. Stored results can be used without
the need for re-calculation in a practical NNIA.

The main advantage of EOFs is the fast convergence of the decomposition. This is illustrated in
Fig. 1, which shows the average absolute value Ci of the ith component of the basis
Ci ¼
1

N

XN
j¼1

jyji j; i ¼ 0; 1; . . . ; ðm� 1Þ; ð19Þ
where N is the number of test spectra (N ¼ 10; 000 in the present study). The rapid and systematic
decrease of Ci with increasing i for the EOF basis (solid line in Fig. 1) indicates rapid convergence.
In contrast, the mathematical basis converges more slowly, and does not show monotonic con-
vergence behavior.
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Fig. 1. Average absolute value of the ith component in the decomposition of Snl for the entire training data set, for the

mathematical basis (- - -) or the EOF basis (––).
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The present NNIAs include three parameters that influence their accuracy: n, m and l. The
parameter l represents the number of components inside the NN, and will be considered later. For
the mathematical basis, the numbers of basis functions, n ¼ 50 and m ¼ 150, were selected (see
Eq. (12)) based on the somewhat arbitrary criterion that Cðn;mÞ=C1 � 0:1. Fig. 1 indicates that a
similar accuracy can be achieved with the EOF basis with a much smaller number of components
n and m. Alternatively, n and m can be taken identical to those used for the mathematical basis, to
illustrate the impact of the basis selection on the accuracy of the truncated decomposition. The
latter approach is used here. To quantify the relative accuracy of the EOF basis versus the
mathematical basis, several statistics have been calculated.

The first set of statistics is based on rms errors �j for individual source terms or spectra
�j ¼
Z Z

½Sj
nlðf ; hÞ

�
� bSj

nlðf ; hÞ	
2
df dh

�1=2

; ð20Þ
where S represents the exact source term, and bS its approximation (the truncated composition of
the basis functions). A similar error can be defined for the spectrum F . Note that in the following,
these errors are always calculated for the normalized spectra and source terms eF and eSnl. From
the N individual errors �j, a mean individual error ��ind and a standard deviation of individual
errors r� can be calculated in the conventional way.

The second set of statistics considers errors in spectral space for the entire data set, described
here with the �field� rms error �F,
�Fðf ; hÞ ¼
1

N

XN
j¼1

½Sj
nlðf ; hÞ

(
� bSj

nlðf ; hÞ	
2

)1=2

; ð21Þ
from which the one-dimensional projections �Fðf Þ and �FðhÞ and the mean field error ��F can be
calculated as
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�Fðf Þ ¼
R
�Fðf ; hÞdh

�FðhÞ ¼
R
�Fðf ; hÞdf

��F ¼
R R

�Fðf ; hÞdf dh

9=;: ð22Þ
The corresponding field bias bFðf ; hÞ and variability (field standard deviation of the exact solu-
tion) rFðf ; hÞ are calculated as
bFðf ; hÞ ¼
1

N

XN
j¼1

½bSj
nlðf ; hÞ � Sj

nlðf ; hÞ	; ð23Þ

rFðf ; hÞ ¼
1

N � 1

XN
j¼1

Sj
nlðf ; hÞ

"8<: � 1

N

XN
j¼1

Sj
nlðf ; hÞ

#29=;
1=2

: ð24Þ
Note that the latter parameter is not an error measure, but a measure for the variability of
spectra and source terms in the training data set. A comparison of this variability with the field
error �F provides a relative error measure. One-dimensional field biases bFðf Þ and bFðhÞ and
variabilities rFðf Þ and rFðhÞ are calculated by integration, as in Eq. (22).

Table 1 shows the bulk statistics for the mathematical and EOF bases generated from the
training data set of 10,000 cases. The statistics are calculated from the independent validation set
of 10,000 spectra and source terms. For the spectrum F , the EOF basis results in an error that is a
factor of 4.7 (��ind) or 8.0 (��F) smaller than for the mathematical basis. For the source term Snl the
factors of improvement are 8.3 and 13.3, clearly indicating the superior results obtained with the
EOF bases.

