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Abstract

This report addresses the capability of previously suggested and new
Discrete Interaction Approximations (DIAs) of the nonlinear wave-wave in-
teractions for wind waves to reproduce the exact interactions source term.
The investigation mainly considers inverse modeling and optimization of
free parameters in such DIAs, with the aim of reproducing the exact in-
teractions source term for test spectra. In this initial study, only deep
water spectra with a single peak are considered. It is shown that an ac-
curate description of the exact interactions source term by a DIA requires
an expanded definition of the quadruplet. A new two-parameter quadru-
plet configuration proved adequate in this respect. A previously suggested
inclusion of additional proportionality constants does not appear to im-
prove the DIA significantly, and therefore does not seem justified. A new
method, where the free parameters of the DIA are allowed to be a slowly
varying function of the spectral frequency f, results in some further im-
provement. A strong point of this approximation is that its accuracy ap-
pears relatively insensitive to the test case considered. Unfortunately, this
method proved not to result in stable model integration when applied in
the WAVEWATCH IIT model. Very accurate results were obtained with
a multiple DIA with four components and the expanded definition of the
interacting quadruplets considered in the DIA. This ‘multiple’ DIA results
in stable model integration, but requires dynamical estimation of its free
parameters for optimum results. Part 2 of this study will address the ca-
pability of various DIA formulations to result in stable and realistic model
integration in a full wave model.



Acknowledgments. The author thanks Henrique Alves, Mary Hart and Prof.
Hashimoto for comments on early drafts of this manuscript. The present study
was made possibly by funding from the Office of Naval Research (ONR) through
grant N00014-00-F-0332 and by funding from the NOAA High Performance Com-
puting and Communication (HPCC) office.

This report is available as a pdf file from

http://polar.ncep.noaa.gov/waves

ii



Contents

Abstract . . . . . . . L
Acknowledgments . . . . .. ... Lo o
Table of contents . . . . . . . . . . ... ...

1 Introduction

2 Discrete Interaction Approximations
2.1 Theoriginal DIA . . . .. .. ... o o
2.2 Atestcase. . . . . . . ...
2.3 Previous modifications to the DIA . . . . . .. . ... ... ....
24 Amoregeneral DIA . . ... ... ... oo 0.

2.5 Implementation details . . . . ... ... ... ...

Inverse modeling for the test case

3.1 Introduction . . . . . ... ... ... ... .....
3.2 Optimizing the MDIA . . .. .. .. ... ... ..

3.3 Optimizing the VDIA . . . . . ... . ... ... ..
3.4 Comparison of approaches . . . . . . ... ... ..

Sensitivity of optimum parameters
Model integration

Summary and conclusions

References . . . . . . . . ... oo L.
A TInverse modeling: MDIA

B Inverse modeling: VDIA
B.1 Fully variableC' . . . . . ... ... ...
B.2 C varying with frequency fonly. . . ... ... ..
B.3 Optimizing Aand g . . . .. ... ...

C Results for all test cases

iii

41

47

53

95

A1l

B.1
B.1
B.1
B.4

C.1



This page is intentionally left blank.



1 Introduction

Ocean wave modeling has been in the center of interest for several decades. Fol-
lowing Hasselmann (1960) numerical models are generally based on an action or
energy balance equation of the form

DF

Dt
where F'is the spectrum, and S;,; represents the sources and sinks, consisting of a
wind input (S;y), nonlinear interactions (Sy;) and dissipation (Sgs) source terms.
Arguably the biggest breakthrough in the understanding of wind wave generation,
and hence in numerical wave modeling, occurred with the understanding of the
critical role of the nonlinear interactions source term S,; in the process of wave
growth (Phillips, 1960; Hasselmann, 1962, 1963a,b; Hasselmann et al., 1973). The
nonlinear interactions are believed to provide the lowest order mechanism to shift
wave energy to longer waves, and also provide a stabilization mechanism for the
shape of the spectrum. Reviews of the interactions and their impact can be found,
for instance, in Masuda (1980), Phillips (1981), Young and Van Vledder (1993)
or Komen et al. (1994).

The nonlinear interactions source term describes the resonant exchange of en-
ergy, momentum and action between a “quadruplet” of four spectral components
with wavenumber vectors k; through k4 and (radian) frequencies o) through o4
(0 = 2w f). These satisfy the resonance following conditions (Hasselmann, 1962,
1963a) :

Stot - Sm + Snl + Sds 3 (11)

kl + kg = k3 + k4 s (12)
oL+0y=03+04 . (1.3)

The interactions are conventionally expressed in terms of the rate of change of
the action spectrum n = F'/o in terms of the wavenumber vector k, as

anl ///G klakQ,k3ak4) 5/(:5
[n1n3 (77,4 — ng) —+ NoNy (TL3 — 77,1)] dkg dk3 dk4 s (14)

where n; is the action density at component i, n; = n(k;), G is a complex coupling
coefficient (Webb, 1978; Herterich and Hasselmann, 1980), and d; and 6, are delta
functions corresponding to the resonance conditions (1.2) and (1.3).

Due to the multidimensional integration and singularities in G the solution
of (1.4) is much too expensive for application in operational wind wave models.
From the perspective of operational wave modeling, a major breakthrough oc-
curred with the development of the Discrete Interaction Approximation (DIA,
Hasselmann et al., 1985), which proved sufficiently economical for application in
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operational wave models. The DIA and previously suggested adaptations to this
algorithm will be discussed in more detail in the following section.

The DIA made the development of the first third-generation wave model pos-
sible (WAM, WAMDIG, 1988). By definition, Eq. (1.1) is fully parameterized
in third-generation wave models, without assuming the resulting spectral shape.
Nevertheless, even with the success of the DIA, Hasselmann et al. (1985) recog-
nized shortcomings in the accuracy of the DIA. It is therefore not surprising that
much research has been performed in the past decades attempting to derive or
construct nonlinear interactions algorithms which combine the accuracy of the
full solution with the economy of the DIA.

Several different paths have been taken in this research. First, much progress
has been made in optimizing the exact interactions, using various approaches.
Important steps where made, for instance, by Masuda (1980), Tracy and Resio
(1982), Resio and Perrie (1991), Komatsu and Masuda (1996), and Van Vled-
der (2000). Even with this improved efficiency, the exact interaction algorithm
remains several orders of magnitude more expensive than the DIA, making it
economically unacceptable for application in a practical model.

One attempt to speed up the calculation of the interactions is by applying
various filtering techniques (e.g., Snyder et al., 1998; Hashimoto and Kawaguchi,
2001; Hashimoto et al., 2002). One of the methods described in the latter paper
(SRIAM), is claimed to ‘retain most of the [interactions| accuracy in computing
the nonlinear energy transfer’ at about 20 times the costs of the DIA. Unfortu-
nately, this claim is not substantiated. Generally, any such filtering technique
trades speed for accuracy.

In the same family of approaches (trading speed for accuracy), the DIA can
be expanded to become more accurate. Expansions have included more complex
descriptions of the interactions, more complex quadruplets, or more quadruplet
combinations (e.g., Ueno and Ishizaka, 1997; Hashimoto and Kawaguchi, 2001;
Van Vledder, 2001, 2002a). Several of the above papers indicate that much
progress can be made while increasing the computational costs compared to the
DIA by an order of magnitude or less.

Other methods employed to obtain an accurate yet economic parameterization
of the nonlinear interactions have been fully parametric approaches. Some of
these have been reviewed by Hasselmann et al. (1985). These methods are shown
to either lack accuracy or the capability of stabilizing the shape of the spectrum.
Recently some new approaches have been tried. Two recent methods that stand
out are a new diffusion-operator approach by Zakharov and Pushkarev (to the
knowledge of the present author still unpublished) and direct mapping methods
based on Neural Networks (Krasnopolsky et al., 2002). These methods are in
various stages of development, and will not be considered in detail here. The
latter Neural Network (NN) approach, however, is a direct reason for starting
the present study.



The Marine Modeling and Analysis Branch (MMAB) of the Environmental
Modeling Center (EMC) of the National Centers for Environmental Prediction
(NCEP) has gained extensive experience with the above NN approaches. This
experience suggests that in order to get a robust NN algorithm to calculate non-
linear interactions, it would be advisable to integrate physical aspects of the
interactions into the NN. The DIA appears to be the most reduced version of .S,;
that retains all physical aspects. A NN interaction approximation for S,; based
on the DIA therefore seems to be a natural choice. A first step towards such
a NN/DIA is taken here by assessing the potential of various forms of the DIA
to reproduce the exact interactions, mostly using inverse modeling techniques.
Second, the need for dynamically adjusting the DIA will be assessed. Note that
this need already appears to have been identified by Hashimoto and Kawaguchi
(2001), who show in their Table 1 that the optimum choice of DIA parameters is
a distinct function of spectral shape.

The layout of this report is as follows. In Section 2 presently published DIAs
are presented and discussed. Based on previous work, two new modifications
to the DIA are suggested. The first is an alternative layout of the quadruplet
used in the DIA. The second is the so-called Variable DIA (VDIA), where free
parameters in the DIA are allowed to be a function of the parameters defining the
spectral space. In Section 3 the results for inverse modeling for several DIAs are
presented using a single test case. The two most promising methods appear to
be a single VDIA, or a multiple DIA (MDIA) with constant DIA parameters in
spectral space for each component. In Section 4 the most promising methods are
applied to a set different test cases to address their general applicability and to
assess the need for dynamically adjusting parameter settings. The VDIA proves
less accurate for very sharp spectra, and does not appear to benefit greatly from
dynamically adjusting parameter settings. The MDIA can be generally accurate,
but then requires dynamical adjustment of the parameter settings. In Section 5,
both selected methods are incorporated in a wave model to assess if they can
result in stable model integration. For the VDIA no successful integration was
obtained, but for the MDIA it was. Finally, a summary and conclusions are given
in Section 6.
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2 Discrete Interaction Approximations

2.1 The original DIA

The Discrete Interaction Approximation (DIA) was developed by Hasselmann
et al. (1985). Compared to the exact interaction of Egs. (1.2) through (1.4), a
massive speed up in computation is achieved in two ways. First, only a very small
sub-set of resonant quadruplets satisfying Eqs. (1.2), (1.3) is considered, where

k2 == kl
o3 = (1+ Aoy } ’ (2.1)

where A is a constant, and k; corresponds to discrete spectral components only
(with a minor extension of the discrete grid to high frequencies, to assure that all
such quadruplets with contributions within the actual discrete spectral space are
considered). For each kq, only two (‘mirror image’) quadruplets satisfy Eqgs. (1.2),
(1.3) and (2.1).

