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Abstract

A broad class of neural network (NN) applications dealing with the remote measurements of geophysical (physical, chemical, and

biological) parameters of the oceans, atmosphere, and land surface is presented. In order to infer these parameters from remote sensing (RS)

measurements, standard retrieval and variational techniques are applied. Both techniques require a data converter (transfer function or

forward model) to convert satellite measurements into geophysical parameters or vice versa. In many cases, the transfer function and the

forward model can be represented as a continuous nonlinear mapping. Because the NN technique is a generic technique for nonlinear

mapping, it can be used beneficially for modeling transfer functions and forward models. These applications are introduced in a broader

framework of solving forward and inverse problems in RS. In this broader context, we show that NN is an appropriate and efficient tool for

solving forward and inverse problems in RS and for developing fast and accurate forward models and accurate and robust retrieval

algorithms. Theoretical considerations are illustrated by several real-life examples—operational NN applications developed by the authors

for SSM/I and medium resolution imaging spectrometer sensors.
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1. Introduction

Estimating high quality geophysical parameters (infor-

mation about physical, chemical, and biological properties

of the oceans, atmosphere, and land surface) from remote

(satellite, aircraft, etc.) measurements is a very important

problem in geosciences such as meteorology, oceanogra-

phy, climatology and environmental modeling and protec-

tion. Direct measurements for many parameters of interest,

like vegetation moisture, phytoplankton concentration in the

ocean, and aerosol concentration in the atmosphere, are in

general not available. Even when in situ measurements are

available, they are usually sparse (especially over the

oceans) and located only at the level of the ground or the

ocean surface. Often such measurements can be estimated

from the effect, which they caused on the electromagnetic

radiation measured by a remote sensor. Remote measure-

ments allow obtaining spatially dense measurements all

around the globe at and above the level of the ground and

oceans surface. The remote measurements themselves are

usually very accurate. The quality of geophysical par-

ameters derived from these measurements varies signifi-

cantly depending on the strength and uniqueness of the

signal from the geophysical parameters and mathematical

methods applied to extract these parameters, i.e. to solve

forward and inverse remote sensing (RS) problems. Neural

network (NN) technique is a very promising mathematical

tool to solve forward and inverse problems in RS accurately.

The number of NN RS applications increased steadily

during the last decade. A great number of publications have

been devoted to particular applications, and only a few

general review papers have been published in this and

related areas (Atkinson & Tatnall, 1997; Gardner &

Dorling, 1998; Hsieh & Tang, 1998). These review papers

served a good service in introducing NN techniques to the

RS community. However, only three particular areas of NN

applications are well represented in reviews: image

processing, classifications, and predictions.

Here we discuss a broad class of NN applications for

solving forward and inverse problems in RS in order to infer

geophysical parameters from satellite data, i.e. to produce

0893-6080/03/$ - see front matter q 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0893-6080(03)00027-3

Neural Networks 16 (2003) 321–334

www.elsevier.com/locate/neunet

* Corresponding author. Tel.: þ1-301-763-8000 ext. 7262; fax: þ1-301-

763-8545.

E-mail address: vladimir.krasnopolsky@noaa.gov (V.M.

Krasnopolsky).

http://www.elsevier.com/locate/neunet


so-called satellite retrievals. Many particular applications

belonging to this class have been published. The NN

technique was applied for inversion of a multiple scattering

model to estimate snow parameters from passive microwave

measurements (Tsang et al., 1992). Smith (1993) used NNs

for inversion of a simple two-stream radiative transfer model

to derive the leaf area index from Moderate Resolution

Imaging Spectrometer data. NNs were applied to simulate

scatterometer measurements and to retrieve wind speed and

direction from these measurements (Thiria, Mejia, Badran,

& Crepon, 1993; Cornford, Nabney, & Ramage, 2001), to

develop an inversion algorithm for radar scattering from

vegetation canopies (Pierce, Sarabandi, & Ulaby et al.,

1994), to estimate atmospheric humidity profiles (Cabrer-

a-Mercader & Staelin, 1995), atmospheric temperature

profiles (Aires et al., 2002), and atmospheric ozone profiles

(Mueller et al., 2003). Stogryn, Butler, and Bartolac (1994),

Krasnopolsky, Breaker, and Gemmill (1995) and Krasno-

polsky, Gemmill, and Breaker (1995) applied NNs to invert

Special Sensor Microwave Imager (SSM/I) data and to

retrieve surface wind speed. Davis et al. (1995) applied NN

for inversion of a forward model to estimate soil moisture,

surface air temperature, and vegetation moisture from

Scanning Multichannel Microwave Radiometer data.

Using a NN technique, a fast SSM/I forward model

(Krasnopolsky, 1997) and SSM/I multiparameter retrieval

algorithm (Krasnopolsky, Breaker, & Gemmill, 1999, 2000)

have been derived from empirical data (buoy SSM/I

collocations). Abdelgadir et al. (1998) applied NNs for

forward and inverse modeling of canopy directional

reflectance. Schiller and Doerffer (1999) used a NN

technique for inverting a radiative transfer forward model

to estimate the concentration of phytoplankton pigment

from Medium Resolution Imaging Spectrometer (MERIS).

In Section 2 of this paper we introduce and compare

standard and variational retrieval techniques. Section 3

discusses NN applications in satellite RS. It is shown that

both the forward model and the retrieval problem can be

considered as nonlinear mappings and, therefore, can be

approximated by NNs. In Sections 4 and 5 we introduce

real-life examples of NN applications for SSM/I and

MERIS sensors in order to show that NN can be used to

optimize both retrieval algorithms and forward models.

Section 6 contains conclusions and discussions, and

Appendixes A and B present brief descriptions of the

SSM/I and MERIS sensors.

2. Deriving geophysical parameters from satellite

measurements: standard retrievals and variational

retrievals through direct assimilation

Satellite RS data are used by a wide variety of users.

Satellite sensors generate measurements in terms of

radiances, backscatter coefficients, brightness temperatures,

etc. The users of satellite data usually work with

geophysical parameters such as pressure, temperature,

wind speed and direction, water vapor concentration, etc.