With the above established basis functions, the NN can be trained and tested. The training was
performed using a backpropagation algorithm (Rumelhart et al., 1986), and the Nguyen and
Widrow (1990) algorithm was used to initialize the NN weights. As mentioned above, the
accuracy of the mapping TNN in Eq. (16) depends on the number of internal elements l in the NN.
An increase in l, in principle, results in a more accurate NN. In practice, however, since the data
include errors, an optimum l exists. In our case, truncation in the decomposition introduces er-
rors. If a dataset includes errors, a choice of l that is too large results in �over-fitting� of the data.
In such a case, the NN tries to fit the errors in the data, rather than the useful content. Unfor-
tunately, the optimum l can only be estimated by trial and error. In Table 2, the impact of l on the
accuracy of the NN is investigated. A similar comparison of errors for the training and test data
sets was used to determine the proper moment to stop the training for each choice of l.
1

individual rms error ��ind, standard deviation r�, and mean field error ��F for 10,000 validation spectra eF and

e term eSnl due to the decomposition onto a truncated basis with n ¼ 50 and m ¼ 150 components, respectively

Basis ��F ��ind r�

Mathematical 0.14 0.0350 0.0160

EOF 0.03 0.0044 0.0067

Mathematical 0.5175 0.0425 0.1397

EOF 0.0623 0.0032 0.0089

rors are calculated using the independent validation data set.



Table 2

Biases and rms errors of components of the nonlinear interactions ~Y as estimated by the Neural Network (Eq. (16))

using the EOF bases as a function of the number of internal components l in the NN

l Training set Test set

bias rms error bias rms error

25 0.08 131.0 0.31 141.7

30 0.07 124.1 0.12 131.8

35 0.10 111.8 0.06 126.0

40 0.16 101.6 0.10 121.9

45 0.09 102.4 0.16 122.0

50 0.04 100.7 0.12 119.1

55 0.06 99.8 0.10 123.2

60 0.07 98.4 )0.06 125.3

65 0.07 97.8 0.11 126.9

Errors are calculated per training or test case, and averaged over all cases.
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Table 2 shows biases and rms errors of~Y as estimated by the NN for the training data set and for
an independent test data set. The EOF decomposition with n ¼ 50 inputs and m ¼ 150 outputs is
considered, with l ranging from 25 to 65 with increments of 5. The biases do not depend signifi-
cantly on l. The rms errors for the training dataset improves monotonically with increasing l.
However, for the test data set, the rms error has a minimum for l ¼ 50. This suggests that over-
fitting starts to occur for l > 50. For this reason, l ¼ 50 has been used in the following sections.
3. Results

In this section, results for two versions of the NNIA will be discussed. For convenience, the
NNIA using the mathematical basis will be denoted as NNIA-M, whereas the EOF based NNIA
will be denoted as the NNIA-E. The two NNIAs are compared using bulk statistics, sample
source terms for one of the independent validation spectra (belonging to the same envelope of
conditions as the training data set), and sample source terms for a spectrum generated by a wave
model (outside the envelope of training conditions). As discussed in Section 1, this covers the main
scope of the present study. Looking forward to subsequent parts of this study, a simple model
integration test is performed with the NNIA-E, and its economy is briefly assessed.

A first comparison of the original DIA, NNIA-M and NNIA-E is given in Table 3, in which the
mean rms errors of Eqs. (20)–(22) for the three parameterizations are presented. In this context,
Table 3

The mean individual rms error ��ind, the corresponding standard deviation r�, and the mean field error ��F for 10,000

validation source terms estimated with the DIA, NNIA-M or NNIA-E

Algorithm ��F ��ind r�

DIA 1.3266 0.3124 0.5273

NNIA-M 0.6590 0.0882 0.1888

NNIA-E 0.2836 0.0354 0.0750

Errors are calculated using the independent validation data set.
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bSnl represents the DIA or NNIA estimate of the source term (instead of the truncated repre-
sentation considered in the previous section). Using the mean field error ��F as the quantitative
performance measure, the NNIA-M is 2.0 times more accurate than the DIA, and the NNIA-E is
4.7 times more accurate than the DIA. Using the mean individual rms error ��ind, these ratios are
3.5 and 8.8, respectively. For both error measures, the NNIA-M, therefore, clearly outperforms
the DIA, and the NNIA-E is significantly more accurate than the NNIA-M.