Second, the exact interaction integral is replaced by a “deep water discrete-
interaction analogue” (Hasselmann et al., 1985, Eq. (5.4))

(S’I"Ll -2
677,3 = 1 Clg_s 119 [n%(ng —+ 7’1,4) — 277,1713’”4] Ak At ; (22)
577,4 1

where 074 is the discrete change of action density n(k;) in time step At (etc.), and
(" is a constant. The speed up in computation is achieved here by replacing the
six-dimensional integral in (1.4) with a single loop over the discrete spectral space,
and by replacing the complicated interaction coefficient G' (with its singularities)
with a simple constant (C").

In wave models, the wave field has conventionally been described by us-
ing the wave variance spectrum in terms of the wave frequency and direction,
F(f,0) = 4wo*g~?n(k) (deep water). The corresponding contribution to the
nonlinear interactions §.5,,;,; at component ¢ of the quadruplet becomes (Hassel-
mann et al., 1985, Eq. (5.5))

0811 —23 180
0Sn13 = (1+A) A;;Aa; Cg™ X
5Sui (1 \)2h20

(e i) 58] o

where C' is a preset constant, and Af and A are increments or band widths in
the discrete spectral space. Furthermore assuming a constant discretization of
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the spectral directions, and constant relative frequency increments f;11 = af;,
the conventional expression for the DIA is found

5Snl,1 -2
5Snl,3 = 1 09_4 111 X
6Snl,4 1
F. F. OF, FyF,
F? & i) - 2.4
l 1<<1+A>4+(1—A>4) (1= )i (24)

Details of the derivation of an extended DIA can be found in Van Vledder (2001).
It is important to note that the spectral grid layout is included in this formulation,
and that it is constructed assuming deep water conditions. The restriction to deep
water does not impact the present feasibility study, but needs to be addressed
when an actual DIA is implemented in a wave model.

It should be noted that the DIA retains general conservation characteristics of
the exact interactions. The distribution of the contributions 5, through 4.5, 4
over the four components of the quadruplet in Eq. (2.3) or (2.4) guarantees the
conservation of the total energy in the spectrum. If the conservation of energy is
thus assured, the resonance conditions implicit to the definition of the quadruplet
in turn guarantee the conservation of momentum and action (e.g., Hasselmann,
1963a; Webb, 1978). This implies that the DIA will have proper conservation
properties regardless of the layout and number of quadruplets, as long as each
quadruplet satisfies the resonance conditions. This furthermore implies that the
conservation properties are retained regardless of the actual form of the common
factors and the term in square brackets at the right side of Eq. (2.3) or (2.4). All
DIAs that are considered in this study therefore retain the proper conservation
characteristics of the exact interactions.

2.2 A test case

To illustrate the strengths and weaknesses of the DIA, a simple test will be set up
similar to the test presented in Hasselmann et al. (1985). This test will also be
used in the following sections as the basis of the inverse modeling efforts. The fre-
quency spectrum F'(f) used in the test is the JONSWAP spectrum (Hasselmann
et al., 1973)

F(f) =¢1 ¢2 P3 (2-5)

_ 9’ (f)" . A
¢1 - (27T)4f]§’ <7> ) ¢2 —eXp|: n (fp) ] )




where a is a proportionality constant, f, is the spectral peak frequency, ¢, and
m = 5 describe the high-frequency flank of the spectrum, and ¢ and n = 4
describe the low-frequency flank of the spectrum. ¢3 is the so-called peak-
enhancement factor, with v ranging from roughly 1 to 10, and o represents the
width of the peak, typically o = 0.07. To represent a moderately peaked spec-
trum, typical for well developed wind seas, v = 2 is used. Rather than using an
arbitrary peak frequency and energy level a, the spectrum is normalized so that
fp = 1 and F(f,0)max = 1. In combination with this frequency spectrum, the
directional distribution D of Hasselmann et al. (1980) is used

D(f,0) = cos®*[0.5(0 — 6(f))] , (2.6)

6.97 (L) for f<1.05f
o/ a4 L (2.7)
0.77 (L) for f>1.05f,

S =

where 6 is the mean direction, which to be consistent with the above is set to
6 = 0. The full spectrum is defined from the frequency spectrum F(f) and the
directional distribution D as

F(f,0) = F(f)D(f,0) . (2.8)

As in practical numerical wave models, a parametric tail of the shape = is
used for frequencies above 3f,, with a smooth transition between 2.5f, and 3f,
following Tolman and Chalikov (1996).

Finally, a benchmark nonlinear interaction is needed for the test case. Here,
the interactions according to the Webb-Resio-Tracy (WRT) method are used
(Webb, 1978; Tracy and Resio, 1982; Resio and Perrie, 1991), as implemented in
version 4 of the portable exact S,; package developed by Van Vledder (2002b).
In the present and all following computations, the spectral space is discretized
using 36 directions (Af = 10°) and with a relative frequency increment of 7%
(v = 1.07). The spectral space is described with 31 discrete frequencies ranging
from 0.48 to 3.6 (normalized with f,).

Figure 2.1 shows the exact (WRT) and DIA estimates of the nonlinear inter-
actions for this test case. Hasselmann and Hasselmann (1985) set A = 0.25 and
C =3 x 107 to get an accurate representation of the positive lobe of the interac-
tions for frequencies just below the spectral peak. Indeed, the one-dimensional,
directionally integrated source term Sy;(f) is represented fairly well for f, < 1
(Fig. 2.1b, left) and shows the proper magnitude for the corresponding full inter-
actions (compare Fig. 2.1a and b, right panels). However, this figure also shows
a much broader positive lobe in frequency space for the DIA, particularly away
from the mean direction. The choice to represent the low frequency lobe as accu-
rate as possible results in major errors for higher frequencies. The negative lobe
in panel d is more than three times as large as expected, and the positive lobe at
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Fig. 2.1 : Nonlinear interactions for test case. Spectrum using logarithmic
scaling with factor two increment and highest contour at 0.5 (panel a,
left). Interactions according to WRT method (panel a, right) or original
DIA (panel b, right) using logarithmic scaling with lowest contour value
+70 and blue identifies negative values. One dimensional interactions
Sni(f) for WRT (green solid line) or DIA (red dashed line), normalized
with maximum absolute value for WRT (panel b, left).

high frequencies is also clearly overestimated. These errors were already identi-
fied in Hasselmann et al. (1985), which also shows that the use of the DIA in a
numerical wave model results in a significant overestimation of the spectral wave
energy at high frequencies, and a significant spurious broadening of the spectrum
(figures not reproduced here).

The strength of the DIA is not its accuracy, but in its retention of many
important physical characteristics of the nonlinear interactions, and its robustness
when applied in a practical wave model. Equation (2.4), in combination with the
resonance conditions, retains the conservation of energy, action and momentum
(as discussed above); the product terms of action or energy of Eqs. (2.2) or
(2.4) retain both the ‘pumping’ and ‘diffusive’ characteristics of the interactions
as identified by Webb (1978). Many years of research since the introduction
of the DIA have not led to even more reduced forms of S,; that retain all these
properties. The DIA may therefore be considered as the most basic representation
of the nonlinear interactions presently available.



2.3 Previous modifications to the DIA

Several modified versions of the DIA have recently been suggested (see, for
instance Ueno and Ishizaka, 1997; Van Vledder et al., 2000; Hashimoto and
Kawaguchi, 2001; Van Vledder, 2001, 2002a). From these, three distinct methods
for expanding the original DIA can be identified.

One modification consists of generating a composite of several DIAs with
different parameter settings. In this approach (referred to here as the multiple
DIA or MDIA) the DIA becomes a building block of the nonlinear interaction
parameterization. It is assumed that the accuracy of the parameterization can be
improved by increasing the number of degrees of freedom (adding more interacting
quadruplets) at the penalty of increased costs. Hashimoto and Kawaguchi (2001)
and Van Vledder (2001) both show that this approach indeed reduces the error
in the DIA. The authors of these papers also suggest that with proper numerical
implementation, the increase in computational costs shows asymptotic behavior
with costs roughly 3 times the costs of a single DIA, even for 10 or more DIA
components (2002 WISE meeting).

Another suggested modification to the original DIA (Van Vledder, 2001) is to
use alternative definitions of the representative quadruplet defined by Eq. (2.1),
improving the flexibility of the resulting parameterization. Van Vledder suggests
the following definition for the representative quadruplet

o = g

oy = (1+po

o3 = (1 + )\)O’ X (29)
o, = (1=X+p)o

0, = 6, + A6

where A# is the predescribed angular difference between the first two wavenumber
vectors, and p is an additional parameter describing the quadruplet!. Valid
quadruplet configurations are presented in Fig. 1 and Egs. (9) through (13) of
Van Vledder (2001). Note that this quadruplet configuration reduces to the
original configuration (2.1) for y = 0 and Af = 0. The proper contributions of a
given quadruplet to the nonlinear interaction source term cf. Eq. (2.4) is found
in Eq. (21) of Van Vledder (2001)? (equation not reproduced here).

Finally, Ueno and Ishizaka (1997) suggest the addition of a second tunable
parameter to Eq. (2.4), resulting in the following modified DIA

! Note that the expression for o4 is erroneous in Van Vledder (2001), and that both positive
and negative Af need to be considered to assure symmetry.
2 With error corresponding to the error in quadruplet description.

9



5Snl,1 —2
0Sn1,3 = 1| gt x
0Sni4 1

o (i o)~ G+ @10

where C; and C, are constants replacing C' in Eq. (2.4). Equation (2.10) reduces
to Eq. (2.4) for C, = Cy = C.

