NH, -

i3 PARALLEL
ﬁ% COMPUTING
ELSEVIER Parallel Computing 28 (2002) 35-52 =

www.elsevier.com/locate/parco
Applications

Distributed-memory concepts in the wave
model WAVEWATCH 111 *

Hendrik L. Tolman *

SAICIGSO at NOAAINCEP, Environmental Modeling Center, 5200 Auth Road, Room 209,
Camp Springs, MD 20746, USA

Received 4 January 2001; received in revised form 14 June 2001; accepted 31 August 2001

Abstract

Parallel concepts for spectral wind-wave models are discussed, with a focus on the WAVE-
WATCH III model which runs in a routine operational mode at NOAA/NCEP. After a brief
description of relevant aspects of wave models, basic parallelization concepts are discussed. It is
argued that a method including data transposes is more suitable for this model than conven-
tional domain decomposition techniques. Details of the implementation, including specific buf-
fering techniques for the data to be communicated between processors, are discussed. Extensive
timing results are presented for up to 450 processors on an [BM RS6000 SP. The resulting mod-
el is shown to exhibit excellent parallel behavior for a large range of numbers of proces-
sors. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Ocean wind-wave modelling; Distributed memory computing; Message passing

1. Introduction

For several decades, numerical wind-wave models have been an integral part of
weather prediction at weather forecast centers around the world. Major meteorolog-
ical centers now rely on the so-called third-generation wave models like WAM [3.9], or
WAVEWATCH I11 [7,8]. In such models, all physical processes describing wave
growth and decay are parameterized explicitly. Compared to previous first- and
second-generation models, which parameterized integral effects of the physics rather

“ OMB contribution No. 201.
" Tel.: +1-301-763-8133; fax: +1-301-763-8545.
E-mail address: hendrik.tolman@noaa.gov (H.L. Tolman).

0167-8191/02/5 - see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0167-8191(01)00130-2

36 H.L. Tolman | Parallel Computing 28 {2002) 35-52

than the physics itself, this is computationally expensive due to the explicit calculation
of nonlinear wave-wave interactions, and due to the relatively small time-steps re-
quired by third-generation models. Although such models are still less computation-
ally intensive than atmospheric models, they nevertheless require state-of-the-art
supercomputer facilities to produce forecasts at acceptable resolutions and in a timely
fashion.

The first supercomputers utilized the concept of vectorization. Such vector com-
puters achieved increased computational performance by efficiently performing iden-
tical calculations on large sets of data. Conversion of computer models to such
computers generally required systematic reorganization of the programs to generate
long loop structures. Initial vector computers also required much hardware-depen-
dent calls for basic operations. In later vector computers, additional programming
was essentially limited to the inclusion of compiler directives in the source code.

The second supercomputing paradigm is that of parallelization. In this case the
work is spread over multiple processors. In the simplest form (from a user’s perspec-
tive), the processors share memory. As with vectorization, the success of such parall-
elization depends on the general structure of the program. If this structure is conducive
to parallelization, modifications to the program for shared-memory parallel comput-
ers are generally small, and are usually limited to adding compiler directives to the pro-
gram. Sharing memory between processors, however, requires additional logistics in
the computer, which generally limits the number of processors in shared-memory par-
allel computers to about 16. Much more massively parallel computers with up to
0O(10%) processors can be constructed if the processors do not share their memory.
Such distributed-memory parallel computers represent the latest development in su-
percomputing. Efficient application of models to such computers requires that the
communication between processors becomes an integral part of the source code. Ap-
plication to distributed memory computers therefore requires major code conversions,
even for programs that are already applied to shared-memory parallel computers.

The present paper describes the conversion of the operational NOAA implementa-
tion of the third-generation wind-wave model WAVEWATCH 111 (henceforth de-
noted as NWW3) to a distributed memory computer architecture at the National
Centers for Environmental Prediction (NCEP). The program is written in FOR-
TRAN. For message passing between processors the message passing interface
(MPI) standard has been used (e.g., Gropp [2]). In Section 2, a brief description of
the model is given, together with previously used vectorization and parallelization ap-
proaches. In Sections 3 and 4, the basic distributed memory design and model modi-
fications are discussed, as well as optimization considerations. In Section 5 the
performance of the parallel code at NCEP is discussed. Sections 6 and 7 present a dis-
cussion and conclusions.