Satellite forward models, which emulate satellite measure-

ments from given geophysical parameters, and retrieval

algorithms, which transform satellite measurements into

geophysical parameters, play the role of mediators between

satellite sensors and users (Fig. 1). There exists an entire

spectrum of different approaches in extracting geophysical

information from the satellite measurements. At one end of

this spectrum ‘satellite only’ approaches are located; we

will call them standard or traditional retrievals. They use

only measurements performed by one particular sensor,

sometimes from different channels (frequencies, polariz-

ations, etc.) of the same sensor, to estimate geophysical

parameters. At the other end of the spectrum variational

retrieval techniques (or direct assimilation techniques) are

located. They use an entire data assimilation system,

including numerical weather prediction (NWP) model and

analysis (Prigent et al., 1997), which, in its turn, includes all

kind of meteorological measurements (buoys, radiosondes,

ships, aircrafts, etc.) as well as data from different satellite

sensors. Many approaches have been developed which

belong to the intermediate part of this spectrum. These

approaches use measurements from several satellite sensors,

combine satellite measurements with other kinds of

measurements, and/or use background fields or profiles

from NWP models for regularization of the inverse problem

or for ambiguity removal, i.e. these approaches use some

types of data fusion to regularize the solution of the inverse

problem.

Fig. 1 shows the satellite data flow from instruments to

users. Conventional methods for using satellite data

(standard retrievals) involve solving an inverse (or retrieval)

problem and deriving a transfer function (TF), f ; which

relates a geophysical parameter of interest, G (e.g. surface

wind speed over the ocean, atmospheric moisture concen-

tration, sea surface temperature (SST), etc.) to a satellite

measurement, S (e.g. brightness temperatures, radiances,

reflection coefficients, etc.)

G ¼ fðSÞ ð1Þ

Fig. 1. Satellite measurement-to-user life cycle. Data processing converters

(FM and TF), which can be optimized using NNs, are shown.
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where both G and S may be vectors. The TF, f, (it is also

called a retrieval algorithm) usually cannot be derived

directly from the first principles because the relationship (1)

does not correspond to a cause and effect principle, and

sometimes multiple values of G can correspond to a single

S: The inverse relationship, however, can be written

S ¼ FðGÞ ð2Þ

where F is a forward model (FM), which relates a vector G

to a vector S: Forward models can usually be derived from

physical considerations (e.g. radiative transfer theory) in

accordance with the cause and effect principles because

geophysical parameters affect the satellite measurements

(not vice versa). Thus, the forward problem (2) is a well-

posed problem in contrast to the inverse problem (1) which

is often an ill-posed one (Parker, 1994); although, from the

mathematical point of view, FM (2) and TF (1) both are

continuous (or almost continuous) mappings between the

two vectors S and G: Even in the cases when the mapping

(1) is not unique, this multi-valued mapping may be

considered as a collection of single-valued continuous

mappings.

In order to derive the TF (1), the FM (2) has to be

inverted (an inverse problem has to be solved). The usually

applied inversion technique searches for a vector G0 which

minimizes the functional (Stoffelen & Anderson, 1997)

kDSk ¼ kS0 2 FðGÞk ð3Þ

where S0 is an actual vector of satellite measurements. Since

the FM F is usually a complicated nonlinear function, this

approach leads numerically to a full-scale nonlinear

optimization with all its problems (slow convergence,

multiple solutions etc). This approach does not determine

the TF explicitly; it assumes this function implicitly, and for

each new measurement S0 the entire process has to be

repeated. A simplified linearization method to minimize the

functional (3) can be applied if one has a good approxi-

mation for the solution of the inverse problem, an

approximate vector of geophysical parameters G0: Then

the difference vector DS is small and there is a vector G in

close proximity of G0 (lDGl ¼ lG 2 G0l is small) where

DSðGÞ ¼ 0: Expanding FðGÞ in a Taylor series and keeping

only terms which are linear with respect to DG; we can get a

system of linear equations to calculate the components of

the vector DG (Wentz, 1997)

Xn

i¼1

›FðGÞ

›Gi

�����
G¼G0

DGi ¼ S0 2 FðG0Þ ð4Þ

where n is the dimension of vector G: After DG is

calculated, the next iteration of Eq. (4) with G0 ¼ G0 þ

DG is performed. The process is expected to converge

quickly to the vector of retrievals G: In this case again, the

TF, f, (1) is not determined explicitly, it is only determined

implicitly for vector S0 by the solution of Eq. (4). This type

of retrievals can be called ‘local’ or ‘localized’ linear

inversion. These techniques (Eq. (3) and (4)) are usually

called physically based retrievals. It is important to

emphasize that the physically based algorithms (Eq. (3)

and (4)), by definition, are multi-parameter algorithms since

they retrieve several geophysical parameters simultaneously

(complete vector GÞ:

Empirical algorithms are based on an approach, which

from the beginning, assumes the existence of an explicit

analytical representation for a TF, f. A mathematical

(statistical) model, fmod, is usually chosen (usually some

kind of regression) which contains a vector of empirical (or

model) parameters a ¼ {a1; a2;…};

Gk ¼ fmodðS; aÞ ð5Þ

where these parameters are determined from an empirical

(or simulated) matchup data set {Gk; S} using, for example,

statistical techniques such as the method of least-squares.

This type of retrievals can also be called ‘global’ inversion

as it is not restricted to a given vector of satellite

measurements. The subscript k in Gk stresses the fact that

the majority of empirical retrieval algorithms are single-

parameter algorithms. For example, for SSM/I algorithms

exist, which retrieve only wind speed (Goodberlet, 1989), or

only water vapor (Alishouse, 1990; Petty, 1993), or cloud

liquid water (Weng & Grody, 1994), etc. Krasnopolsky et al.

(1999, 2000) showed that single-parameter algorithms have

additional (as compared to multi-parameter retrievals)

systematic (bias) and random (unaccounted variance) errors

in a single retrieved parameter Gk:

The obvious way to improve single-parameter retrievals

(5) is to include the other parameters in the retrieval process,

using the empirical multi-parameter approach which, as in

the physically based multi-parameter approach (3–4),

inverts the data in the complete space of geophysical

parameters. Thus, the complete vector of related geophy-

sical parameters is retrieved simultaneously from a given

vector of satellite measurements S

G ¼ fmodðSÞ ð6Þ

Where G ¼ {Gi} is now a vector which contains the

primary, physically-related, geophysical parameters, which

contribute to the observed satellite measurements S: These

retrievals do not contain the additional systematic and

random errors just described. Because Eqs. (1), (2), (5), and

(6) represent continuous mappings, the NN technique is well

suited for emulating FM, TF and empirical TF, fmod.

Retrievals derived using a TF (1) are usually called

standard retrievals. Standard retrievals have the same spatial

resolution as the sensor measurements and produce

instantaneous values of geophysical parameters over the

areas where the measurements are available. Geophysical

parameters derived using standard retrievals can be used for

many applications such as the NWP data assimilation

systems. In this case, a contribution to the variational
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analysis cost function xG from a particular retrieval, G0; is

xG ¼
1

2
ðG 2 G0ÞTðO þ EÞ21ðG 2 G0Þ ð7Þ

where G0 ¼ fðS0Þ is a vector of retrieved geophysical

parameter, S0 is a vector of sensor measurements, G is a

vector of geophysical parameters being analyzed, O is the

expected error covariance of the observations and E is the

expected error covariance of the retrieval algorithm.