Not having full access to the pertinent Japanese literature, the justification
for this adaptation to the DIA is not quite clear. It appears to be rooted in
an alternative version of the full interaction integral (1.4). The term in square
brackets in this equation can be rewritten as

[nan(ng —+ TL4) - 7’L37’L4(’I’Ll + TLQ)] . (211)

This form of the equation is used as the starting point by Ueno and Ishizaka
(1997). The separate constants in Eq. (2.10) correspond to adding different
weights to the two separate terms in Eq. (2.11). It is not quite clear to the
present author what physical argument underlies this modification. In fact, fol-
lowing the argument of Webb (1978), the form of the product term as used in
Eq. (1.4) identifies a separate “diffusion” and “pumping” term. If additional
weights are used in the DIA, it might make more sense to split these terms,
resulting in

5Snl,1 -2
(SSnl,g = 1 g74 111 X
6571[,4 1

[Ff (( CSFS C'4F14 ) _ (03 + C4)F1F3F4

T+ 0)% 0 (1— N (1= 22 , (2.12)

where the constants are designated C5 and C, to distinguish them from the
constants of Ueno and Ishizaka (1997) in Eq. (2.10). This equation also reduces
to Eq. (2.4) for C3 = Cy = C. Clearly, one could also consider using separate
constants for all four terms in (2.11).

2.4 A more general DIA

In the present study, we will use an alternative form of the DIA that includes most
of the previously suggested modifications to this parameterization, but which also
reduces transparently to the original DIA.

10



First, a more flexible layout of the quadruplet will be used, similar to the
approach used by Van Vledder (2001) [present Eq. (2.9)]. However, instead of Van
Vledder’s three-parameter approach, a more simple two-paramenter approach is
used which proved sufficiently flexible for the present study. In this two-parameter
approach, the quadruplet is defined as

k1+k2 = k3+k4 = 2k

o = (I+po
o9 = (1—-p)o , (2.13)
03 = (1 + )\)U
04 = (1-MXo

where (k, o) now represent the discrete spectral component, and which has four
solutions like Eq. (2.9) (see Fig. 1 of Van Vledder, 2001). Adding the arbi-
trary requirement that k and o satisfy the dispersion relation uniquely defines
the quadruplet. This approach includes an elegant symmetry, which simplifies
implementation, and has additional potential in terms of economy.

Equations (2.13) reduce to Eq. (2.1) for p = 0, or for A = 0, and appropriate
rotation of parameters and indices. Note that if the values for A and p are
exchanged, an identical set of four quadruplets is found. Note furthermore, that
for deep water, A\ and p cannot be larger than 0.5 for the dispersion relation and
resonance conditions to have solutions. Finally, since sign changes of A and p
result in identical sets of quadruplets, it is sufficient to consider only

0<p<A<05 (2.14)

The proper DIA corresponding to the quadruplet (2.13), including multiple pro-
portionality constants C, can be derived from Eq. (2.2) as

OSni1 -1
0Sn1.9 11 -1 —4 p11
) — - X
813 ol 1|9
dSnia 1

F\F, C\F; C!F,
[ 1= 1)’ ((1+A>4 (1—A>4>
FyF, C!F, CLFy
- ) ((1 Tt - u>4> ] |

where 27 f = o is the frequency of the discrete spectral grid point considered,
and C' represents the different proportionality constants. The factor 1/2 is not
strictly needed, but assures that for either y = 0 or A = 0 this alternative DIA
collapses to the conventional DIA where each quadruplet configuration has only
two components instead of the four components of the new quadruplet. The

(2.15)
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actual choice of the parameters C’ defines the details of the DIA method used.
The simple case

Cl=C,=C,=C,=C, (2.16)

reproduces the conventional DIA of Hasselmann et al. (1985), with or without
the extended quadruplet configuration. The form of Ueno and Ishizaka (1997) as
in Eq. (2.10) is obtained when

Ci=C,=C, , C!=C,=0C, , (2.17)

whereas

Cl=Ci=Cy , Co=C\=C, , (2.18)

reproduces the separate retuning of the diffusion and pumping terms of Webb
(1978) as in Eq. (2.12).

A remark needs to be made about optimizing the proportionality constants
C, etc. The shape stabilizing effect of the nonlinear interactions is of critical
importance to numerical models. This behavior is probably due to the diffusive
aspects of the nonlinear interactions as discussed by Webb (1978). If optimization
results in negative values for C, this diffusive character may turn into antidiffu-
sive behavior, with its potential for generating numerical instability. Therefore,
optimizations resulting in positive values for C' are preferred. Note, however,
that only actual integration in a wave model can identify the robustness of any
nonlinear parameterization with any value (sign) of C.

From the basic DIA defined by Egs. (2.13) and (2.15), a multiple DIA (MDIA)
with N components can simply be calculated from components S;( f, ) according
to the above equations as

N
Sulf.0) =+ 3 S,(£.6) - (2.19)
N =

The factor 1/N is not strictly necessary here, but is added to assure that an

MDIA composed of identical components becomes identical to its components.
So far, all extensions to the original DIA are, in essence, taken from previous
studies. However, close inspection of Egs. (1.4) and (2.15) identifies a potentially
more powerful adaptation to the DIA. Equations (1.4) and (2.15) incorporate
a detailed balance within the nonlinear interactions (as discussed above), and
hence guarantee locally within the spectrum the conservation of energy, action
and momentum. Considering this, there is no need for assuming either A, u
or C to be constants. It is well known that dominant wavenumber scales of
interactions vary throughout the spectrum (e.g., Hasselmann, 1963b; Hasselmann
and Hasselmann, 1985), particularly with frequency f. This suggests that A and

12



1 should at least be a function of f. It is then only logical to also allow C' to vary.
Allowing A, 4 and C to vary dynamically throughout the spectrum is expected to
result in a more powerful DIA. This approach will be denoted here as a variable
DIA (VDIA).

Before starting with the inverse modeling of the different DIAs, implementa-
tion details of the generalized DIA will be discussed. This detailed information
will later be used to estimate relative costs of different approaches based on the
number of operations required, without the need of generating optimal imple-
mentations for all approaches

2.5 Implementation details

Equation (2.15) cannot be used directly in a numerical calculation, because the
components of each quadruplet (k; through k,) generally do not coincide with
discrete spectral grid points. First, energy densities for the quadruplet compo-
nents (F;, where i represents component number in quadruplet) are calculated
using simple linear interpolation from the spectral grid

4
F; = Zwi,jFi,j ) (2-20)
j=1

where j is a counter for the four surrounding spectral grid points, w;; are the
corresponding bi-linear interpolation factors, and F; ; are corresponding discrete
spectral energies. Similarly, source term contributions 6.5,;; do not coincide with
the discrete grid, and therefore need to be distributed consistently with (2.20)

5Snl,z’,j = W;; 5Snl,i ) (2-21)

where Sy, ; ; are quadruplet contributions at actual discrete spectral grid points.
Note that every individual quadruplet thus generates as many as 16 discrete con-
tributions to S,;. With four quadruplets for each discrete k, this corresponds
to up to 64 discrete contributions for each spectral grid point. Note, further-
more, that the original DIA has only 2 quadruplets, with two components of the
quadruplet that coincide with grid points, and hence has only 18 contributions
for each grid point.

In third-generation wave models, the diagonal terms D of 0S,,/0F are used
in common time integration schemes for source terms (WAMDIG, 1988; Tolman,
1992). Although not strictly necessary for the present study, these derivatives
will be discussed here too. Diagonal contributions in (2.15) are governed by the
partial derivatives of the term in square brackets (K), with respect to F; through
Fy

aK Fg 534 C{P34
K = = — 2.22
T (ST TR (e T (2.22)
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where

C'Fy CLFy
S — 1 2 ’ S —
R (T CRn T

F,F, FyF,

C.Fy C!F,
L+N " (T= N

With this, the contributions to the diagonal D (dD; etc.) corresponding to
Eq. (2.15) become

D, —K!
6D2 _ 2 _Ké —4 r11
3D, K

These contributions also do not coincide with the discrete spectral grid. Applying
(2.20) and (2.21), discrete spectral contributions D; ; to the diagonal term become

2 _

ij = Nwi?,j (K} g ', (2.27)
again resulting in (up to) 16 contributions per quadruplet, or 64 per discrete
spectral grid point. In the conventional DIA, the number of contributions is
again reduced to 18.

D

14



3 Inverse modeling for the test case

3.1 Introduction

In this section, the potential of several approaches to compute S,; using DIAs
will be assessed. Initially, a single test case will be used. Using a spectrum that
is fairly representative for well developed wind seas is expected to give at least a
good impression of the potential of several approaches.

The previous section leaves a large number of possible DIAs to be consid-
ered, ranging from single to multiple DIAs with constant parameters throughout
the spectrum to essentially infinite possibilities of VDIAs and multiple VDIAs.
Irrespective of the form of a DIA, several definitions of the layout of the repre-
sentative quadruplet can be considered. A selected set of possible approaches is
chosen for the following reasons.

The ultimate goal of developing DIAs is to obtain an optimal parameterization
for operational wave models. Economy then is of paramount importance for the
viability of such a DIA. Obviously, the cheapest methods suggested here are
aggressively optimized single DIAs, where the tunable constants are constant in
spectral space. Previous work also shows that similar multiple DIAs are also
expected to be economically viable. Therefore, single and multiple DIAs with
constant parameters will be discussed first in section 3.2.

In a variable DIA (VDIA), the tunable parameters are allowed to vary in
spectral space. A VDIA therefore includes massive potential in terms of increased
degrees of freedom compared to a single DIA to (in principle) fit exact interactions
at almost arbitrary accuracy. Because, furthermore, a VDIA is more complex
than a DIA with constant parameters, it makes no sense to even consider a
multiple VDIA. Various VDIA approaches will be analyzed in section 3.3.

The following nomenclature will be used in this and following sections:

e The term ‘DIA’ can refer to any form of a Discrete Interaction Approx-
imation as defined in section 2.4.

e The term ‘original DIA’ or ‘conventional DIA’ refers to the DIA as
proposed by Hasselmann et al. (1985), i.e., the present DIA with A =
0.25, u =0 and C = 3107.

e The term ‘MDIA’ will be used for a DIA with one or more representative
quadruplets, and with optimized tunable parameters that are constant
in spectral space.

e The term ‘VDIA’ will be used for a DIA with a single representative
quadruplet, and with optimized tunable parameters that are allowed to
vary in spectral space.

For each MDIA or VDIA, the actual definition of the quadruplet used and which
parameters are optimized will be explicitly stated in the text. Note that the
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term MDIA will also be used for parameterizations with only one representative
quadruplet, to distinguish them from the VDIA.

Optimization of a DIA implies the (subjective) estimate of (some of) the free
parameters A, u, and C through C,. All DIAs are optimized by minimizing the
I'ms error €

= \/ [ [ (Xual£.0) = Suu(s.0))” df do (3.1)

where X, is the exact interaction, to which the DIA is fit, and S,,; represents
the DIA estimate. In the following, the normalized error (e,) is generally pre-
sented. This represents the error normalized with the corresponding error of the
conventional DIA.