2. The wave model

In contrast to numerical models for the atmosphere and ocean, which provide a
deterministic description of both media, wind-wave models provide a statistical

H.L. Tolman | Parallel Computing 28 (2002) 35-52 37

description of the sea state. The spatial and temporal scales of individual waves make
it impossible to deterministically predict each individual wave for an entire ocean or
sea. The random character of wind-waves makes it undesirable to deterministically
model individual waves. Most statistical properties of wind-waves are captured in
the distribution of wave energy over wave frequency (or wavenumber) and wave
propagation direction, in the so-called wave energy density spectrum, or for short,
the energy spectrum. Wave models generally predict the evolution in space and time
of the energy spectrum, or alternatively, of the action spectrum. The action spectrum
is the energy spectrum divided by the intrinsic frequency of the spectral components.
The action spectrum is used in recent models as it allows for the transparent inclu-
sion of effects of mean currents on the evolution of the wave field.

NWW3 predicts the evolution in the two-dimensional physical space x and time ¢
of the wave action density spectrum A as a function of the wavenumber k and direc-
tion 0, as governed by the conservation equation

DAk, 0;x,t)
Dt N

The total derivative on the left represents the local change and effects of wave
propagation. The function S represents source terms for wave growth and decay,
that are governed by the direct action of wind, the exchange of action between
components of the spectrum due to nonlinear effects, the action loss due to white-
capping, and from additional shallow water processes if applicable. Physical space
(x) and spectral space (k,0) are discretized, and the equation is solved marching
forward in time ¢, using a (global) time-step At,. Below, i, j and m will denote discrete
grid counters in k-, 0- and x-space, respectively. In NWW3, x-space consists of a
regular longitude-latitude grid. To reduce memory requirements of the model,
spectra for grid points that are located on land are not stored, reducing m to a one-
dimensional counter in the two-dimensional x-space.

To facilitate an economical solution, and at the same time to simplify the numer-
ical approaches, Eq. (1) is solved in several consecutive fractional steps (e.g., [10]). A
fractional step method is used in virtually every spectral wave model. Details, how-
ever, differ between models. In NWW3, the fractional step approach addresses spa-
tial propagation, spectral propagation and source terms separately. Thus the
following three equations are solved consecutively:

Sk, 0;x,1). (1)

04

A, vx A = 01 2

T 2)

04

% + Vip - €4 =0, (3)
14

o4

ass 4

Here the functional dependencies of 4 and S have been dropped for convenience. V,
and Vy represent differential operators in physical and spectral spaces, respectively.
¢, represents the propagation velocity vector in physical space, that is a function of

38 H.L. Tolman | Parallel Computing 28 (2002) 35-52

the local depth ¢ and current velocity vector U. ¢, represents the propagation ve-
locity vector in spectral space, which is a function of the spatial derivatives of d and
U. The corresponding change in direction and wavenumber of individual wave
groups are known as refraction and shoaling (straining), respectively. For details of
these equations see [7].

In Eq. (2) the spatial propagation of a given spectral component (k;, 0,) is per-
formed for all spatial grid points x, simultancously. The procedure, however, is
identical for each spectral component (k;,0,), and is performed independently for
each (k;,0;). This implies that on vector processors, the x-space can be used for
the formation of long vector loops, while simultaneously the (k, 0)-space can be used
for parallelisms. On multi-processor shared-memory vector machines like the Cray
(90, this allowed for simultaneous vectorization and parallelization of Eq. (2) in pre-
vious versions of NWW3. Note that NWW3 defines a maximum propagation time-
step At, that scales with k. If A¢,(k) < At, (the global model time-step), propagation
is performed in several steps until Az, is bridged. This is relevant for the present pa-
per as it is a potential source of load imbalances (as will be discussed later).