Because standard retrievals are based on solution of

inverse problem, which is usually mathematically ill-posed

(Parker, 1994), this approach has some rather subtle

properties and error characteristics (Eyre & Lorenc, 1989),

which cause additional errors and problems in retrievals

(e.g. amplification of errors, ambiguities, etc). As a result,

high-quality sensor measurements might be converted into

lower-quality geophysical parameters. This type of error can

be avoided or reduced by using variational retrieval

technique (or inversion) through direct assimilation of

satellite measurements (Derber, 1992; Derber & Wu, 1998;

Lorenc, 1986; Parrish & Phalippou, 1996; Prigent, Phalip-

pou, & English, 1997).

Variational retrievals or direct assimilation of satellite

data offer another way of deriving geophysical parameters

from the satellite measurements (Fig. 1). Here, due to direct

assimilation of sensor measurements, the entire data

assimilation system is used for inversion (as a retrieval

algorithm). In this case, a contribution to the analysis cost

function xS from a particular sensor measurement, S0; is

xS ¼
1

2
ðS 2 S0ÞTðO þ EÞ21ðS 2 S0Þ ð8Þ

where S ¼ FðGÞ; and F is a FM (2), which relates an

analysis state vector G (or vector of geophysical parameters

in analysis) to a vector of simulated sensor measurements,

S;O is the expected error covariance of the observations,

and E is the expected error covariance of the forward model.

The forward problem (2) is a well-posed problem in contrast

to the inverse problem (1). However, a background term has

to be added to Eq. (8) to prevent the data assimilation

problem from being ill-posed (Parrish & Derber, 1992).

The retrieval in this case results in an entire field (global

in the case of the global data assimilation system) for the

geophysical parameter G (retrievals are nonlocal) which has

the same resolution as the numerical model used in the data

assimilation system. This resolution may be lower or higher

than the resolution of standard retrievals. The variational

retrievals are also not instantaneous but usually averaged in

time over the analysis cycle; however, the field is

continuous and coherent (e.g. it should not have problems

such as a directional ambiguity). The variational retrievals

are the result of fusing many different types of data

(including satellite data, ground observations, and numeri-

cal model first guess) inside the data assimilation system.

Sparse standard retrievals can be converted into continuous

fields, using regular data assimilation procedure (7).

Retrieval technique (3) and its linearized version (4),

which do not use and do not produce explicit TFs, are

technically very close to variational retrievals; however, we

will reserve this name for the type of retrieval technique

which perform a direct assimilation of satellite data

described above.

It is important to emphasize a very significant difference

between the usage of the explicit TF for standard retrievals

and the FM in variational retrievals. In standard retrievals

the explicit TF (1) is usually simple (e.g. regression) and is

applied once per sensor observation to produce a geophy-

sical retrieval. In variational retrievals the FM, which is

usually much more complicated than a simple explicit TF,

and its partial derivatives (the number of derivatives is equal

to m £ n; where m and n are the dimensions of the vectors G

and S; respectively), have to be estimated for each of the k

iterations performed during minimization of the cost

function (8). Thus the requirements for simplicity of the

FM used in the variational retrievals are restrictive, and

variational retrievals often require some special, simplified

and fast versions of FMs.

From the above discussion it is clear that standard

retrievals of geophysical parameters and variational retrie-

val through direct assimilation of sensor measurements are

complementary approaches, they often have different spatial

and temporal resolutions, error properties, and they are

oriented to different users and to different applications.

3. Forward and inverse problems in remote sensing

and NNs

In principle, NNs can be used to emulate FMs (2) and

TFs (1) because FM and TF both are continuous mappings.

There are many practical advantages (computational speed,

accuracy, robustness) that can be achieved by using NNs for

emulating FMs and TFs. A further advantage is the easiness

and flexibility of incorporating into the NN any additional

geophysical parameter known to influence the satellite

measurements but not appearing in the original FM and

other additional information. This can improve the accuracy

of the FM and can also help to regularize the inverse

problem (Aires et al., 2002).

3.1. NNs for emulating forward models

FMs are usually complex due to the complexity of the

physical processes which they describe and due to the

physical theories they are based on (e.g. radiative transfer

theory). Dependencies of satellite measurements on geo-

physical parameters, which FMs describe, are complicated

and nonlinear. Dependencies on different parameters may

exhibit different types of nonlinear behavior. FMs are

usually exploited in physically based retrieval algorithms

where they are numerically inverted to retrieve geophysical

parameters and in data assimilation systems, where they are
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used for direct assimilation of satellite measurements

(variational retrievals). Both, numerical inversion and direct

assimilation are iterative processes, where FMs and their

Jacobian are calculated many times for each satellite

measurement. Thus, the retrieval process becomes very

time consuming, sometimes prohibitively expensive for

operational (real time) applications. For such applications it

is essential to have fast and accurate versions of FMs. NNs

can provide us with such fast and accurate FMs because

NNs are fast, accurate and robust (Kerlirzin & Réfrégier,

1995) generic tools for modeling multiple nonlinear

dependencies (continuous mappings) (Attali et al., 1997;

Chen & Chen, 1995a,b; Cybenko, 1989; Funachashi, 1989;

Hornik, 1991). Moreover, a NN also provides an entire

Jacobian matrix with practically no additional compu-

tational efforts.

To develop a NN which approximates a FM, a training

set which consists of matched pairs of vectors of

geophysical parameters and satellite measurements,

{G; S}i¼1;…;N has to be created. If a physically based FM

exists, it can be used to generate the training set. Otherwise

empirical data can be used to create a training set.

3.2. NNs for solving inverse problems (emulating retrieval

algorithms)

For retrieval algorithms NNs can be used in several

different setups. In physically based retrieval algorithms a

NN, emulating the complex and slow physically based FM

and its Jacobian, can be used to speed up local inversion

process. In many cases NNs can be used for global inversion

to explicitly invert a FM. In such cases, after inversion, the

NN provides an explicit retrieval algorithm (or TF), which is

a solution of the inverse problem and can be used for

retrievals. To train NN, which emulates an explicit retrieval

algorithm, a training set, {G; S}i¼1;…;N ; is required. As in the

case of FMs, simulated or empirical data can be used to

create the training set.