The parameters describing the shape of the quadruplet (A and p) are implicit
in the formulation of the DIA, and hence cannot be estimated directly. Instead,
an iterative procedure is required. The proportionality constants C', however,
are an explicit part of the DIA, and can be estimated directly. Details of the
optimization techniques for the MDIA are given in Appendix A, and for the
VDIA in Appendix B.

3.2 Optimizing the MDIA

The MDIA will be optimized going from simple to more complex configurations.
First, an MDIA with up to five components, and a single proportionality constant
C as in Eq. (2.16), will be optimized. The results are presented in Table 3.1 and
Figs. 3.1 through 3.3. After these results have been discussed, DIAs with dual
constants C' [Eq. (2.17) and (2.18)] will be considered.

Figure 3.1 shows results for MDIAs with a single component (N = 1) with
optimum g or with g = 0. The latter case (Fig. 3.1c) represents the conven-
tional DIA with optimized A and C, and will be discussed first. For this MDIA,
A = 0.249 is virtually identical to A = 0.25 in the conventional DIA. The propor-
tionality constant C, however, is more than a factor of 3 smaller in the MDIA.
The quantitative improvement gained by the optimization is dramatic, with a
reduction in the error € by a factor of more than 3. Note that this MDIA is close
to the DIA used in the WAVEWATCH III model (A = 0.25, C = 107; Tolman
and Chalikov, 1996; Tolman, 2002). Qualitatively, however, this is not necessarily
an improvement. The negative lobe in the one dimensional source terms is rep-
resented much better (compare left panels of Figs. 3.1c and d), but the positive
lobe at low frequencies is severely underestimated. Considering the importance
of the positive low frequency lobe for wave growth, it remains to be seen if this
MDIA would result in realistic wave growth behavior in a wave model.

Figure 3.1b shows the results for a single MDIA (N = 1), with a quadru-
plet defined by both A and u, and with a single constant C. Compared to the
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Table 3.1: Optimum parameter values of several MDIAs with a single pro-
portionality constant as in Eq. (2.16), for N = 1 through 5, with or
without inclusion of u; and corresponding rms errors, normalized with
error of conventional DIA (e,) in percent. C' multiplied by 107".

N

Fig.

€n (%)

1

3.1c

3.2a

3.2b

3.2¢

3.2d

29.6

18.9

18.6

18.6

17.1

I

I

I

0.249
0.841
0.174
3.17
0.172
4.71
0.170
6.02
0.175
15.1

0.293
0.903
0.280
1.33
0.232
0.732
0.223
-145.

0.363
0.242
0.286
1.08
0.225
141.

0.334
0.515
0.279 0.366
1.17  0.561

3.1b

3.3a

3.3b

3.3¢

3.3d

20.3

12.0

8.10

5.74

2.69

A
C
A
C
A
C
A
C
A
C
A
1
C
A
7
C
A
I
C
A
7
C
A
W
C

I

I

|

0.248
0.127
1.81
0.080
0.051
19.6
0.139
0.004
2.68
0.075
0.023
8.36
0.074
0.022
10.8

0.254
0.127
3.41
0.220
0.127
2.93
0.219
0.127
7.28
0.237

-0.32

0.323
0.079
0.948
0.299
0.184
3.34
0.221
0.127
9.71

0.394
0.135
0.257
0.300 0.394
0.180 0.092
3.87 0.292
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Fig. 3.1: (a) Test spectrum (left) and exact interactions (right). (b) Sin-
gle MDIA with optimum A, p and C. (c) Similar MDIA with p = 0.
(d) Original DIA. Left panels in (b) through (c) represent a comparison
between the exact and estimated one-dimensional interactions Sy(f).
Right panels show full two-dimensional interactions. Legends as in
Fig. 2.1.
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original DIA, the error € is reduced by a factor of almost 5 (Table 3.1). This
approach not only shows large quantitative improvements over the original DIA,
but also significant qualitative improvements. The positive lobe at low frequen-
cies is represented much better in the full spectral space (right panels in Fig. 3.1),
although the magnitude is still somewhat underestimated, as is obvious in the
one-dimensional interaction (left panel in Fig. 3.1b). The largest errors in this
approach are concentrated at higher frequencies, typically f > 1.5f,.

Figure 3.2 shows the MDIA with p = 0 and a single constant C', for the num-
ber of components N increasing from 2 to 5. Adding a second component to this
MDIA (N = 2) reduces the error € by another 30% compared to the single MDIA
(N =1, see Table 3.1). However, adding more components (N = 3 through 5)
has little impact on the error ¢,. Moreover, the resulting nonlinear interactions
retain some qualitative deficiencies. This MDIA systematically underestimates
the magnitude of the positive lobe at low frequencies, as is clear from the one
dimensional source terms in the left panels of Fig. 3.2. Furthermore, this low
frequency lobe is realistically narrow in frequency space near the mean direction
(compare with Fig. 3.1a), but remains spuriously broad at directions away from
f = 0, resulting in an unrealistic horse shoe shape for the positive part of the
interactions at low frequencies.

It is also important to note that for N = 5, the optimization procedure finds
two near identical values for A, with large values of C' with opposite signs. The
occurrence of the negative C is not desirable, as it corresponds to antidiffusive
behavior as discussed in the previous section. With the present optimization
approach, therefore, it is not desirable to use more than 4 components in this
MDIA (for the present test). An alternative solution can be obtained when a
fixed spacing is used for A, and only the values of C' and the overall spacing
for A are optimized. Such an approach has not been tried here, since it is not
expected that this approach will positively improve the qualitative deficiencies of
this MDIA.

Figure 3.3 shows the resulting optimum MDIA with the two-parameter quadru-
plet (A, # 0), for the number of components N increasing from 2 to 5. Adding
components systematically reduces the remaining model error up to N = 4,
where the error is reduced by a factor 17 compared to the conventional DIA
(e, = 5.74%). For this configuration, the quantitative and qualitative fit to the
exact interactions is excellent (compare Fig. 3.3c with Fig. 3.1a), with no appar-
ent remaining deficiencies. Note that for N = 5 negative values for C appear,
and hence N > 4 appears less desirable (as discussed in the context of Fig. 3.2).

After DIAs based on a single constant C' have been analyzed, inclusion of two
such constants, according to Eqs. (2.17) or (2.18), is considered. Results for such
MDIAs are presented in Figs. 3.4 through 3.8. The corresponding normalized
errors are presented in Table 3.2.

The quantitative impact of adding a second tunable proportionality constant
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Fig. 3.2 : Test results for MDIA with optimized A and C, and with u = 0.
(a) N=2. (b) N=3. (¢) N=4. (d) N =5. Legends as in Fig. 2.1b.
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Table 3.2: Normalized errors ¢, for MDIA with N components, and config-
ured as indicated in the table.

optimized A optimized A\ and u

C (CL0) (GG | € (CuCy) (G50
29.6 294 29.0 |20.3 203 17.9
18.9 18.4 15.8 12.0 16.1 11.5
18.6 17.0 14.6 | 810  6.57 6.21
18.6 16.1 13.3 |57  3.64 5.66
17.1 15.8 13.1 5.69  3.41 3.49

S N N

is limited (see Table 3.2). For single MDIAs, the impact is negligible; for multiple
DIAs the impact is larger, but still small compared to MDIAs with a single C' as
discussed above. Generally, the technique where the two constants are assigned
to the ‘diffusion’ and ‘pumping’ terms separately [C3, Cy as in Eq. (2.18)] appears
to have a more positive impact on the resulting errors than the method described
by Ueno and Ishizaka (1997) [C, Cs as in Eq. (2.17)]. Only for N > 4, when both
A and p optimized, does the impact of tuning C), appear significant. Note that for
isolated cases, the two parameter (C,,) results are worse than the one parameter
(C) results. This is an artifact of the fairly simple optimization procedure used,
and of the fact that there is no guarantee in nonlinear optimization that the
absolute best fit is always found. If the best fit for one parameter is chosen as the
starting point for the two parameter fit, the two parameter fit will always give
better results, as would be expected.

The qualitative impact of the added tuning parameters is even less impressive.
For the one parameter quadruplet (x = 0), the DIA retains its undesirable horse-
shoe shape for the positive lobe at low frequencies (Figs. 3.4a,b, 3.5 and 3.6). For
such MDIAs with larger numbers of components (N = 3, 4), there also appears to
be a tendency to generate nonlinear interactions with spuriously broad direction
characteristics in the positive lobes at high frequencies. Probably most detrimen-
tal for this approach is the occurrence of spurious ‘wiggles’ at low frequencies in
Fig. 3.6, which could have a serious negative impact on model integration. For
the two parameter quadruplet (with A and p optimized, Figs. 3.4c,d, 3.7 and 3.8),
these deficiencies are not observed. However, a comparison with Figs. 3.1 and
3.3 shows only minor improvements in the shape of the central negative lobe. It
remains to be seen if this justifies the inclusion of an additional tunable param-
eter, particularly when considering that additional tunable parameters generally
complicate dynamical estimation of parameters.
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Fig. 3.5 : Test results for MDIA with optimized A\, Cy and Cy [Eq. (2.17)],
and with uy=0. (a) N=2. (b)) N=3. (¢) N=4. (d) N =5. Legends
as in Fig. 2.1b.
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The following conclusions can be drawn from the above experiments with specific
optimized MDIAs:

e All single MDIAs (N = 1) show a large improvement over the conven-
tional DIA, but are not deemed to be sufficiently accurate to realistically
reproduce the exact interactions.

e MDIAs with quadruplets based on A only (x = 0) retain spurious errors
in the shape of the positive lobe at low frequencies that are not deemed
desirable. Adding components to this MDIA does not improve this
behavior significantly.

e The replacement of the single proportionality constant C' with two con-
stants, (C, Cy) or (Cs, Cy), does not have a sufficiently positive impact
on the resulting interactions to justify this complication of the MDIA.

e A MDIA based on optimized A, u and C, with approximately four com-
ponents, appears to give a good representation of the exact interactions
for practical purposes.

Note that these interim conclusions are solely based on accuracy. Economical
considerations will be addressed in some detail in section 3.4.