A more detailed impression of the errors of the different parameterizations can be obtained by
analyzing the rms field errors �Fðf ; hÞ and �Fðf ; hÞ, as in Eqs. (21)–(23), in more detail. The
corresponding one-dimensional errors as a function of frequency f or direction h for the vali-
dation set of 10,000 spectra are presented in Fig. 2. These field errors are calculated for nor-
malized spectra and source terms. Hence the peak of each individual spectrum is by definition at
~f ¼ 1 and ~h ¼ 0. It is therefore expected that these field errors are representative for distinct
spectral ranges, such as near peak, equilibrium and low-frequency ranges.

The bias of the DIA in frequency space (chain line in Fig. 2a) shows a remarkable similarity
with the typical signature of Snlðf Þ. This implies that the DIA systematically overestimates the
magnitude of the energy shifts in frequency space. The bias of the DIA in direction space (chain
line Fig. 2b) is distinctly negative near the mean direction (~h � 0) and distinctly positive at larger
Fig. 2. One-dimensional field biases (upper panels) and rms errors (lower panels) as a function of frequency ~f (left

panels) or direction ~h (right panels) for DIA (chain line) NNIA-M (- - -) and NNIA-E (� � �). Solid line in lower panels

represents the variability in the exact interactions (Eq. (24)).
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absolute angles, implying that the DIA spuriously broadens the directional distribution. Both
deficiencies were already identified by Hasselmann et al. (1985) for selected test spectra, and are
confirmed here to be present for a broad range of spectral shapes.

The NNIA-M shows greatly reduced biases compared to the DIA (compare dashed and chain
lines in Fig. 2a and b). In frequency space, the bias of the NNIA-M shows a behavior opposite to
that of the exact interactions, with a slight negative lobe at low frequencies and a positive lobe for
intermediate frequencies (dashed line in Fig. 2a). This suggests that the NNIA-M slightly
underestimates the re-distribution of energy in frequency space. The biases in directional space are
more complicated, without a clearly discernible pattern.

The field biases of the NNIA-E are negligible compared to the biases of either the DIA or the
NNIA-M (dotted lines in Fig. 2a and b). For practical purposes, the NNIA-M hence appears to
be free of systematic biases.

The rms field errors of all three parameterizations in frequency and direction space (�Fðf Þ and
�FðhÞ, chain, dashed and dotted lines 2c and d), in broad lines show similar behavior as the
corresponding variability in the exact interactions (solid lines). This suggests that relative errors in
all parameterizations are fairly constant in spectral space.

The rms errors of the DIA (chain lines in Fig. 2c and d) are larger than the variability in
the exact interactions in the test data set (solid lines). This is not surprising, because the DIA
has been documented to overestimate interactions in this region by typically a factor of 2–3
(e.g., Hasselmann et al., 1985). The figures shown indicate again that the previously reported
poor quantitative behavior of the DIA is prevalent for a large range of spectral shapes. The
NNIA-M presents a clear improvement over the DIA for all but the highest frequencies
(~f > 2:5; compare chain and dashed lines in Fig. 2c). The NNIA-E provides an improvement
over both the DIA and NNIA-M. Note that the improved behavior of the NNIA-E is mostly
realized for frequencies ~f < 2. For higher frequencies, the NNIA-E shows the best perfor-
mance of all three parameterizations, but with smaller relative improvements (dotted lines in
Fig. 2c).

Although the bulk error statistics as shown above indicate the potential of an NNIA in terms of
accuracy, they do not necessarily imply than the resulting interactions are satisfactorily realistic.
To illustrate the latter, the resulting interactions for an arbitrary spectrum from the independent
validation data set are presented in Fig. 3. These results were found to be fairly representative for
the entire validation dataset.