In addition to complications related to FMs (complexity,

nonlinearity, etc.), retrieval algorithms exhibit additional

problems because they are solutions of the inverse problem,

which is an ill-posed problem. This is why mathematical

tools, which are used to develop retrieval algorithms, have

to be accurate and robust in order to deal with these

additional problems. NNs are fast, accurate and robust tools

for nonlinear (continuous) mappings and can be effectively

used for modeling multi-parameter retrieval algorithms.

3.3. Controlling the NN generalization

NN are well suited to model complicated nonlinear

relationships between multiple variables as it is the case in

multispectral RS. Well-constructed NNs have good interp-

olation properties; however, they may produce unpredict-

able outputs when forced to extrapolate. The NN training

data (produced by a FM or constructed from empirical data

collections) cover a certain manifold ST (a subspace ST [
SÞ in the full S space. Real data to be fed into the NN fNN,

which emulates a TF (1), may not always lie in ST. There are

many sources for such deviations of real data from the low

dimensional manifold ST of simulated data, e.g. simplifica-

tions made in the construction of the model, neglecting the

natural variability of parameters occurring in the model and

measurement errors in the satellite signal not taken into

account during the generation of the training data. When

empirical data are used, extreme events (highest and lowest

values of geophysical parameters) are usually not suffi-

ciently represented in the training set because they have a

low frequency of occurrence in nature. That means that in

the retrieval stage real data in some cases may force the NN

fNN to extrapolate. The error resulting from such forced

extrapolation will increase with the distance of the input

point from ST and will also depend on the orientation of the

input point relative to ST.

Several actions can be taken in order to mitigate this

problem. First, to ensure that the training data for a NN

covers those domains of the NN input space which will be

covered later by the measured data in the application stage,

it is worth the effort to build in the variability of parameters

into the training data by appropriate sampling during the

forward model run generating the training data. Also the

measurement errors should be added according to their

probability distribution (if the covariance of the errors is not

known, uncorrelated errors should be added). NNs to be

trained with such data will possibly need more neurons

and/or layers due to the need of mapping a now larger

domain covering also larger ranges. Also the NN output

error observed in the training as well as in the testing will be

larger. But the NN will perform better in the operational

phase. Another aspect to be considered before generating

the NN training data is how to distribute the input variables

of the FM: regions which need higher accuracy of inversion

should be sampled more densely than less important ones.

Unfortunately, when empirical data are used for NN

training, the density, sampling and errors cannot be

adjusted; they are given. In this case, a combination of

empirical and simulated data may be helpful.

In order to recognize NN input not foreseen in the NN

training phase and thus out of scope of the inversion

algorithm, the validity check (Schiller & Krasnopolsky,

2001) can be used. Let the model S ¼ FðGÞ have an inverse,

G ¼ fðSÞ; then, by definition, S ¼ FðfðSÞÞ: Further, let fNN

be the NN emulating the inverse model in the domain ST.

The result of G0 ¼ fNNðS0Þ for S0 � ST may be arbitrary,

and in general, FðfNNðS0ÞÞ will not be equal to S0: The

validity of S ¼ FðfNNðSÞÞ is a necessary condition for S [ S:

Now, if in the application stage of the NN, fNN; S is not in

domain ST, the NN, fNN, is forced to extrapolate. In such a

situation the validity condition may not be fulfilled, and the

resulting G in general is meaningless. For operational

applications it is necessary to signal such events to the next

higher evaluation level. In order to perform the validity test
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the FM must be applied after each inversion. This requires a

fast but accurate FM. Such FM can be achieved by a NN

emulating accurately the original FM, S ¼ FNNðGÞ: So, the

validity check algorithm consists of a combination of

inverse and forward NNs that, in addition to the inversion,

computes a quality measure for the inversion

d ¼ kS 2 FNNðfNNðSÞÞk ð9Þ

In conclusion, the solution to the problem of scope check is

obtained by verifying the retrieved parameters using a NN

emulating the FM and comparing the result with the

measurement. This procedure (i) allows the detection of

situations where the forward model or/and transfer function

is inappropriate, (ii) does an ‘in scope’ check for the

retrieved parameters even if the allowed region has a

complicated geometry, (iii) can be adapted to all cases

where a NN is used to emulate the inverse of an existing

forward model.

4. Neural networks for SSM/I data

In previous sections we discussed theoretical possibi-

lities and premises for using NNs for modeling TFs and

FMs. In this section we illustrate these theoretical

considerations using real-life applications of the NN

approach to the SSM/I forward and retrieval problems.

SSM/I is a well-established instrument (Appendix A)

flying since 1987; many different retrieval algorithms and

several forward models have been developed for this

sensor; and several different databases are available for

the algorithm development and validation. Many different

techniques have been applied for the algorithm develop-

ment. Therefore, for this instrument, we can present an

extensive comparison of different methods and

approaches. A raw buoy-SSM/I matchup database created

by the Navy was used for the NN algorithm development,

validation, and comparison. This database is quite

representative with the exception of high latitude and

high wind speed events. In order to improve this situation

the training set was enriched by adding a matchup

databases collected by high latitude European ocean

weather ships MIKE and LIMA to the Navy database.

Many filters have been applied to remove errors and noisy

data (for a detailed discussion see Krasnopolsky, Gem-

mill, & Breaker, 1996, 1999; Krasnopolsky, 1997).

4.1. NN empirical FM for SSM/I

The empirical SSM/I FM represents the relationship

between a vector of geophysical parameters G and a vector

of satellite brightness temperatures (BTs, Appendix A) S;

where S ¼ {T19V ;T19H;T22V ;T37V ;T37H}; G ¼

{W ;V ;L; Tsðor SSTÞ}: Four geophysical parameters are

included in G (wind speed, W ; columnar water vapor, V ;

columnar liquid water, L; and SST) which are the main

parameters influencing satellite BTs, and which were used

as inputs in the physically based FMs of Petty and Katsaros

(1992, 1994) and Wentz (1997) (Table 1). The NN,

OMBFM1 (Krasnopolsky, 1997), which implements this

SSM/I FM has four inputs, {W ;V ; L;SST}; one hidden layer

with 12 neurons, five nonlinear BT outputs

{T19V ;T19H;T22V ; T37V ;T37H} (here TXXY means:

XX-frequency in GHz, Y-polarization), and 20 auxiliary

outputs which produce derivatives of the outputs with

respect to the inputs. These derivatives, which are not

trained but calculated, constitute the Jacobian matrix,

K½S� ¼ {›Si=›Gj}; which emerges in the process of direct

assimilation of the SSM/I BTs when the gradient of the

SSM/I contribution to the cost function (8), xs; is calculated.