3.3 Optimizing the VDIA

The ultimate goal of investigating the VDIA is to find a balance between accuracy
and a minimum number of free parameters. The latter is crucial in being able
to get a reliable (dynamic) estimate of the free parameters. To get to this goal,
the first focus will be on addressing what is needed to get an accurate VDIA. In
this, the attention will first be focused on optimizing C', because this can be done
explicitly. Considering the results of the previous section, only the optimization
of a single C' will be considered (instead of C,,). After that, different degrees of
variation of A\ and p will be examined. Details of the optimization and inverse
modeling techniques used here are given in Appendix B.

Figure 3.9 shows the resulting fully variable C(f,#), required for the VDIA
with A = 0.25 and p = 0 to reproduce the exact interactions. As expected, this
method reproduces the exact interactions accurately. To achieve this, however,
C requires a large variability. Some of this variability for low frequencies and for
directions away from # = 0, is due to the inverse modeling problem being poorly
conditioned, as discussed in Appendix B. The relatively smooth behavior of C' for
frequencies above the spectral peak suggests that a simpler approach (less degrees
of freedom) could be expected to give reasonable results. The clear dependence
of C on direction for f > 2.5 suggests that the quadruplet used here is not
representative for the dominant scales of interaction, as expected and discussed
in section 2.4. The large changes of C' close to the spectral peak (f = 1), suggest
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Fig. 3.9 : (a) Spectrum for test case (left) and exact interactions (WRT,
right). (b) Retrieved constant C(f,0) (left) and corresponding DIA
(right) for A = 0.25 and p = 0. Legend for spectra and source terms as
in Fig. 2.1. Logarithmic scaling for C with lowest contour levels at +10°

that any optimum C' is expected to require significant variability in this part of
the frequency domain (and for this particular quadruplet) to give good results.
Since a VDIA with this many degrees of freedom is not expected to be practical,
it will be left as an illustration only, and will not be investigated further.

Figure 3.10 shows results for optimizing C'(f) (C independent of #). This
optimization is performed for the original DIA quadruplet (A = 0.25, and p = 0,
panels c¢) and for the previously optimized new quadruplet (A = 0.248, and p =
0.127, panels b). In both cases the resulting errors (upper right corner of right
panels) are reduced by a factor of approximately 2 when compared to the error of
the corresponding MDIA with optimized constant C' (N = 1 results in Table 3.1).
Qualitatively, however, the results have deteriorated. The resulting source terms,
in general, include more noise, and in particular show spurious wiggles below
the peak frequency. It is potentially detrimental when such a parameterization
is applied in a wave model. A positive result of this experiment is that the
unrestrained C(f) appears reasonably well behaved, particularly for the original
quadruplet (Fig. 3.10c). This suggests that a description of C(f) based on fewer
degrees of freedom may also improve the model behavior. By definition, such an
approach will result in a smoother estimate of C'(f), which is expected to result
in a smoother source term.

To investigate this, a simple polynomial description of C' is adopted, where
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Fig. 3.10 : (a) Spectrum for test case (left) and exact interactions (WRT,
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red) and optimized C(f) x 10~® (solid blue line). Right panels show the
resulting source term and normalized error €, in upper right corner. (b)
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Original DIA.
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the mth order polynomial is defined as

C(fy=co+erf+eaf?+...+enf™ (3.2)

where c,, are the factors to be optimized. Figure 3.11 shows the results for
this VDIA, with constant A = 0.25 and u = 0, for polynomials of the order 1
through 4. Figure 3.12 shows similar results for A = 0.248 and p = 0.127. The
corresponding results for a polynomial of the order 0 were already presented in
Figs. 3.2a and 3.3a and in Table 3.1 (N = 1).

For both quadruplets (i.e., definitions of A and p), the increasing of the or-
der of the polynomials has only a small effect on the resulting error. In most
cases, the reduction of the error is accompanied by a clearly less realistic overall
description of the source term. Only for the extended quadruplet (1 # 0) and a
polynomial of order 1 or 2 (Figs. 3.12a,b), is the reduced error accompanied by
a better qualitative representation of the source term. Based on these results, it
may be concluded that little is to be gained by allowing C' to vary by itself. Any
quantitative improvement appears to be offset by significant qualitative deterio-
rations in the behavior of the source term. Therefore, only low level polynomial
descriptions of C' will be used in the following analyses. Somewhat arbitrarily,
these will be the polynomials of order 0 and 2.

The final step in analyzing the potential of a VDIA is to allow A and p to vary
with frequency f. From the previous results, it may be expected that an unre-
strained variation of these parameters will result in a smaller error, at the cost of
a less realistic (noisy) source term. For completeness, this option is nevertheless
investigated. Figure 3.13 shows the results for several VDIA configurations as
defined in the legend of this figure. As expected, the resulting source terms are
tainted by noise, but the optimum values of A and p appear well behaved. There-
fore, a simple functional fit again will be tried for these parameters. Somewhat
arbitrarily, a low order Pade approximant of the form

_ C()+01f
1+02f

is used. The optimum results for this approximation are presented in Fig. 3.14.
For the quadruplet with ;4 = 0 (panels a and b), the quantitative improvement
is again minimal, and is accompanied by a clear qualitative deterioration of the
resulting interactions. For the quadruplet with optimized A\ and pu, the quan-
titative improvements are small but notable (15% compared to the single DIA
with constant parameters), and the resulting interactions also appear qualita-
tively better, in particular for the positive lobes at high frequencies. In the latter
case, the simplest approach for C' (Fig 3.14c) appears to give the best results.

A, (3.3)
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Fig. 3.11 : VDIA, with A = 0.25 and pu = 0 and optimized polynomial de-
scription of C(f) with polynomials of first order (panel a) increasing to
fourth order (panel d). Legend as in Figs. 3.10b,c.
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Fig. 3.12 : Like Fig. 3.11, for A\ = 0.248 and p = 0.127.
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Fig. 3.13 : VDIA, with optimized A\ and p as unrestrained functions of the
frequency f (a,b) p = 0. (a,c) C optimized as a constant. (b,d) C
optimized as second order polynomial. Legend as in Figs. 3.10b,c.
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Fig. 3.14 : Like Fig. 3.14, with Pade approximation for A and p.
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The following conclusion can be drawn from the experiments with the VDIA.

e The VDIA has the potential to significantly reduce errors of the DIA in
a quantitative sense, but generally does so at the expense of introducing
noise. Hence, the results deteriorate in a qualitative sense.

e VDIAs based on the conventional quadruplet with u = 0 perform sys-
tematically worse than the corresponding single and multiple DIAs with
constant parameters.

e VDIAs with A and p described with Pade functions, and with C' constant
but optimized, show moderate improvements over the corresponding
MDIA (N =1) in both a qualitative and quantitative sense.

Note that these conclusions are again based solely on accuracy issues. Economy
and other issues will be discussed below.

3.4 Comparison of approaches

In the previous sections the most promising MDIA and VDIA have been iden-
tified, based on their capability to reproduce exact interactions for a single test
spectrum. The most promising MDIA uses approximately four components, the
full definition of the quadruplet [Eq. (2.13)], and a single constant C' per compo-
nent [Eq. (2.16)]. The most promising VDIA uses a single quadruplet, Pade ap-
proximations to describe A and p in Eq. (2.13), and a constant C' as in Eq. (2.16).
The resulting source terms and model errors are summarized in Fig. 3.15. Before
these MDIA and VDIA are applied to an extended set of test cases, and in an
actual numerical model, they will be compared in this section with regard to ac-
curacy, economy and the potential for application to arbitrary spectra and water
depths.

In terms of accuracy, the MDIA (Fig. 3.15b) is, for all practical purposes,
identical to the exact interactions (Fig. 3.15a). The VDIA (Fig. 3.15¢) shows a
massive improvement over the original DIA (Fig. 3.15d), but also shows some
deviations from the exact solutions. Its most obvious errors are an inability to
resolve the two separate local minima in the negative lobe of the source term,
a moderate underestimation of the intensity of the positive lobe at low frequen-
cies, and a shift in frequency space for the local maxima in the positive lobes
at high frequencies. In terms of absolute errors, this VDIA is only 15% more
accurate than the MDIA with a single component (Fig. 3.1b). In a qualitative
sense, however, this VDIA looks more realistic for higher frequencies in particu-
lar. Arguably, this VDIA represents the most balanced, single component DIA
approach considered here, and therefore deserves further attention.

Without writing a highly optimized version of the above MDIA and VDIA,
their expected economy can be assessed by addressing the required number of
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Fig. 3.15 : Review of results of inverse modeling efforts for the test case
(a) Spectrum and exact interactions. (b) MDIA with four components
with optimum A\, u and C. (c) VDIA with single component, \ and
p described with Pade functions and constant C. (d) Orriginal DIA
without optimization. Legends as in Fig. 2.1. Normalized errors €, in

upper right corner of right panels.
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operations in both approaches. A numerical implementation of any DIA consists
of four main parts

(i) Preparation of calculations by configuring quadruplets and calculating
indices and interpolation weights.
(ii) Calculation by interpolating of the energies at the components of the
quadruplet.
(iii) Calculating the strength of the interactions.
(iv) Distributing interactions back to actual grid points.

In the conventional DIA [Egs. (2.1) and (2.4)], step (i) is performed only
once, and hence does not incur computational effort in the actual model run.
Steps (ii) and (iv) include gathering and distributing data from 18 surrounding
spectral grid points, for each individual spectral grid point to be considered. In
step (iii) the interaction strengths for two quadruplets are calculated from four
previously interpolated spectral energies. Because the expression to calculate the
interaction strengths [Eq. (2.15)] is fairly simple, the main computational effort
for the conventional DIA is spent in steps (ii) and (iii).

In the expanded DIA [Egs. (2.13) and (2.15)], the number of components to
be considered in steps (ii) and (iv) is increased from 18 to (up to) 64, increasing
the corresponding computational effort by up to a factor of 3.5. In step (ii), the
number of interaction strengths to be calculated is increased from two to four,
and the expression becomes more complicated, roughly doubling the amount of
operations required to calculate the interaction strength. Step (iii), therefore,
becomes more expensive by a factor of approximately 4. Dynamic adjustment of
the shape of the quadruplet and the strength of the interactions, as envisioned for
a final implementation of this DIA, requires step (i) to be performed for every cal-
culation. For fixed quadruplet shapes throughout the spectrum, this represents a
single set of computations, which should add negligible effort compared to apply-
ing the interactions to each discrete spectral grid point individually. In the VDIA,
this layout of the quadruplet needs to be evaluated for each discrete frequency,
but not for individual directions. Therefore, step (i) will be more expensive in
the VDIA, but even there it is not expected to dominate the computational costs.