Conversely, in Egs. (3) and (4) effects of refraction, straining and source terms are
performed for all discrete spectral points (k;, 6;) simultaneously. These procedures,
however, are identical for each spatial grid point x,,, and are performed indepen-
dently for each x,,. Thus, the x-space can be used for parallelisms, while (, §)-space
can be used for the formation of long vector loops, as is done in the previous Cray
C90 version of NWW3. The solution of Eq. (3) is obtained with a fixed time-step.
For the solution of Eq. (4), however, a dynamically adjusted time-step is used, where
the time-step is reduced in regions with rapid change in the local wave spectrum. This
generally implies that significantly more computational effort is used in and near
storm centers.

One other aspect of the wave model has relevance for the design of a distributed
memory version of NWW3. Ice concentrations are used as input for NWW3. If the
concentration exceeds a cut-off (typically 33% or 50%), the corresponding grid point
X,, 15 (temporarily) taken out of all computations.

3. Parallel concepts

Effective parallel distributed-memory computing requires work and data to be dis-
tributed efficiently between the available processors. Two major parallel paradigms
can be distinguished.

The first is domain decomposition. Here domains considered in the model are di-
vided in contiguous blocks of data points to be stored and processed at individual
processors. Continuity of the calculation in the decomposed domains then requires
communication of boundary data between processors.

The second is transposing data. Here all data needed for a given part of the cal-
culations are gathered in a single processor before the calculation is performed. This
requires the continuous reorganization (‘transposing’) of the way in which data are
distributed over separate processors.

H.L. Tolman [Parallel Computing 28 (2002) 35-52 39

Domain decomposition appears to be the more common approach, as it generally
requires much less communication between processors than a data transpose. Data
transposes are mostly used if domain decomposition is not an option due to the
physical or numerical algorithms used in a model. Examples of such models are glo-
bal spectral atmospheric models as described by Sela [6].

In WAM, domain decomposition has been used even before parallel processing
came into use. The domain decomposition was introduced to allow for large models
to be run on a computer with limited memory. In third-generation wave models, do-
main decomposition can be performed in physical space only, because the nonlinear
interactions in S in principle require all spectral bins (k;, 0;) to be available simulta-
neously for a given spatial grid point x,,. An example of domain decomposition as it
could be applied to NWW?3, for a case with four processors numbered 0-3, is given in
Fig. 1(a) for an arbitrary grid. Following the terminology used in WAM, an area as-
signed to a given processor will be called a block. The grey area identifies land at
which no spectra are stored or calculations are performed.

Domain decomposition is a standard parallel approach. The MPI standard even
incorporates routines to set up the necessary communication between processors.
Communication is needed only to assure that spatial propagation is properly dealt
with across boundaries between blocks. Such so-called halo areas are indicated in
Fig. 1(a) by the hatched boxes. The extension of a halo area depends on the propa-
gation scheme used. The minimum extension (as shown in the figure) is one grid
point at each side of the boundary. This extension allows for a first-order scheme
to operate across the boundary, or for the introduction of a local first-order internal
boundary condition. NWW3 uses a third-order ULTIMATE QUICKEST scheme of
Leonard [4,5], which requires a halo area with an extension of two grid points on
each side of the block boundaries.

Fig. 1. Basic parallel paradigms for third-generation spectral wave models: (a) domain decomposition; (b)
data scattering according to Eq. (5) and data transposes. Grey area identifies land. Four processors num-
bered 0-3. Number at grid line intersection identifies processor at which spectral data are stored and/or
processed. Hatched area in (a) identifies minimum size of halo areas.

40 H.L. Tolman | Parallel Computing 28 (2002) 35-52

The advantage of domain decomposition is that it is usually relatively simple to
implement, particularly when the standard MPI routines can be used. Furthermore,
if the extension of the halo area is small, the amount of data to be communicated
between processors is relatively small. A disadvantage is the potential load imbal-
ances per block. Load balancing implies that the amount of work done per processor
is approximately the same, particularly avoiding excessive work for a few processors.
This is important in a parallel environment, as generally all processors have to wait
until the last processor is finished with its work. Hence the processor with the heav-
iest load determines the overall model efficiency.