The cost function gradient can be written as (Parrish &

Derber, 1992; Phalippou, 1996)

7xS ¼ K½X�TðO þ EÞ21ðFðXÞ2 TOÞ

Fig. 2 shows the OMBFM1 architecture. Since these

auxiliary outputs (Jacobian matrix K) are not independent,

we did not include them in the error function during the

training, hence, only the standard outputs S are involved in

the training process. Estimating NN FM and its derivatives

Table 1

Comparison of physically based radiative transfer and empirical NN forward models for clear and clear þ cloudy (in parentheses) weather conditions

Author Type Inputs BT RMS Error (K)

Vertical Horizontal

Petty and Katsaros (1992) PB W ;V ;L; SST, Thetaa, P0;b HWVc, ZCLDd, Tae, Gf 1.9 (2.3) 3.3 (4.3)

Wentz (1997) PB W ; V ; L; SST, Thetaa 2.3 (2.8) 3.4 (5.1)

Krasnopolsky (1997) NN, emp. W ; V ; L; SST 1.5 (1.7) 3.0 (3.4)

a Theta; incidence angle.
b P0, surface pressure.
c HWV ; vapor scale height.
d ZCLD; cloud height.
e Ta; effective surface temperature.
f G; lapse rate.
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is a much simpler and faster task than calculating radiative

transfer forward models.

The matchup databases for the F11 SSM/I have been

used for training (about 3500 matchups) and testing (about

3500 matchups) our forward model. The FM was trained

on all matchups which correspond to clear and cloudy

weather conditions in accordance with the retrieval flags

introduced by Stogryn et al. (1994). Only cases when the

microwave radiation cannot penetrate the clouds were

removed. Then, more than 6000 matchups for the F10

instrument have been used for validation and comparison

of the NN FM with PB forward models by Petty and

Katsaros (P&K) and Wentz (1997). The standard

deviations (SDs) for OMBFM1 are systematically better

than those for the P&K and Wentz FMs for all weather

conditions and for all channels considered. For OMBFM1,

the horizontally polarized channels, 19 and 37 H, have the

highest SDs: ,2.5 K under clear, and ,3 K under clear

and cloudy conditions. For the vertically polarized

channels, SDs are lower: #1.5 K under clear, and

#1.7 K under clear and cloudy conditions. The same

trend can be observed for the P&K and Wentz FMs.

Table 1 presents total statistics (RMS errors) for the three

FMs discussed here. RMS errors are averaged over

different frequencies for the vertical and horizontal

polarization separately.

In this section we have demonstrated that the NN FM

gives results which are comparable or better (in terms of

RMS errors) than results obtained with more sophisticated

physically based models. The NN FM simultaneously

calculates the BTs and Jacobian matrix. It is much simpler

than physically based FMs. The NN FM is not as general as

radiative transfer models; it was developed for the usage in

the data assimilation system for variational retrieval and

direct assimilation of SSM/I BTs of particular frequencies

from a particular instrument. However, for this particular

application (direct assimilation) it has significant advantage

(it is significantly faster), especially in an operational

environment.

4.2. NN empirical SSM/I retrieval algorithms

The SSM/I wind speed retrieval problem is a perfect

example to illustrate general statements formulated in

previous sections. The problems encountered in the case

of SSM/I wind speed retrievals and the methods used to

solve them can be easily generalized for other geophysical

parameters and sensors. About 10 different SSM/I wind

speed retrieval algorithms, both empirical and physically

based, have been developed using a large variety of

approaches and methods. Here we perform a comparison

of these algorithms in order to illustrate some properties of

the different approaches mentioned in previous sections and

some advantages of the NN approach.

Goodberlet, Swift, & Wilkerson, (1989) developed the

first global SSM/I wind speed retrieval algorithm. This

algorithm is a single-parameter algorithm (it retrieves only

wind speed), and it is linear with respect to BTs (a linear

multiple regression was used). Statistics for this algorithm

are shown in Table 2 under abbreviation GSW. This

algorithm presents a linear approximation of a nonlinear

(especially under cloudy conditions) SSM/I TF, f (1). Under

clear conditions (Table 2), it retrieves the wind speed with

an acceptable accuracy (the SD is less than 2 m/s and the

bias is low). However, under cloudy conditions where

Fig. 2. NN forward model OMBFM1.

Table 2

Error budget (in m/s) for different SSM/I wind speed algorithms for clear and clear þ cloudy (in parentheses) cases

Algorithm Method Bias Total RMSE W . 15 m/s RMSE

GSWa Multiple linear regression 20.2 (20.5) 1.8 (2.1) (2.7)

GSWPb Generalized linear regression 20.1 (20.3) 1.7 (1.9) (2.6)

GSc Nonlinear regression 0.5 (0.7) 1.8 (2.5) (2.7)

Wentzd Physically based 0.1 (20.1) 1.7 (2.1) (2.6)

OMBNN3e NN 20.1 (20.2) 1.5 (1.7) (2.3)

a Goodberlet et al. (1989).
b Petty (1993).
c Goodberlet and Swift (1992).
d Wentz (1997).
e Krasnopolsky et al., (1996, 1999).
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the amount of the water vapor and/or cloud liquid water in

the atmosphere increases, errors in the retrieved wind speed

increase significantly (see Table 2, numbers in parentheses).

This is because the TF, f, becomes essentially nonlinear.

When the amount of the integrated water vapor in the

atmosphere is significant (e.g. in tropics), the TF becomes

nonlinear and the accuracy of GSW retrievals deteriorates

significantly (Stogryn et al., 1994) even for clear conditions

Goodberlet and Swift (1992) tried to improve the

performance of GSW algorithm under cloudy conditions,

using nonlinear regression with a nonlinearity of rational

type. Since the nature of the nonlinearity of the SSM/I TF

under cloudy condition is not known precisely, an

application of such a nonlinear regression with a particular

fixed type of nonlinarity may not improve results. This is

exactly what happens with this algorithm, which we refer to

as GS. In many cases the GS algorithm generates false high

wind speeds when real wind speeds are less than 15 m/s

(Krasnopolsky et al., 1996).

A nonlinear (with respect to BTs) algorithm (GSWP)

introduced by Petty (1993), and based on generalized linear

regression, presents a case where a nonlinearity introduced

in the algorithm represents the nonlinear behavior of TF

much better. This algorithm introduces a nonlinear correc-

tion, which corrects the linear GSW algorithm when the

amount of water vapor in the atmosphere is nonzero. Table 2

shows that GSWP algorithm improves the accuracy of

retrievals as compared with the linear GSW algorithm under

both clear and cloudy conditions. However, it does not

improve performance of GSW algorithm at high wind

speeds because most of the high wind speed events occur at

mid- and high-latitudes, where the amount of the water

vapor in the atmosphere is not significant. Here the cloud

liquid water is the main source of the nonlinear behavior of

the TF, and it has to be taken into account.