Fig. 3a shows a moderately sheared wind sea spectrum with an asymmetric bimodal directional
distribution at high frequencies. Large differences are found between the exact interaction for this
spectrum (Fig. 3b) and the DIA (Fig. 3c), both in general shape of the interactions and in
magnitude (note that the contours are logarithmically distributed with an increment factor of 2).
The NNIA-M (Fig. 3d) is clearly much closer to the exact interactions (panel b) than the DIA
(panel c). However, the NNIA-M has an unrealistic �noisy� appearance, which can be attributed to
the Gibbs effect as it occurs in Fourier re-composition with truncated series. In the NNIA-E (Fig.
3e), the mathematical decomposition has been replaced by EOFs. This results in a more accurate
estimate of the interactions, as already addressed with bulk statistics above. Visual inspection
confirms that it also results in a more realistic representation of the interactions, with no notable
spurious noise.



Fig. 3. Normalized parametric spectrum (eF , panel a) and nonlinear interactions (eSnl) according to the exact solution

(WRT, panel b), the DIA (panel c), the NNIA-M (panel d), and the NNIA-E (panel e), as a function of the normalized

frequency (~f , horizontal axes) and direction (~h, vertical axis). Logarithmic contours are at a factor 2 increment. The

highest contour for the spectrum is 0.5. The lowest contour for the interactions is ±100. In the color version of this

figure, yellow and red shading identifies positive values, and blue shading identifies negative values. In the black and

white version solid and dashed lines represent positive and negative values, respectively.
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Whereas Fig. 3 shows promising results for the NNIA-E in particular, we stress that the
spectrum used here is similar to the spectra used to train the NNIA-E. When such an NNIA is
applied to spectra from other sources more modest results may be expected, when such spectra
include features not presently included in the training data set. As mentioned in the introduction,
several such features might be expected in model wave spectra. To test the performance of the
present NNIAs with respect to model spectra, several such spectra were generated using the
WAVEWATCH III model (Tolman, 1991, 2002; Tolman et al., 2002), using the input and



(a)

(b) (c)

(d) (e)

Fig. 4. Wave model spectrum (F , panel a) and nonlinear interactions (Snl, panels b–e): exact solution (WRT, panel b),

DIA (panel c), NNIA-M (panel d), and NNIA-E (panel e), as a function of the frequency (f , with f ¼ 0 at center and

f ¼ 0:25 Hz at outer circle) and direction (h, direction in which waves propagate from center of plot). Grid lines are at

15� and 0.05 Hz intervals. Logarithmic contours are at factor 2 increment. The lowest contour for the spectrum is

2· 10�1 m2 s. Lowest contour for interactions ±2 · 10�5 m2. Shading and line styles as in Fig. 3. The arrow in the center

of panel a indicates the wind direction.
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dissipation source terms of Tolman and Chalikov (1996) and the WRT interactions of Van
Vledder (2002a). An arbitrary spectrum from the interactive test cases provided with WAVE-
WATCH III 5 is presented in Fig. 4.

The results in Fig. 4 were obtained with a spectral resolution of 36 directions (Dh ¼ 10�) and
35 frequencies starting at 0.0418 Hz, and with an increment factor of 1.07. The wind speed
considered is 20 m/s. To obtain the NNIA results for this spectrum, normalization is required.
In this normalization, grids are shifted and the calculation grid generally does not cover the
entire wave model grid and vice versa. Under such conditions, spectra and source terms not
covered at the low frequency end of the grid are assumed to be zero. Spectra at the high fre-
quency end of the discrete space are estimated using an f �5 parametric spectral shape. Fol-
lowing common practice in wave modeling, the results in Fig. 4 are presented using a polar
representation.

The exact interactions shown in Fig. 4b have been used to calculate the spectrum shown in Fig.
4a, and are, therefore, consistent with this spectrum. These interactions are mostly smooth, with
locally very sharp features. The estimates from the DIA (Fig. 4c) deviate significantly from the
exact interactions, both in details of the source term and in magnitude (note again the logarithmic
scaling of the contour levels). The results of the two NNIA algorithms (Fig. 4d and e) differ from
each other mainly with respect to the spurious noise throughout the spectral space in the NNIA-
M (Fig. 4d), which is consistent with the noise seen in Fig. 3d. This again clearly shows the NNIA-
E to be superior to the NNIA-M.