A simple way to implement domain decomposition is to divide the x-space in reg-
ular rectangular blocks. For wave models this leads to load imbalance, as the num-
ber of sea points will vary per such block as land masses (without model grid points)
are always unevenly distributed over blocks. This can be alleviated by designing the
blocks in such a way that all blocks include approximately the same number of sea
points, as illustrated in Fig. 1(a). Such a domain decomposition becomes more com-
plicated, but its implementation is still only a matter of proper bookkeeping.

For the particular design of NWW3, two additional load-balancing issues occur.
First, the dynamical time integration used for the source terms in Eq. (4) assigns ad-
ditional computational effort to areas of rapid spectral changes. Such areas typically
occur in storms and are therefore spatially coherent. Such areas will usually cover
only a small number of blocks, and hence result in a significant load imbalance. Be-
cause such areas with increased computational effort change dynamically, this load
imbalance cannot be incorporated in the domain decomposition in a simple way.
Similarly, areas covered with ice are taken out of the computations. These areas
are also spatially coherent, and therefore by definition unevenly distributed over
blocks. Taking ice-covered grid points out of the calculation is therefore expected
to similarly impact load balancing.

Considering the above disadvantages of domain decomposition, an alternative
has been considered. The load imbalance issues described above occur if Egs. (3)
and (4) are applied to coherent areas in x-space. The natural way to avoid this is
to assign these calculations (and therefore the data storage) for each x,, to individual
processors in a non-coherent way. Removing the spatial coherence in the data stor-
age makes it impossible to solve Eq. (2) for parts of x-space at each processor, as is
done in a domain decomposition. The only alternative is to gather data for all x,, and
for a given (k;,0;) in a single processor to perform calculations. In other words, this
will require a full data transpose.

For comparison with domain decomposition, the data distribution of full spectra
for non-coherent groups of x,, will be considered the ‘normal’ data distribution, and
the corresponding spectra will be considered ‘native’ to the processor on which these
calculations are performed. The data distribution required for solving Eq. (2) will be
denoted as the transposed data distribution.

The main disadvantage of this parallel approach is that it requires that all spectral
data need to be moved between processors (i.e., transposed) twice per time-step; once
for going from the normal to the transposed data distribution, once to go back to the
normal data distribution. Based on computational effort of the Cray version of

H.L. Tolman | Parallel Computing 28 (2002) 35-52 4]

NWW3, and based on projected data transfer rates on parallel supercomputers, it
was expected that the more massive communications inherent to the data transpose
would still be economically feasible. As will be shown in Section 5, this is indeed the
case.

A simple way to avoid spatially coherent data distributions, and to assure that
each processor deals with the same number of grid points, is to assign each Nth grid
point to the same processor, where N is the total number of processors. Grid point m
is thus assigned to processor n

n=MOD(m—1,N). (5)

In NWW3 the grid point counter m starts in the lower left corner of the grid, and
works its way up line by line ignoring grid points covered by land. Together with Eq.
(5), this results in a distribution of grid points over processors for N =4 as illus-
trated in Fig. 1(b). This distribution also assures that ice-covered grid points are
equally distributed over the processors, so that the reduction of work due to taking
such points out of the calculations is also well balanced.

Using the data transpose method, some care has to be taken with load balancing
for spatial propagation. If the spatial propagation time-step At,(k) is less than the
overall time-step Az, for at least some &, spectral bins should be assigned to individ-
ual processors in such a way that the number of individual propagation calculations
per processor,

% L4 INT(AtAPEz)) (6)

ij at n

is approximately equal for all processors #.

In summary, domain decomposition, which may be considered as the standard
way of parallelizing codes, is applicable to ocean wave models. For NWW3, how-
ever, a data transpose method is expected to result in better load balancing, while
the increased communication between processors is not expected to be important.
Therefore, the data transpose method has been selected for NWW3.