Considering the above, the MDIA with one component may require 3.5 to 4
times the run time of a traditional DIA. The corresponding VDIA will be some-
what more expensive, but is not expected to be more than 5 times as expensive
as a conventional DIA. An MDIA with several components will require a multiple
of the computational effort of an MDIA with one component. However, as was
shown by previous authors at the 2002 WISE meeting (see section 2) in an MDIA
many individual component contributions can be combined, resulting in an in-
crease in computational effort that is much less than linear. Thus, the MDIA

suggested here is expected to be roughly 10 times as expensive as a conventional
(single) DIA.
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It should be noted that the cost increase for the VDIA and MDIA is in sig-
nificant part due to the more complex shape of the quadruplet. As is shown in
previous sections, the new quadruplet shape is responsible for the much improved
(quantitative and qualitative) behavior of the DIA, and is therefore crucial. The
factor of 4 increase in computational cost related to this change, therefore, ap-
pears well justified.

Finally, the selected MDIA and VDIA should be considered in the context
of arbitrary spectra and arbitrary depths. When arbitrary spectra with multiple
swell systems are used in the optimization of the MDIA, no specific complications
are expected, since constant parameter values are used throughout the spectrum.
For the VDIA, however, the functional description of A and y will need to be re-
visited, and might prove less straightforward. The MDIA is, therefore, expected
to be more easily applicable to arbitrary spectra than the VDIA. Extension to
shallow water mostly involves the assessment of the proper (shallow water) res-
onance conditions. This implies that the shape of the quadruplet becomes a
function of the frequency and depth. In the VDIA this extension is straightfor-
ward, because the quadruplet already needs to be evaluated separately for every
frequency. For the MDIA, this increases computational costs. Hence, extension
to shallow water appears to be somewhat more simple for the VDIA.

39



This page is intentionally left blank.

40



4 Sensitivity of optimum parameters

Now that an optimal MDIA and VDIA have been selected, the validity of these
methods and their present tuning parameters for spectra other than the test
case needs to be assessed. For this reason a set of 20 additional test cases have
been considered. Most cases are generated by varying relevant parameters in
the JONSWAP / Hasselmann spectrum of Egs. (2.5) through (2.8). In this way
the first 13 cases, as identified in Table 4.1, have been generated. Two additional
modifications for test spectra are considered here. First, recent research indicates
that the directional distribution at high frequencies is bimodal in many cases. To
test the validity for such spectra, two test cases with the bimodal directional
distribution of Ewans (1998) are considered. This distribution is given as

D(f")):df)l\/s—mi{exp l‘%<0_0i?<(f>)_360n>]} oy

) 14.93 for f<fp
0o(f) = { exp [5,453 — 2.750 (;"—p)_l] for f>f,

(4.2)

—7.929
o(f) = 11.38 + 5.357 (ﬁ) for f<f, (4.3)
e -2 ’ .
32.13 — 15.39 (fi) for f>f,

where 0,(f) is an offset direction, with both the positive and negative value
added in the summation. This directional distribution is easily made asymmetric
by assigning different weights to the contributions of the positive and negative
offset angles. Note that in Egs. (4.1) through (4.3) all directions are expressed in
degrees, whereas Ewans writes (4.1) in radians and the other two in degrees.
Second, nearly every spectrum in nature contains some degree of directional
shear, defined as the change of mean direction @ in the directional distribution D
with frequency f. For wind seas, the spectrum at high frequencies tends to line
up with the wind direction. For lower frequencies, it may deviate progressively.
A realistic shear can therefore be obtained by using a mean direction that is a
function of f=# (for instance, 8 = 2). By defining the shear as 0 at f,, and as 6,
at some high frequency f, (for instance, f, = 3f,), the sheared mean direction

becomes
-2
0 =1.1250, [(i> - 1] : (4.4)
o

Three cases with sheared test spectra have been added to the data set. The data
set is completed by arbitrarily choosing some combinations of the perturbation
of the original test spectrum.
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Table 4.1: Expanded set of test cases to address the sensitivity of the se-
lected MDIA and VDIA to the spectral shape. Changes compared to
original test case as described in Eqs. (2.5) through (2.8) unless specified

differently.

Q
&
)
@

Description

© 00 O Ui W N

15
16
17
18
19

20

Less peaked spectrum with v = 1.

More peaked spectrum with v = 3.

Idem, v = 5.

Idem, v = 9.

Modified equilibrium range, m = 4.

Idem, m = 6.

Idem, m = 10 (‘swell transition’).

Idem, m = 20 (‘swell transition’).

Modified low frequency face of spectrum, n = 2 (less
steep).

Idem, n = 6 (steeper).

Idem, n = 8 (steeper).

Broader directional distribution, s = s/2.

Narrower directional distribution, s = 2s.

Bimodal direction distribution of Ewans (1998),
Egs. (4.1) - (4.3).

Idem, asymmetric.

Spectrum with directional shear, Af, = 15°.

Idem, Af, = 30°.

Idem, Af, = 60°.

Combination: v = 1.5, narrow asymmetric Ewans
(1998), Af; = —25°.

Combination: v = 3, m = 4.5, Af; = 35°.
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Several source term parameterizations are applied to all test spectra. The first
is the exact (WRT) interaction model, which is used as a benchmark. The second
is the original DIA, which provides a normalization for the resulting error of newer
methods, and to obtain a picture of qualitative improvements. Of the MDIA and
VDIA parameterizations of S,,; suggested here, two versions are considered. The
first are the parameterizations as tuned for the original test case. These are
denoted as the ‘frozen’ MDIA and VDIA. The second are parameterizations as
optimized for the test case under consideration. These models are denoted as
the ‘optimized’ models. The differences in behavior between these two model
versions identifies the need for and/or potential of dynamically adjusting the free
parameters of the MDIA and VDIA as a function of the spectral shape.

The frozen MDIA is defined by the parameter settings as presented in Ta-
ble 3.1, for N = 4 and with both A and p optimized. The optimized MDIA, by
definition, also uses N = 4. The frozen VDIA is defined by

| _ 0-20187+0.03234 7

_ 0.06812 + 0.05063
1—0.01698f

— , C=200710" , (4.5)
1 —0.00377f

M

where f is the normalized frequency (f = f/f,). Figures for all test cases are
gathered in Appendix C (Figs. C.1 through C.20). Figure 4.1a presents the nor-
malized errors ¢, of each optimized model as a function of the error of the cor-
responding frozen model. Figure 4.1b presents the error of the optimized model
normalized with the corresponding error of the frozen model (€, opt/€n, frozen), s
a function of the latter.

Figure 4.1 shows significantly different overall behavior for the selected VDIA
and MDIA. As expected from the results in the previous section, the MDIA is
much more accurate than the VDIA. The optimized MDIA is always at least a
factor of 4 more accurate than the original DIA (e, < 0.25), and for most cases is
more than a factor of 10 more accurate (e, < 0.10). The optimized VDIA shows
better results than the original DIA, but the improvements are much smaller than
for the MDIA. More interesting, however, is the overall behavior of the VDIA
and the MDIA, and the impact of the optimization on each case, or conversely,
their sensitivity to the selected free parameters. This will be discussed separately
for the VDIA and MDIA below.

For the VDIA, inspection of the individual cases as presented in Appendix C
leads to the following conclusions. Whereas for most cases the qualitative im-
provement of the VDIA over the original DIA is large, this improvement is smaller
(or even absent) for cases with sharply peaked spectra (cases 2, 3, 4 and 20, and
corresponding Figures in the Appendix), or for spectra with strongly suppressed
equilibrium ranges (cases 6 and 7). In such cases, however, the original DIA also
behaves particularly poorly. The original DIA then systematically moves the low
frequency lobe of the interactions to much higher frequencies than expected, and
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Fig. 4.1 : Resulting normalized errors €, for all test cases. (a) Error of opti-
mized model as a function of the error of the frozen model. (b) Relative
change in error defined as error of optimized model normalized with er-
ror of frozen model, as a function of the latter. MDIA: open red circles.
VDIA: solid green circles.

the positive lobe at low frequencies also seems to be shifted systematically, com-
pared to more conventional cases. With the exception of the very sharply peaked
spectrum in case 4, the VDIA does not appear to display such systematic behav-
ior, and, therefore, should be considered qualitatively much better than suggested
by the quantitative error comparison with the original DIA. The systematically
narrow and sharp features of the low frequency, positive lobe of the source term
are particularly encouraging.

Cases where the retuning of the VDIA has a significant impact on the model
errors are isolated in Fig. 4.1b. In only five cases did the retuning reduce the error
by more than 20% (relative change less than 0.8). Most of these correspond to the
cases identified above in which the VDIA performs relatively poorly. Exceptions
are case 1 with the less-peaked spectrum, in which the retuning of the VDIA cuts
its rms error nearly in half. Even the frozen VDIA, however performs very well
here with ¢, = 12.7%. Another exception is case 9, which has a low frequency
face of the spectrum that is much less steep. For most of the remaining cases,
the error reduction attained by dynamic optimization of the VDIA is less than
10%. The VDIA thus is surprisingly insensitive to retuning. Furthermore, the
improvement from retuning occurs mostly in cases where the VDIA already shows
great accuracy, or in sharply peaked spectra which are generally not produced
by numerical wave models with relatively poor spectral resolution. Therefore, it
appears more sensible to use a frozen VDIA than a dynamically optimized VDIA.

Two additional remarks need to be made regarding the VDIA. First, in the
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directionally asymmetric and sheared spectra from cases 15 through 20, the exact
interactions tend to result in a much more directionally asymmetric source term
than the DIA. The VDIA appears to share this deficiency with the conventional
DIA. Second, as discussed in the previous section and in the results presented in
Appendix C, the VDIA systematically underestimates the strength of the positive
lobe at low frequencies. As in the original DIA, this could be counteracted by
systematically increasing C'. In the original DIA, an increase by a factor of more
than 3 was needed (see discussion of Fig. 3.1). For the VDIA, such a factor only
needs to be between 1.1 and 1.2.