NN algorithms have been introduced as an alternative to

the nonlinear and generalized linear regressions because the

NN can model a nonlinear behavior of the TF better than

these regressions. Stogryn et al. (1994) developed the first

NN SSM/I wind speed algorithm, which consists of two

NNs, one of them performs retrievals under clear and

another one under cloudy conditions. Krasnopolsky, Gem-

mill, and Breaker (1994) and Krasnopolsky et al. (1995a,b)

showed that a single NN with the same architecture can

generate retrievals with the same accuracy as the two NNs

developed by Stogryn et al. (1994) under both clear and

cloudy conditions. This algorithm can be represented as

W ¼ fNNðSÞ ð10Þ

where W is the wind speed, and S ¼

{T19V ;T22V ;T37V ;T37H}: Application of Eq. (10) led

to a significant improvement in wind speed retrieval

accuracy for clear conditions. For higher moisture/cloudy

conditions, the improvement was even greater (25–30%)

compared to the GSW algorithm. The increase in the areal

coverage due to improvements in accuracy was about 15%

on average and higher in areas of significant weather.

Both NN algorithms give very similar results because

they have been developed using the same matchup database.

This database, however, does not contain matchups with

wind speed higher than about 20 m/s and contains very few

matchups with wind speeds higher than 15 m/s. These

algorithms also are single-parameter algorithms, i.e. they

retrieve only one parameter—wind speed; therefore, they

cannot account for the variability of all related atmospheric

(e.g. water vapor and liquid water) and surface (e.g. SST)

parameters (especially important at higher wind speeds).

This is why these NN algorithms pose the same problem;

they cannot generate acceptable wind speeds at ranges

higher then 18–19 m/s.

The next generation NN algorithm—a multi-parameter

NN algorithm developed at NCEP (OMBNN3; Krasno-

polsky et al., 1996, 1999) solved the high wind speed

problem through three main advances. First, a new buoy/

SSM/I matchup database containing an extensive matchup

data set for F8, F10, and F11 sensors provided by NRL and

augmented with additional data for high latitude, high wind

speed events (up to 26 m/s) from European OWS MIKE and

LIMA, was used for the development of this algorithm.

Second, the method of NN training was improved by

enhancing the learning of the high wind speed behavior.

Third, the variability of related atmospheric and surface

parameters was taken into account: wind speed, columnar

water vapor, columnar liquid water, and SST are retrieved

simultaneously. In this case, the relation (10) is modified

G ¼ fNNðSÞ ð11Þ

where G ¼ {W ;V ; L;SST} is now a vector, W the wind

speed, V columnar water vapor, L columnar liquid water,

and SST is sea surface temperature. The OMBNN3

algorithm uses five SSM/I channels: 19 and 37 GHz

(horizontal and vertical polarization) and 22 GHz (vertical

polarization).

Fig. 3 illustrates the architecture of the OMBNN3

algorithm. Table 2 show a comparison of the performance

Fig. 3. The architecture of the OMBNN3 algorithm.
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for all above-mentioned empirical algorithms. It also shows

statistics for a physically based algorithm developed by

Wentz (1997), which is based on linearized numerical

inversion (4) of a physically based FM.

The statistics presented in Table 2 were calculated using

about 15 000 of buoy-SSM/I matchups. The NN algorithm

obviously outperforms all other algorithms. All algorithms,

except the NN algorithms, show a tendency to overestimate

high wind speeds. It happens because high wind speed

events are usually accompanied by a significant amount of

the cloud liquid water in the atmosphere. Under such

circumstances, the transfer function, f, becomes a compli-

cated nonlinear function and simple one-parametric

regression algorithms cannot provide an adequate represen-

tation for this function and confuses a high concentration of

cloud liquid water with very high wind speeds. OMBNN3

shows the best total performance (taking into account bias,

RMSE, and high wind speed performance).

As was mentioned above, one of the significant

advantages of OMBNN3 algorithms is its ability to retrieve

simultaneously not only the wind speed but also three other

atmospheric and ocean surface parameters: columnar water

vapor V ; columnar liquid water L; and SST. Krasnopolsky

et al. (1996) showed that the accuracies of retrieval for V

and L are very good and close to those for Alishouse et al.

(1990) and Weng and Grody (1994) algorithms, respect-

ively. However, the simultaneous and accurate retrievals of

V and L is not the only advantage of OMBNN3.

Krasnopolsky et al. (1999, 2000) showed that the errors

of OMBNN3 algorithm have weaker dependencies on

related atmospheric (V and LÞ and surface (SST) parameters

than errors of other algorithms (single parameter algor-

ithms) that have been considered. The retrieved SST in this

case is not accurate (RMS error of about 4 8C; Krasnopolsky

et al., 1996), however, including SST into the vector of

retrieved parameters decreases the errors in other retrievals

correlated with the SST.

4.3. Controlling the NN generalization in the SSM/I case

The OMBNN3 retrieval algorithm is running as the

operational algorithm in the global data assimilation system

at NCEP/NOAA since 1998. Given five brightness tem-

peratures, it retrieves four geophysical parameters: ocean

surface wind speed, water vapor and liquid water concen-

trations, and SST. At high levels of liquid water concen-

tration the microwave radiation cannot penetrate clouds and

surface wind speed retrievals become impossible.

Brightness temperatures for these occasions fall far

outside the training domain ST. However, the retrieval

algorithm in these cases, if not flagged properly, will

produce wind speed retrievals, which are physically mean-

ingless (i.e. not related to actual surface wind speed).

Usually a statistically based retrieval flag is used to indicate

such occurrences. Under complicated local conditions,

however, this flag, because it is based on global statistics,

produces significant amount of false alarms or does not

produce alarms where needed. The validity check shown in

Fig. 4, if added to standard retrieval flag, helps to indicate

such occurrences. NN SSM/I forward model OMBFM1 is

used in combination with the OMBNN3 retrieval algorithm.

For each satellite measurement S; geophysical parameters

retrieved from brightness temperatures S are fed into NN

SSM/I forward model, which produces another set of

brightness temperatures S0: For S within the training domain

ðS [ST) the difference, DS ¼ lS 2 S0l; is sufficiently small.

For S outside the training domain the difference raises a

warning flag if it is above a suitably chosen threshold. Fig. 5a

shows the percentage of removed data and improvements in

the accuracy of the wind speed retrievals as functions of this

threshold. Fig. 5b illustrates dependencies between the wind

speed RMS error and maximum error and the percentage of

the removed data. It shows that applying the generalization

control reduces the RMS error significantly; the maximum

error is reduced even more. It means that this approach is

very efficient for removing outliers.