4. Implementation and optimization

In discussing the implementation and optimization of the distributed memory ver-
sion of NWW3, we will first concentrate on the calculations in Section 4.1. Input and
output (1/0) will be discussed in Section 4.2. Load balancing has already been dis-
cussed in the previous section. Discussion of optimization will therefore not consider
load balancing again.

4.1. Calculations

In the distributed memory version of NWW3, the so-called native data distribu-
tion over processors is illustrated in Fig. 1(b) and Eq. (5). Because full spectral data

42 H.L. Tolman | Parallel Computing 28 (2002) 35-52

for selected grid points x,, are available at processor n, Eqgs. (3) and (4) can be solved
for such grid points without a need for communication. All communication needed
for the computations is related to spatial propagation in Eq. (2). Before spatial prop-
agation can be performed, the spectral densities 4 (k;, 8;) for a single spectral bin (i, /)
over all grid points x,, must be brought to a target processor n, using a ‘gather’ op-
eration. This gather operation consists of send commands for the necessary data at
each processor n # n,, and the corresponding receive commands for n = n,. Each
gather operation thus includes communication between », and all other processors.
After Eq. (2) is solved for the spectral bin (i, j), a corresponding ‘scatter’ operation is
required, with send commands for n = n, and receive commands for each n # n,.

Standard optimization procedures of the gather and scatter processes begin with the
use of the so-called non-blocking communication commands. Using such commands,
sends and receives are posted, but the program continues its operation without waiting
for the corresponding sends and receives to be completed. Later in the program, the
communication still needs to be finished with a ‘wait’ command. Furthermore, the re-
quired communications are identical for each time-step. This allows for the use of ‘per-
sistent’ communication. First, send and receive operations are prepared using
MPI_Send_Init and MPI_Recv_Init commands as part of the model initialization.
Groups of communication commands can then be executed and controlled by using
MPI_StartAll and MP1_WaitAll commands. Although the use of pertinent communi-
cations proved to have a minor effect on computational efficiency of NWW3, persistent
communications greatly increase the transparency of the code by grouping large num-
bers of communication commands into single subroutine calls.

With these considerations, the algorithm for solving Eq. (2) for a single time-step,
including the necessary data transposes, becomes (ignoring initialization as described
above):

1. Prepare data gathered by sending all native data to the proper processor

(MPI_StartAll).

2. Prepare the corresponding receiving of all modified native data in the scatter
operation (MPI_StartAll).
3. For all spectral bins (7, /) for which the propagation is performed at the present
processor, do the following:
(a) Post receives for all data to be gathered for (i,;) (MPI_StartAll).
(b) Wait for receives to finish (MPI_WaitAll).
(c) Convert one-dimensional array x,, to full two-dimensional array for conve-
nience of propagating field of spectral densities.
(d) Perform actual propagation for (i, j).
(e) Convert full propagated field to x,,.
(f) Post sends for scatter operation (MPI_StartAll).
(g) Wait for sends to finish (MPI_WaitAll).
4. Finalize communications started in step 1 (MPI_WaitAll).
5. Finalize communications started in step 2 (MPI_WaitAll).
Note that:
(i) Steps 3(c) and (e) are added to increase model transparency and are not strictly
necessary because they could be incorporated in step 3(d).

H.L. Tolman | Parallel Computing 28 (2002) 35-52 43

processors 1-D array with given Corresponding
with native spectral component 2-D spatial

data (i,j) for all sea points wave field

ier . calculate
_ = propagation

Fig. 2. Graphical representation of buffered gather and scatter operations. Thick dashed lines identify
communication. Gather operations move data from left to right, scatter operations move data from right
to left. The active one-dimensional array contains data for which propagation is performed. The buffer
one-dimensional arrays are used for pre-gathering fields that still have to be propagated, or contain prop-
agated fields that have not yet been scattered back to the native processors. Communication between na-
tive processors and ‘active’ one-dimensional array is ideally necessary only in the spin-up of the
calculations.