For the MDIA, inspection of the individual cases presented in Appendix C
leads to the following conclusions. As with the VDIA, the smallest improvement
over the original DIA occurs in strongly peaked spectra or in spectra with a
strongly suppressed tail. Only in cases 3, 4, 8, and 20, is the improvement of
the optimized MDIA over the original DIA less than a factor of 8 (e, > 12.5%).
The qualitative improvement is perhaps more impressive. Even in the case where
the MDIA performs worst in a quantitative sense (case 4), the qualitative im-
provement is still large. In this case, the frozen MDIA has an rms error that is
identical to the rms error of the DIA (see Fig. C.4), yet the frozen MDIA clearly
captures the essence of the exact interactions, whereas the original DIA does not.
The optimized MDIA, in this case, betters the rms error of the original DIA by
a factor of 3.5.

Figure 4.1b indicates that the impact of optimization for individual spectra
is much more pronounced for the MDIA than for the VDIA. In half the cases,
the optimization of the MDIA reduces the rms error relative to the frozen MDIA
by at least 25%; in a quarter of the cases, this error reduction is more than 50%.
This result seems to be at least qualitatively consistent with the previous findings
of Hashimoto and Kawaguchi (2001), who found that the optimum layout of a
quadruplet for a single DIA is a distinct function of the peakedness of the spec-
trum [i.e., of v in Eq. (2.5)]. The MDIA is, therefore, a candidate for dynamically
adjusting the constants in the parameterization as a function of the actual spec-
tral shape (unlike the VDIA). Note that for strongly peaked spectra, the MDIA
with four components generally has one component with a large negative C. As
discussed in the previous section, this is not desirable. Hence, the actual number
of components in the MDIA could also be dynamically adjusted in the MDIA.
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5 Model integration

This final section presents a preliminary assessment of the capability of the se-
lected parameterizations of the nonlinear interactions to result in well behaved
model integration. This final step has been omitted in many recent papers in
this field. Our recent experience with NN Interaction Approximations, however,
has demonstrated the importance of such an assessment. This part of the study
is intended only to provide a basis for a second study, in which the robustness of
several DIAs in a full wave model integration is addressed in more detail.

The robustness of a DIA, in the context of wave modeling, is evaluated by
a time integration of the complete set of source terms in Eq. (1.1). For a first
impression of the robustness of the MDIA and VDIA, it is sufficient to use an ide-
alized homogeneous situation, or in other words, a one point wave model without
wave propagation. In the present study, these test calculations are made with ver-
sion 2.22 of the WAVEWATCH III model (Tolman and Chalikov, 1996; Tolman
et al., 2002; Tolman, 2002). With the exception of the nonlinear interactions, the
default model settings of WAVEWATCH III have been used. The spectral grid
consists of 36 directions, with Af = 15°, and 35 frequencies ranging from 0.0418
through 0.417 Hz (o = 1.07). The initial conditions consist of a JONSWAP /
Hasselmann spectrum with f, = 0.15 Hz, v = 3.3, and the other parameters fol-
low the standard settings for such a spectrum. The wind speed is set to 20 ms™!
in the initial mean wave direction, and integration is performed for 6 hours.

Model integration results for various nonlinear parameterizations after 2, 4
and 6 hours of model integration are presented in Figs. 5.1 through 5.4. The
spectra and source terms are displayed in polar format, as is common in general
purpose wave models. Because at this time only the consistency of spectral
shapes in relevant, growth curves and other diagnostics will not be presented and
discussed.

Figure 5.1 shows the results of the conventional WAVEWATCH III model,
which includes the conventional DIA, retuned to spread the errors of this DIA
more evenly over the entire spectrum (A = 0.25 and C = 1. 107, see Tolman and
Chalikov, 1996). Figure 5.2 shows the corresponding spectra and source terms
as, obtained by replacing the DIA with the exact WRT algorithm, provided with
version 2.22 of WAVEWATCH III. Figures 5.3 and 5.4 show results obtained
with the frozen VDIA and MDIA, as defined in the previous section. These
algorithms have been implemented in a developmental version of WAVEWATCH
I1IT at NCEP.

Figures 5.1 and 5.2 show the well established capability of the DIA and
the WRT interaction algorithms to produce realistic, single peaked wind sea
spectra, with reasonable corresponding instantaneous estimates of the nonlinear
interactions. The MDIA (Fig. 5.4) shows a similar capability, and hence appears
to have the potential to also produce robust model integration results. The VDIA
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Fig. 5.1 : Spectra (left panels) and nonlinear source terms (right panels) re-
sulting from WAVEWATCH III model integration with DIA (C' = 1x107
as in default WAVEWATCH III) after 2 hours (panel a), 4 hours (panel
b) and 6 hours (panel ¢). Contours increment by factor 2, lowest contour
for spectrum 1 m?s~! and for source term £+ 10~* m2s~!. Polar repre-
sentation with low frequencies in center of plot, and grid lines at 15° and
0.05 Hz intervals. Blue arrow in left panels represents wind direction (20
ms~! at 10 m height).
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Fig. 5.2 : Like Fig. 5.1, replacing DIA with exact interactions (WRT).
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Fig. 5.3 : Like Fig. 5.1, replacing DIA with frozen VDIA.

20




Fig. 5.4 : Like Fig. 5.1, replacing DIA with (frozen) MDIA.
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(Fig. 5.3), however, results in unrealistic double peaked spectra. It should be
noted that this is not due to the frequency dependence of the free parameters in
the VDIA. A single MDIA with A\ = 0.248, u = 0.127 and C = 1.81 107 gives
similar results (Figures not presented here).

The inability of the VDIA to produce robust model integration may be consid-
ered surprising when considering the established robustness of the conventional
DIA. The reasons and possible remedies for this behavior will be discussed in
more detail in part two of this study. It clearly demonstrates that any study
regarding nonlinear interactions cannot be considered complete without testing
the resulting algorithms in realistic wave model integrations.
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6 Summary and conclusions

The present study addresses the capability of various Discrete Interaction Approx-
imations (DIAs) to accurately reproduce exact nonlinear interaction source terms
as calculated using the Web-Resio-Tracy (WRT) method. This study mostly
focuses on inverse modeling, where the free parameters in various DIAs are es-
timated to optimally reproduce the WRT results for a given spectrum. The
following DIAs have been considered :

e The original DIA, with the suggested parameter setting for A and C' as
suggested by Hasselmann et al. (1985), or with optimized settings.

e An expanded DIA, with more complex quadruplet configurations than
the original quadruplet with one free parameter [Eq. (2.1)], focusing on a
new symmetric two-parameter quadruplet [Eq. (2.13)]. A more complex
three parameter quadruplet as, suggested by Van Vledder (2001), could
have been considered [Eq. (2.9)], but was never investigated after good
results were obtained with the two parameter quadruplet.

e An expanded DIA, with additional proportionality constants in the
calculation of the strength of the interactions [Egs. (2.10), (2.12) and
(2.15)]], as in Hashimoto and Kawaguchi (2001).

e A new variable DIA (VDIA), where the free parameters in the DIA are
no longer constant throughout the spectrum.

e Multiple DIAs (MDIA), consisting of a composite of several DIAs with
different quadruplet configurations, as in Ueno and Ishizaka (1997),
Hashimoto and Kawaguchi (2001) and Van Vledder (2001).

The potential of many of these methods has been addressed, first by using a single
test case which is considered fairly representative for well developed wind waves.
Using this test case, two potentially accurate DIA versions have been selected for
further investigation. These are a single component VDIA and a four component
MDIA, both with the expanded quadruplet definition of Eq. (2.13).

These two methods have been applied to an expanded test set of 20 spectra.
Both the initially optimized version of each model and a version optimized to
the actual tests spectrum are considered. Results from these tests show that the
VDIA is less accurate for sharply peaked spectra, and would benefit little from
dynamical adjustment of its parameter. The selected MDIA is more generally
applicable, but requires dynamically adjusted parameters for optimum results.

Finally, the two methods are incorporated into the WAVEWATCH III model
to test the robustness of these alternative parameterizations of S,; with respect
to wave model integration. The VDIA fails this test, whereas the MDIA shows
promising results.
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In summary, the following conclusions have been drawn :

e Single or multiple DIAs based on the original quadruplet of Eq. (2.1)
cannot accurately reproduce the exact interactions.

e DIAs with additional constants C' show little or no improvement over
optimized DIAs with a single C'. The additional complexity of these
parameterizations, therefore, is not justified.

e A VDIA requires a constrained variability in its free parameters to avoid
an accurate but noisy solutions.

e A VDIA with a single component, and A\, 4 and C' as a function of the
frequency f, with a limited number of free parameters can, improve the
qualitative description of the interactions. Such a VDIA seems to have
fairly general applicability, without the need for retuning for individual
spectra.

e This VDIA is expected to be roughly four times as expensive as the
conventional DIA.

e Unfortunately, in its present form, the above VDIA does not result in
stable model integration.

e An MDIA with four components, and A, 4 and C optimized for each
component (but constant in spectral space), produces a very accurate
description of the exact nonlinear interactions.

e For optimum results, the MDIA would require dynamically estimated
free parameters.

e In a simple frozen form, the MDIA provided a realistic and stable model
integration.

e This MDIA is expected to be about 10 times more expensive than the
original DIA.

The inability of the selected VDIA to produce realistic model integration is some-
what surprising. It stresses the importance of addressing the ability of a nonlinear
parameterization to perform well in a model environment, which in itself is the
ultimate goal in developing new economical yet accurate parameterizations for
Sni- It shows that the ability to generate reasonable interactions for a given spec-
trum does not automatically translate into reasonable behavior when applied in
a wave model. For this reason, part two of the present study will be focused on
the integration behavior of several DIAs. It should also be noted that the present
study, by definition, is limited because it considers single peaked spectra in deep
water only. A final study of any nonlinear interaction approximation requires the
assessment of the effects of restricted water depth and complicated wave spectra
with one or more swell fields present.
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A Inverse modeling: MDIA

In an MDIA based on Egs. (1.2), (1.3), (2.13), (2.15) and (2.19), with constant C,
A and p, only C' is an implicit parameter whose optimum value can be estimated
directly. Because A and p are implicit to the formulation, these parameters can
only be optimized by using iterative methods. First, the direct estimate of the
N factors C, for given A\ and pu, will be discussed, after which the technique
for obtaining optimum estimates of the latter two parameters will be discussed
briefly.