The NNIA-E and the WRT interactions differ significantly for the model spectrum in Fig. 4a,
compared to the results for the parametric spectrum shown in Fig. 3. Nevertheless, the NNIA-E
reproduces several features of the exact WRT interactions much more accurately than the DIA.
First, the positive lobe in the WRT solution around f ¼ 0:12 Hz near the NNE direction is well
reproduced by the NNIA-E in both magnitude and shape (compare Fig. 4b and e). The DIA
reproduces this feature with the correct amplitude, but over a greatly extended area in spectral
space. Furthermore, the positive-negative signature in the exact interaction for f > 0:10 Hz going
from NNW to NE appears somewhat more realistic in the NNIA-E algorithm than in the DIA.
The two main differences between the WRT and the NNIA-E algorithms are the spurious positive
lobe in the NNIA-E at f ¼ 0:17 Hz in the NE direction, and its much broader signature for
f > 0:15 Hz. Considering the similar behavior in NNIA-M and NNIA-E, this is most likely due
to features of the modeled spectrum that are not present in the training data set (as discussed in
Section 2). This will be discussed in more detail in Section 4.

As a final test of the capability of the NNIA-E, it has been applied in the WAVEWATCH III
model to provide an actual model integration. Using the same model setup as used for generating
the model spectrum above, a homogeneous growth test (propagation terms switched off in Eq. (1))
is performed with a wind speed of 20 m/s and with an initial spectral peak frequency of 0.15 Hz.
Results for the first 3 h of model integration with the default WAVEWATCH III model, which is
based on a re-scaled DIA (Tolman and Chalikov, 1996), are presented in Fig. 5. The corre-
sponding results obtained with the NNIA-E are presented in Fig. 6.
5 i.e., the 12· 12 grid �out-of-the-box� test case.
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(b) (b)

(c) (c)

Fig. 5. Model spectra (left panels) and nonlinear interactions (right panels) after (a) 1 h, (b) 2 h and (c) 3 h calculated

using the default WAVEWATCH III model (DIA). Spectral representation and legend as in Fig. 4. Lowest contour for

spectrum 2· 10�5 m2 s. Lowest contours for interactions ±5 · 10�5 m2. The initial conditions consist of a JONSWAP

spectrum with fp ¼ 0:15 Hz, c ¼ 2, and the Hasselmann et al. (1980) directional distribution. The wind is constant at 20

m/s.
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Fig. 6. Like Fig. 5 with the NNIA-E algorithm for nonlinear interactions.
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The default WAVEWATCH III model (Fig. 5), shows the expected shift of the spectral peak to
lower frequencies, with the corresponding increase energy near the spectral peak. During growth,
a smooth and slow decrease of energy with increasing frequency is found for f > fp in the wind
direction and adjacent directions. The model using the NNIA-E (Fig. 6), is not able to reproduce
consistent wave growth. The two most obvious deficiencies are the fact the NNIA-E does not
retain directional symmetry, and that the energy at high frequencies is suppressed (compared to
the standard model results in Fig. 5). The latter significantly reduces the magnitude of the
interactions, particularly after 3 h of model integration (compare Figs. 5c and 6c). Positive aspects
of the integration experiment are the consistent shape of the spectral peak, and the retention of the
sharp features of the nonlinear interactions for f < fp. Considering the deficiencies of the NNIA-
E when applied to model spectra shown in Fig. 4, the inability of this algorithm to produce
realistic model integration is not surprising.

Finally, the relative costs of algorithms are important when applied in operational wave
models. The DIA as implemented in WAVEWATCH III is highly optimized. Considering that the
present NNIA-E is not a �final product�, we have not gone through the process of fully optimizing
this algorithm. On NCEP�s IBM SP2, the NNIA-E algorithm proved to be about 4.7 times more
expensive than the DIA. A conservative estimate of the potential speed up of the NNIA-E due to
straightforward optimization suggests that the NNIA-E needs to be no more expensive than
about 2.5 times the costs of the DIA, with a potential of being even faster.
4. Discussion

This study presents a continuation of early NNIA experiments as reported in Krasnopolsky
et al. (2002, KCT). This study represents the first part of a set of studies designed to develop a
NNIA algorithm for practical wave models. In the present study, NNIA techniques for mapping
nonlinear interactions for individual spectra are explored. Continuing the work presented in
KCT, several more capable NNIAs have been developed by explicitly including scaling laws into
the NNIA, by modifying decomposition methods, and by generating a more universal training
data set. The first such NNIA (NNIA-M) uses the same basis functions as KCT (Legendre
polynomials and Fourier components). Unlike the NNIA presented in KCT, the NNIA-M
algorithm gives reasonable estimates of the nonlinear interactions for fairly arbitrary wind sea
spectra. Its main drawback is that the NNIA-M generates spurious noise throughout spectral
space, consistent with the Gibbs effect in Fourier analysis.