5. MERIS NN applications

This section presents a RS application for deriving the

concentrations of water constituents from MERIS (the

sensor is described to the extent necessary for understanding

the discussion in Appendix B). The primary mission of

MERIS is the measurement of sea color in the oceans and in

coastal areas. The aim is to convert such measurements of

the sea color into a measurement of concentrations of

chlorophyll pigment, suspended sediment and gelbstoff

Fig. 4. SSM/I retrieval algorithm (OMBNN3) emulating the inverse model

to retrieve vector G of four geophysical parameters: ocean surface wind

speed ðWÞ; water vapor ðVÞ and liquid water ðLÞ concentrations, and SST if

given five brightness temperatures S ¼ TXXY (XX-frequency in GHz, Y-

polarization). This vector G is fed to the OMBFM1 emulating the

forward model to get brightness temperatures S0 ¼ TXXY 0: The difference

DS ¼ lS 2 S0l is monitored and raises a warning flag if it is above a suitably

chosen threshold.
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(dissolved organic material). The measurement of the ocean

color relies on the measurement of the radiance of reflected

sunlight in different spectral bands in the visible range

arriving at the satellite. Most ($90%) of the light arriving at

the satellite has been reflected by the atmosphere. There-

fore, a careful atmospheric correction is necessary to

calculate from the measured radiances the directional

water leaving radiance reflectances (i.e. ocean color). The

color of a given water mass depends on the viewing and

illumination geometry, i.e. the zenith angles of sun and

satellite and their azimuth difference. Therefore, the FM for

this problem reads r ¼ Fðc; gÞ : the eight water leaving

radiance reflectances r depend on concentrations c of water

constituents and on three angles describing the geometry g

of the situation. The inverse model c ¼ fðr; gÞ derives the

concentrations of chlorophyll pigment, suspended sediment

and gelbstoff.

For the ground-segment of MERIS, a retrieval procedure

based on NN technology was developed to transform

directional water leaving radiance reflectances measured in

eight spectral bands and the three angles pixel by pixel with

high efficiency into concentrations of the water constituents

suspended matter, phytoplankton and gelbstoff. Addition-

ally the NN checks if its input is in the domain, which was

covered during the training of the NN.

Since measurements do not cover the data space with

sufficient density, the construction of the NN is based on a

large table (130 K entries) of simulated data generated by

a Monte-Carlo radiative transfer code. For given concen-

trations of water constituents, the Monte-Carlo radiative

transfer code calculates the angular distribution of water

leaving radiance reflectance in eight visible MERIS bands.

These angular distributions are sampled in the appropriate

angle ranges to derive the entries of the training/test tables

for building the NN: three concentrations, three angles

and eight water leaving radiance reflectances. The

sampling of the concentrations of the water constituents

was done from an exponential distribution in order to

disentangle small concentration differences in regions of

small concentrations. In order to get roughly constant

relative concentration errors the logarithm of the concen-

trations was used as NN output.

The natural variability of the inherent optical properties

of the water constituents was built into the Monte-Carlo

code by sampling the parameters describing the spectral

dependence of the inherent optical quantities from their

measured distributions. Also an error model was applied to

the reflectances obtained in the Monte-Carlo run (until now

only a theoretical error model is available from MERIS

simulations).

Fig. 5. (a) Percentage of removed data (dashed line) and wind speed accuracy improvement as functions of the threshold for BT discrepancy DS: The vertical

line shows three SDs for DS: (b) Wind speed RMS and maximum errors dependency on the percentage of the removed data.
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Two NNs are trained with this table: (1) invNN to emulate

the inverse model or TF to derive concentrations c from

reflectances r and geometry information g; and (2) forwNN to

emulate the FM deriving reflectances r from concentrations c

and geometry information g: The two NNs together with a

comparison network are combined to give a new NN (Fig. 6),

which first uses the invNN part to obtain an estimate of the

concentrations c: These are fed into the forwNN part, and the

auxiliary NN component cmpNN compares the derived

reflectances with the measured ones. Large deviations signal

a violation of the necessary condition for a successful

inversion; corresponding pixels are then flagged. Possible

reasons for large deviations are (1) the atmospheric

correction is bad, (2) the inherent optical properties of

water constituent(s) could differ from those implemented in

the bio-optical model, (3) the concentrations could be in a

region not foreseen in the data base generation run, (4) foam

or (5) nonconstant vertical profile. The restricted architecture

of the MERIS processor only allows a single bit to specify the

quality of the inversion. In less restricted cases one certainly

will return the sum of the squared deviations.

The advantage of applying the error model to the training

data is exemplified in Figs. 7 and 8. Two NNs were trained.

Fig. 6. Combined NNs applying quality check on water constituent concentrations retrieved from water leaving radiance reflectance measurements by MERIS.

Fig. 7. NN output RMS error for NN0err and NN1err using input

reflectances with varying amount of error. Results are shown without

quality check (all) and with quality check (cut d , 1Þ; respectively.

Fig. 8. Percentage of points passing the cut d , 1 for the two NNs NN0err

and NN1err using input reflectances with varying amount of error.
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The first NN ðNN0errÞ was trained using the unmodified

model output and the second NN ðNN1errÞ was trained with

the model output, which was modified by adding reflectance

errors according to the error model. In Fig. 7 the RMS error

of one of the NN outputs is plotted for both NNs for different

input data sets. The input data sets differ in the amount of

error added to the original model output. As expected, the

NN0err performs better then NN1err when using input data

from the original model. But for NN input with increasingly

more error the NN1err outperforms NN0err:

The quality check (9) leads to a significant reduction of

the NN output RMS error. In Fig. 8 the effect of the quality

check d , 1 on the rate of accepted input is shown. For

NN0err the acceptance of input points goes down rapidly,

whereas for NN NN1err the acceptance of input is higher

than 95% even if the input error is twice larger than

expected. To improve the performance of the less robust NN

NN0err much more input points must be rejected.

6. Conclusions

In this work we discussed a broad class of NN

applications dealing with the solution of the RS forward

and inverse problems. These applications are closely related

to standard and variational retrievals, which estimate

geophysical parameters from remote measurements. Both

standard and variational techniques require a data converter

to convert satellite measurements into geophysical par-

ameters or vice versa. Standard retrievals use a TF (solution

of the inverse problem) and variational retrievals use a FM

(solution of the forward problem) for this purpose. In many

cases the TF and the FM can be considered as a continuous

nonlinear mapping. Because the NN technique is a generic

technique for continuous nonlinear mapping it can be used

beneficially for modeling TFs and FMs.