Consider an MDIA with N components, where j and [ are counters from 1
thought IV, and let 7 be a counter covering the entire discrete spectral space. For
each component j of the MDIA, the contribution S;; equals C;B,; ;, where B is
the normalized or ‘base’ solution of the DIA with given A; and p;. The MDIA,
as defined in Eq. (2.19), then can be written as

J

C; can now be estimated objectively by minimizing the rms error of the resulting
MDIA relative to the exact nonlinear interactions. If X, represents the exact
solution to which the MDIA is fit, the rms error ¢ becomes

9 1/2
€= Z (Xi — %ZCjBi,j) AG;Af; ; (A.2)
i j

Considering that the directional increment Af is constant, minimizing the rms
error corresponds to minimizing the function €

2
J

i
C) can then be estimated by evaluating the following N equations identified by
the counter [

2
0¢€ 0
a_(; _ a_(jl ZAfZ XZQ . 2371 Z CjN_le',j + (Z CjN_lBi,j) —
i J J

SAf; {—QXZ- > %N*Bm +2 (Z CjN—le) > %N—le} =
i j ! j t

J J
2N TAS; {—X,Bi,l + (Z CjN—lBi,j> BM} =0 . (A.4)
i J
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From this, the following set of N equations identified by [ is found

S AfBy Y C;N'Bij =Y Afi X;Bi; , (A.5)
i j G

or
Z CjNil Z AfiBi,lBi,j = Z Afz XiBi,l 3 (A6)
J i i

which can be solved using a simple sweeping technique. Note that this equation
gives a direct solution for a single DIA where N = 1 (without the need for
sweeping a matrix). Note, furthermore, that this technique is trivially expanded
for DIAs with multiple proportionality constants (Cy, Cy) or (Cs, Cy), by defining
a base function B for each constant separately.

With this direct technique to optimize Cj, a simple algorithm can be designed
for optimizing the complete MDIA. First, an initial guess for A; and p; is given.
Typically, A; are chosen to equally cover the possible range of A, and p initially set
to 0. For these parameter estimates, the optimum values for C; [Eq. (A.5)], and
the corresponding error € [Eq. (A.2)] are computed. After this, all A\; and p; are
systematically perturbed (one-by-one), the corresponding C; and e are estimated,
and perturbations with reduction of € are retained. In this study, a simple method
with alternating signs for the perturbations and with systematic reduction of
perturbations was used. Although there is some effect from initial conditions and
initial perturbations on the final results, these effects appear irrelevant in the
present study.
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B Inverse modeling: VDIA
B.1 Fully variable C

For any given A and u, C(f,#), in principle, contains enough degrees of freedom
for the DIA to represent any given S,,;(f,8). If an exact fit is sought, Eqs. (2.13),
(2.15), (2.20) and (2.21) result in a set of equations

AC=X , (B.1)

where X is an array with the exact source term to be reproduced by the DIA, C
is the corresponding set of coefficients C' to be estimated, and A is a 2-D array
with coefficients given by the above equations, having a broad but sparse band
structure. This set of equations in principle can be solved with a simple sweep
operation. However, two problems occur with this set of equations.

First, quadruplets centered outside the discrete spectral domain contribute
to the estimated source term in the discrete domains, making C larger than X.
Thus, additional equations are required for closure. Second, the set of equations
is not well conditioned, due to the sensitivity of the fitting away from strong
spectral signatures.

The latter problem can be alleviated somewhat by removing equations fitting
to Xni(f,0) for F(f,0) < aFpax. The corresponding values of C(ff) can be
assumed to contribute negligibly to the source term and, therefore, simply be
set to 0. A similar approach can be used in the tail of the spectrum, providing
a direct estimate for each C' for which no X is available. To illustrate the poor
conditioning of the equations, Fig. B.1 shows the results of attempting to retrieve
C by trying to fit the VDIA to the results of the original DIA, both with A = 0.25
and p = 0. Furthermore, o = 107> is used. For a large area, C is close to the
expected value of 3 x 107. At low frequencies, and for directions far from 6 = 0°,
however, the retrieved C' shows large negative values. This has, nevertheless, no
notable impact on the VDIA with the estimated C', which reproduces the original
DIA meticulously.

More elaborate schemes with the relaxation of C' to neighboring values, proved
not to improve results nor to notably impact the results presented in Fig. B.1,
unless « of O(1072) is chosen. In the latter case, the constant C is exactly
retrieved, but such a setup is not conducive to give results when the DIA is fitted
to other interactions, such as the exact interactions.

B.2 ( varying with frequency f only

If the constant C' is allowed to be a function of f only, no exact fit of the resulting
source term S to the exact solution X can be expected. Instead, a best fit can
again be defined in terms of a minimal rms error, as in Appendix A. Counters
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Fig. B.1 : (a) Spectrum for test case (left) and conventional DIA (right). (b)
Retrieved constant C(f, ) (left) and corresponding DIA (right). Legend
for spectra and source terms as in Fig. 2.1. Logarithmic scaling for C
with lowest contour levels at +10°

and symbols in this Appendix will be adopted from Appendix A, unless specified
differently. If the constant C' is assumed to be a function of the frequency f, the
source term can be expressed in vector notation as

S=BC , (B.2)

or
S; = Z C;B;; , (B.3)
J

where j is a counter over the discrete frequencies (1 through Ny) and B is now
a matrix similar to A in Eq. (B.1), yet significantly smaller because C is now
a function of f only. Note that this equation is nearly identical to Eq. (A.1),
apart from the factor 1/N and a completely different definition of B. For the
optimization, however, this has no relevance, and hence the optimum estimate of
C(f) is similar to Eq. (A.6), with a set of N; equations identified by the counter
l

Y. Ci > AfiByBij =) Af; XiBiy . (B.4)
J i i
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This optimization does not assume any coherence between neighboring estimates
of C' in the discrete frequency space. If C is assumed to be an arbitrary function

G of f, C =G(f), Eq. (B.3) becomes
S; = ZG]-BM , (B.5)
J

where j is a counter over Ny. The function to be minimized now becomes

i
If G has N, free parameters c;, ¢y, ..., optimum parameter settings can again
be found by solving N, equations

0€
aCl
where [ is now a counter over N,. This leads to the following set of equations

=0, (B.7)

ZAsz ZBJ a ZAfz (ZBMG)ZB,J e ‘ ’ (B'S)

which can be used to optimize an arbitrary G. Here, only polynomial functions
will be considered

G261+02f+03f2+... , (Bg)
with
oG -1
— = . B.10
5o =1 (B.10)

Substitution of (B.9) and (B.10) in Eq. (B.8) then gives a set of N, equations
identified by the counter k

chZAfz‘ (Z Bi,jfk_l) (Z Bi,jfl_1> =
ZAfz' Xi (Z Bi,jfk_1> ) (B.11)

where | and k are counters over INV,, j represents all frequencies, and 7 represents
all spectral bins.
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B.3 Optimizing A and p

The free parameters A and p remain implicit to the DIA, and, therefore, can only
be optimized by simple iterative methods. This is true if parameters are allowed
to vary freely for each spectral frequency, or if they are described using functions
with a limited number of parameters. In the latter case, the iterative procedure
obviously deals with the free parameters in the functions.
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C Results for all test cases

In this Appendix, the results of all test cases identified in Table 4.1 are presented
in graphical form. Panels (a) represent the test spectrum (left figure) and the
exact interactions. The legend is the same as in the main body of this report,
with the exception that the source term contour levels are rescaled relative to
the absolute maximum of the exact interactions for each case individually. All
source term panels in a given figure use the same contour intervals.

Panels (b) show the results for the selected MDIA, with the parameter settings
of the initial test case used for the left panel, and the results as optimized for
the actual test spectrum in the right panel. Panels (c) show the corresponding
results for the selected VDIA. Panels (d) show the resulting conventional DIA on
the right, and all the one dimensional source terms S,;(f) on the left.

The one dimensional source term on the left side of the (d) panels is normalized
with the absolute maximum of the exact solution. The solid green line represents
the exact (WRT) solution, the dotted red line the original DIA, the long dashed,
blue lines the two MDIAs and the short dashed, magenta lines, the two VDIAs.
Normalized errors ¢, are printed in the upper right corner of panels with full
source terms. The normalization always takes place with the error of the original
DIA, for the test case considered.
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Fig. C.1: Results for test case 1. See text for legend.
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Fig. C.2: Results for test case 2. See text for legend.
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Fig. C.3: Results for test case 3. See text for legend.
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Fig. C.4: Results for test case 4. See text for legend.
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Fig. C.5: Results for test case 5. See text for legend.
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Fig. C.6: Results for test case 6. See text for legend.
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Fig. C.7: Results for test case 7. See text for legend.
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Fig. C.8: Results for test case 8. See text for legend.
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Fig. C.9: Results for test case 9. See text for legend.
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Fig. C.10: Results for test case 10. See text for legend.

C.11



120 0.00% | 1201 (a) 0.00%
90 90
60 80
30 30
0 0
-30 -30
-60 -80
-90 -90
-120 -120
050 100 150 200 250 300 350 050 100 150 200 250 300  3.50
1201 (b) 9.05% | 1201 (b) 5.86%
90
60
30
0
-30
-60
-90
-120 -120
050 100 150 200 250 300 350 050 100 150 200 250  3.00 350
1201 (c) 21.6% | 1201 (c) 17.9%
90 90
60 60
30 30
0 0
-30 -30
-60 -60
-90 -90
-120 -120
050 100 150 200 250 300 350 050 100 150 200 250 300  3.50
-
bl (@ 1201 (d) 100.%
. 90
0.9
80
0.64
30
0.34
0
-30
-0.3
-80
-0.6
-90
-0.9
Lo -120
-1.2
050 100 150 200 250 300 350 050 100 150 200 250 300  3.50

Fig. C.11: Results for test case 11. See text for legend.
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Fig. C.12: Results for test case 12. See text for legend.
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Fig. C.13: Results for test case 13. See text for legend.
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Fig. C.14: Results for test case 14. See text for legend.
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Fig. C.15: Results for test case 15. See text for legend.
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Fig. C.16: Results for test case 16. See text for legend.
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Fig. C.17: Results for test case 17. See text for legend.
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Fig. C.18: Results for test case 18. See text for legend.
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Fig. C.19: Results for test case 19. See text for legend.
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Fig. C.20: Results for test case 20. See text for legend.
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