A second NN based interaction algorithm (NNIA-E) uses a decomposition of the spectrum and
source terms in EOF. The NNIA-E is more accurate that the NNIA-M, probably due to the more
convergent basis functions (Fig. 1). More importantly, it does not include spurious noise as
displayed by the NNIA-M. For independent validation spectra not used in the training of the NN
but belonging to the same envelope of conditions, the NNIA-E reduces errors by an order of
magnitude compared to the DIA. This improvement is achieved at a conservatively estimated
factor of 2.5 or less increase in computational costs for the NNIA-E compared to the DIA. This
confirms the potential of an NNIA to eventually replace the DIA in practical wave models, and
justifies the start of the second part of this study.
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The NNIA-E can provide a very accurate estimate of instantaneous interactions, if the spec-
trum considered is well represented by the spectra used in the training. This is clearly demon-
strated in Fig. 3. However, because only parametric spectra have been used in the training data
set, it is unlikely that all expected spectral shapes are included. Modeled wave spectra can be
expected to include features not found in the training data set. It is, therefore, not surprising that
when applied to spectra generated by the numerical wave model WAVEWATCH III, the NNIA-
E does not perform as well as with the above parametric spectra (Figs. 3 and 4). In this context,
however, it is very encouraging to note that the NNIA-E results in fairly realistic interactions for
modeled spectra, with several important features of the exact (WRT) interactions well represented
(Fig. 4 and the corresponding discussion in the previous section).

A major remaining issue is the robustness of the NNIA-E when applied to model integration,
or in other words, the generalization of the NNIA-E for truly arbitrary wind sea spectra. One way
of making the NN more generally applicable is the use of a more sophisticated NN approach. In
the present study we use the simplest NN possible (a feedforward, fully connected perceptron with
a single hidden layer). It is well known that more advanced NN architectures and/or application
of special techniques (e.g., Chen and Hagan, 1999) enhance generalization capabilities of NNs. An
advanced generic machine learning approach (like Support Vector Machines) (Vapnik, 1995) can
be used to generate optimal approximations in term of architecture and generalization ability.
However, nonlinear interactions in wind waves represent a highly complex and highly nonlinear
mechanism, with different behavior in different sub-domains (e.g., Hasselmann, 1963b; Hassel-
mann and Hasselmann, 1985). It is not realistic to expect that any more sophisticated NN ap-
proaches could enhance the capability of a NN to such a degree that it could generalize for
physical processes not fully included in the training data set.

One obvious approach to make the NNIA-E suitable for model integration is to expand the
present training data set to include features peculiar to spectra generated by wave models. Two
such features that are not included in the present training data set are (i) the addition of a given
parametric tail above a dynamically adjusted cut-off frequency and (ii) the fact that sharply
peaked JONSWAP spectra tend to generate two minima in the negative lobe, whereas modeled
spectra generally result in a single minimum. This suggests that there are subtle yet important
inconsistencies between JONSWAP type spectra and the detailed source term balance in wind
wave models. The former is likely to be the cause for some of the directional discrepancies be-
tween the results of the exact and NNIA-E algorithms at high frequencies in Fig. 4. The latter is
possibly related to the secondary extrema in the NNIA at intermediate frequencies.

It is possible to attempt to add the above identified discrepancies to the parametric spectra of
the training data set. This will undoubtedly lead to a more accurate and more generally applicable
NNIA. However, including major discrepancies is also expected to highlight other discrepancies
that have previously been overlooked. Expanding the present parametric training data set is,
therefore, expected to result in a slowly converging process, if convergence to a general solution
can be reached at all. On the other hand, the limited success of short term time integration of the
NNIA-E in a wave model opens a more natural and potentially more powerful technique for
expanding the training data set.