Theoretical considerations are illustrated by several real-

life examples—operational NN applications developed by

the authors for SSM/I and MERIS sensors. To illustrate

benefits, which one can get from applying the NN approach

to the FM and TF development, we have presented a new

NN-based empirical SSM/I FM called OMBFM1 and a new

NN-based OMBNN3 transfer function (i.e. retrieval algor-

ithm) for SSM/I retrievals. Comparison with physically

based FMs, for all weather conditions permitted, shows that

OMBFM1 is better than or comparable with PB FMs in

terms of accuracy. It is also significantly simpler than the PB

FMs and much faster, which is very important for

variational retrievals where the FM is estimated many

times per satellite measurement. SSM/I NN applications

have been developed using a significant amount of empirical

data collected since the first sensor was launched in 1987.

The NN-based OMBNN3 transfer function (used as an

operational algorithm at NCEP/NOAA since 1998) for

SSM/I retrieves the wind speed, the columnar water vapor,

the columnar liquid water, and the SST. It demonstrates

high retrieval accuracy overall, together with the ability to

retrieve high wind speeds with acceptable accuracy. The

results demonstrate that OMBNN3 systematically outper-

forms all other statistically and physically based algorithms

considered, under all weather conditions where retrievals

are possible, and for all wind speeds.

The MERIS application presented in this paper shows a

NN-based intelligent integral approach when the entire

retrieval system, including the quality control block, is built

as a combination of several specialized NNs. This approach

offers significant advantages for real-life operational

applications. This intelligent retrieval system not only

produces accurate retrievals, it also performs an analysis

and quality control of these retrievals and environmental

conditions, rejecting poor retrievals if they occur. The

MERIS NN application has been developed using a

significant amount of simulated data.

The NN applications presented in this paper show the

strengths and limits of the NN technique for derivation of

environmental parameters from RS measurements. NNs

successfully compete with other statistical methods and

usually perform better than those because they are able to

optimize the statistical link between the inputs and the

outputs. NNs can successfully compete even with

the physically based approaches because, in many cases,

the explicit knowledge of very complicated physical

processes in the environment is limited, and an NN-based

empirical approach is more adequate. It can take into

account more physics implicitly than a physically based

approach can explicitly take into account. However, the

success of the NN approach strongly depends on the training

data set provided for the NN training. The availability,

quality, representativeness, and size of this dataset are

crucial for the success of the application.

Acknowledgements

Authors thank D.B. Rao, W.H. Gemmill, and L.C.

Breaker for their help and support in development of SSM/I

NN applications and J. Derber for careful reviewing of this

paper and constructive comments.

Appendix A. The special sensor microwave imager

(SSM/I)

Beginning in 1987, a series of special sensor micro-

wave/imager (SSM/I) instruments have been launched

through the defense meteorological satellite program

(DMSP) (Hollinger, Lo, Poe, Savage, & Pierce, 1987).

DMSP SSM/I satellites are polar orbiting satellites with a

102 min orbit. Each satellite provides coverage over a

particular ocean basin twice a day, once during a descending

orbit and once during an ascending orbit. The SSM/I
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measures brightness temperatures in seven channels at four

frequencies (19, 22, 37, and 85 GHz), each with vertical and

horizontal polarization (22 GHz channel senses only

vertical polarization). The spatial resolution is about

50 km at 19 and 22 GHz, about 30 km at 37 GHz and

15 km at 85 GHz. The SSM/I infers brightness temperatures

from the ocean surface passively, receiving microwave

radiation emitted by the ocean surface and passed through

the atmosphere. The emission is effected by the surface

wind speed (which changes the roughness of the ocean

surface) and by the SST. The propagation of the microwave

radiation through the atmosphere is influenced by the

integrated amounts of water vapor and liquid water in

the atmospheric column (Wentz, 1997, 1992). As a result

the brightness temperatures carry signals from all these

geophysical parameters and can then be converted into

geophysical parameters (surface wind speed, columnar

water vapor, columnar liquid water, and SST) using

retrieval algorithms.

DMSP satellites have substantially increased the

amount of real-time meteorological data that is acquired

over the oceans. This data is used subjectively by marine

meteorologists to improve ocean surface weather map

analyses, and objectively by numerical analysis systems to

provide initial conditions for NWP models. With three

satellites in orbit and with a swath width of about

1400 km for each of the satellites, high-resolution cover-

age is now available almost globally on a daily basis. A

significant amount of data has been collected and matched

to the buoy data since 1987.

Appendix B. The Medium resolution imaging

spectrometer (MERIS)

In January 2002, the European Space Agency will launch

Envisat, an advanced polar-orbiting Earth observation

satellite that will provide measurements of the atmosphere,

ocean, land and ice over a 5 year period. The Envisat

satellite has an ambitious and innovative payload that will

ensure the continuity of the data measurements of the ESA

ERS satellites. The Envisat data will support Earth science

research and allow monitoring of the evolution of

environmental and climatic changes.

One of the instruments onboard Envisat will be MERIS

(Rast, Beézy, & Bruzzi, 1999). The primary mission of

MERIS is the measurement of sea color in the oceans and in

coastal areas. Such measurements of the sea color, after

atmospheric correction, can be converted into a measure-

ment of concentrations of chlorophyll pigment, suspended

sediment and gelbstoff (dissolved organic material). Main

application domains of such data are (1) the ocean carbon

cycle, (2) the thermal regime of the upper ocean and (3) the

management of fisheries and of coastal zones. MERIS

allows global coverage of the Earth in 3 days.

MERIS is an imaging spectrometer, which measures the

solar reflected radiation from the Earth in the visible and

near infrared part of the spectrum during daytime. The

1150 km wide swath is divided into five segments covered

by five identical cameras having corresponding fields of

view with a slight overlap between adjacent cameras. Each

camera images an across-track stripe of the Earth’s surface

onto the entrance slit of an imaging optical grating

spectrometer. This entrance slit is imaged through the

spectrometer onto a two-dimensional CCD array, thus

providing spatial and spectral information simultaneously.

MERIS is designed to acquire 15 spectral bands in the 390–

1040 nm range of the electromagnetic spectrum.

The spatial information along-track is determined via

successive read-outs of the CCD-array. Full spatial

resolution data, i.e. 300 m at nadir, will be transmitted

over coastal zones and land surfaces. Reduced spatial

resolution data, achieved by on board combination of 4 £ 4

adjacent pixels across-track and along-track resulting in a

resolution of approximately 1200 m at nadir, will be

generated continuously.
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