If the parametric spectra are used as the initial conditions for short time model integration, the
resulting integrated spectra will naturally include spectral perturbations for which the NNIA
needs to have accurate interactions in order to reproduce realistic spectral shapes. Alternatively, a
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new training data set could be built entirely from modeled wave spectra. Although such ap-
proaches are also expected to require some iterations, the resulting training data sets will by
definition form a true envelope of expected model spectra. With such an approach, we therefore
expect to be able to generate an NNIA based on NNIA-E that will be accurate, and will be
capable of resulting in realistic model integration for wind seas.

Other approaches are available to increase the robustness of the NNIA. One approach is the
use of more advanced NN techniques (as discussed above). A second approach would be to at-
tempt to estimate the accuracy of the resulting NNIA objectively, using an inverse NN (Kra-
snopolsky and Schiller, 2003). This, in principle, makes it possible to revert to alternative
solutions (like a DIA) in cases where the NNIA is apparently inaccurate. If such alternatives are
used sparingly, the model is expected to benefit from the accuracy and economy of the NNIA,
while circumventing robustness issues. The development of such a hybrid NNIA furthermore
provides a natural way to iteratively expand a training data set with spectra and source terms that
are apparently not inside the previous envelope of conditions.

A third way of dealing with the robustness issue is to include more of the nonlinear physics into
the NNIA. One approach could be to use some form of the DIA to generate basis functions for the
nonlinear interactions. When combined with a NN, this in essence would result in a dynamically
adjusted multiple DIA. As a preparation for designing such a hybrid NNDIA, the potential
mapping accuracy of various modifications to the DIA is addressed in Tolman (2003, 2004).
5. Conclusions

Neural Network (NN) approximations for mapping of nonlinear interactions for wind waves for
given spectra are discussed. A Neural Network Interaction Approximation (NNIA) for wind seas
is presented. For fairly arbitrary single peaked spectra, this NNIA proved an order of magnitude
more accurate than the conventional Discrete Interaction Approximation (DIA), at an estimated
2.5 times the computational cost or better. Because the parametric training data sets used to de-
velop this NNIA do not include all peculiarities of modeled wave spectra, this NNIA cannot yet be
used in operational wave models. Further research aimed at reaching the latter goal is discussed.
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Appendix A. Training data sets

The parametric frequency spectrum on which the training data set is based is defined as
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where a is a proportionality constant, /1 describes the high-frequency flank of the spectrum, /2

describes the low-frequency flank of the spectrum, and /3 is the so-called peak-enhancement factor
(see, e.g., Hasselmann et al., 1973); m ¼ 5 and n ¼ 4 gives the traditional JONSWAP spectrum. A
full two-dimensional spectrum is obtained by adding a directional distribution Dðf ; hÞ:
F ðf ; hÞ ¼ F ðf ÞDðF ; hÞ; ðA:2Þ

where D is typically a slowly varying function of f . The Hasselmann et al. (1980) directional
distribution (DH) is defined as
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for simplicity omitting the dependence of the bottom line of (A.4) on the wave age. The factors a1

and a2 are added to allow for the generation of an envelope of possible distributions, instead of a
best fit (a1 � a2 � 1). The first factor influences the general width of the distribution, the second
the rate of change of the width with f . The bimodal Ewans (1998) distribution (DE) is given as
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where �hoðf Þ is an offset direction, with both the positive and negative values added in the sum-
mation. The factors a3–a5 are added again to allow for the generation of an envelope of possible
distributions. a3 allows for unequal branches of the bimodal distribution, a4 controls the sepa-
ration of the branches of the bimodal distribution, and a5 controls the general width of the
directional distribution. Note that in Eqs. (A.5)–(A.7) all directions are expressed in degrees,
whereas Ewans writes (A.5) in radians and the others in degrees. The final directional distribution
becomes a linear combination of the two:
Dðf ; hÞ ¼ a6DHðf ; hÞ þ ð1� a6ÞDEðf ; hÞ: ðA:8Þ

The directional shear is defined as the change of mean direction �h in the directional distribution

D as a function of the frequency f . For wind seas, the spectrum at high frequencies tends to line
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up with the wind direction. For lower frequencies, it may deviate progressively. A realistic shear
can, therefore, be obtained by using a mean direction that is a function of f �b, where b is a
positive, tunable power. Defining the shear as 0 at fp, and as hs at some high frequency fc, the
sheared mean direction becomes
�hðf Þ ¼
hs f �b � f �b

p

� �
jf �b

p � f �b
c j

: ðA:9Þ
Taking fc relative to fp, say fc ¼ 3fp, this can be rewritten as" #

�hðf Þ ¼ hs

1� 3�b

f
fp
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� 1 ; ðA:10Þ
where b and hs determine the magnitude of the shear. Finally, random modulations of the
spectrum are applied with a given normalized relative change rr, and with correlation length
scales rf and rh in frequency and direction space, respectively.

A set of test spectra is generated using a spectral discretization with 36 directions (Dh ¼ 10�),
and 31 frequencies ranging from 0.475 through 3.62 (normalized). Individual spectra are obtained
by generating Monte Carlo realizations of all relevant spectral parameters.

The parameters fp, a, c, m, n and r can be varied to obtain an envelope of possible spectra in
Eq. (A.1). The peak frequency fp and energy level a are set to fp ¼ 0:1 Hz, and a ¼ 0:0081. Due to
the normalization of spectra within the NNIA, these values, in essence, are irrelevant. The jus-
tification for the range of parameters used in the training data set is as follows:

• The peak frequency fp is varied normally over an interval Df to account for the fact that the
peak is not always lined up with the discrete frequency grid.

• The high-frequency spectral slope parameter m is generally expected to be 4–5. Lower values
are not likely to occur. Higher values are expected in conditions of diminishing winds where
the spectrum remains coherent, but energy dissipation at high frequencies occurs much faster
than at low frequencies.

• The low-frequency spectral slope parameter n is generally taken as approximately 4, although
early observations of fully grown conditions quote values as low as 2. Particularly low values
are of interest here to describe near full-grown conditions with strong directional shear, as oc-
cur regularly in conditions with rapid wind shifts. Occasional very high values are required as
steep low-frequency parameterizations are used regularly in model (re-)initialization (for in-
stance the �seeding� algorithm used in WAVEWATCH III, Tolman, 2002).

• The peak-enhancement factor c ranges from 1 for full-grown conditions to about 10 for young
wind seas. To properly address conditions where spectra are still coherent but overdeveloped,
more conditions with low c are introduced.

• The directional spread parameter r for the spectral peak enhancement has a small radius of
influence, typically of the order of 0.05–0.07. The details of this parameter will literally be �lost
in the random noise�. Therefore, a constant value r ¼ 0:07 is used.

The tunable parameters a1–a6 in the directional distributions (A.3)–(A.8) are introduced
to create an envelope around best-fit parameterizations as identified in Table 4 are subjective,
but require no additional justification. Similarly, the directional shear parameters b and hs in



Table 4

Distributions of random parameters of the parametric spectral description as used in the generation of the training data

set

Parameters Descriptions Eq. Distribution

fp F ðf Þ (A.1) Uniform over 0.1 Hz±0.5Df
c 25% c ¼ 1, 75% uniform over 1–10

m

n

a3 Dðf ; hÞ (A.5)

a6 (A.8) Uniform over 0–1

Other a (A.4)–(A.7)

b �hðf Þ (A.10) Like a1 with b ¼ 0; 2; 4
hs Like a3 with hs ¼ �45�, )15�, 15�, 45�

rf Noise – Uniform over 0.01–0.1 Hz

rh Uniform over Dh–45�
rr

Graphical depiction of piecewise linear probability density functions (pdf) qualitative only. Numbers across top of these
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Eq. (A.10) are subjectively chosen. Note that fairly strong shears are included to represent
conditions with rapidly changing wind directions, as often occur near fronts. Finally, the same
is true for the parameters describing the random fluctuations. Note that triangular distribution
was chosen to focus more on cases with moderate noise, while including some cases with sig-
nificant noise.
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