(i) All communication steps involving MPI consist of a single subroutine call due

to the use of persistent communication.

(iii) A non-blocking scatter operation requires that this operation in fact is started

in step 2 before any computation has been performed.

The above algorithm is fairly efficient, but still includes systematic wait time for
communications to finish in steps 3(b) and (g), because the call to MPI_WaitAll di-
rectly follows the corresponding call to MPI_StartAll. Such wait time can be mini-
mized or even eliminated by pre-gathering data in a buffer at n,, and by similarly
storing data to be scattered in a buffer before starting the actual scattering operation.
Such a buffering technique is graphically depicted in Fig. 2 for N = 4 processors and
npur = 4 buffer arrays. This method has been implemented in NWW3. Details can be
found in its source code. ' Note that introducing buffers increases the memory re-
quirement of the model, and furthermore might impact data caching. This might ad-
versely impact model performance, in particular if many buffers are used. The effect
of the number of buffers on the model efficiency will be assessed in Section 5.

4.2. Input and output
Distributed computing also poses challenges for organizing I/O. Input to NWW3
(can) consist of wind, current, water level, temperature and ice concentration fields

on the full spatial wave model grid. Because data ingest (i.e., reading of input)

! Available from http://polar.ncep.noaa.goviwaves/wavewatch/,

44 H.L. Tolman [Parallel Computing 28 (2002) 35-52

and processing are responsible for a negligible part of the computational effort of the
model, and because spatial derivatives of some input fields are required within the
model, each processor processes the full spatial fields of input parameters. NWW3
has five different types of output:
1. Fields of mean wave parameters on the full spatial grid (augmented with the input
fields driving the wave model).
2. Full spectral data at selected output points, if necessary interpolated from the
spectra at surrounding spatial grid points.
3. Full spectral data around tracks in space and time.
4. Restart files containing all spectra and some additional mean wave parameters.
5. Files with boundary data for nested models.
Mean wave parameters (output type 1) are calculated from native data on each
processor, and are then gathered into a single processor that writes the data to file.
Similarly, all spectra needed for the point output (output type 2) are gathered in a
single processor, which performs the necessary interpolation and writes the file. A
similar procedure is used for the output of boundary spectra (output type 5). To
minimize model slow down due to single-processor operations in these output types,
different processors are assigned the task to perform these outputs. The track output
and restart files (output types 3 and 4) mostly write large numbers of spectra for
either selected or all grid points. To simplify parallel implementation of this output,
these files are direct access files, where each processor independently writes its own
spectra to the appropriate record. This method may not be the most efficient parallel
I/O solution, and requires a file system that is simultaneously accessible by all pro-
cessors. It nevertheless proved adequate in the present NCEP implementations of
NWW3.

5. Performance

The performance of the distributed memory version of NWW?3 as described in the
previous two sections has been tested on the phase II IBM RS6000 SP of NCEP.
This machine consists of Winterhawk II nodes. Each node contains four processors,
that share 2 GB of memory. The machine consists of 256 nodes (1024 processors),
half of which are available for a single job due to the present queuing configuration.
Although this machine represents a hybrid shared-distributed memory architecture,
all processors are treated in NWW3 as if it is a pure distributed memory architecture.
The MPI implementation on this machine, however, will recognize that processors
are on the same node, and communicate through shared memory instead of the in-
terconnecting network when possible. The impact of this choice will be discussed in
Section 6.

As a test case, a one-day forecast is made with NCEP’s operational global imple-
mentation of NWW3. The spectrum is discretized in this model using 24 directions
and 25 wavenumbers (600 spectral bins). The spatial grid has a resolution of
1° % 1.25° in latitude and longitude, and covers the globe from 78°N to 78°S, con-
taining 30,030 sea points. The model time-step Af, = 3600 s. For the smallest k,

H.L. Tolman | Parallel Computing 28 (2002) 35-52 45

the propagation time-step is A7, = 1300 s. The smallest time-step allowed for source
terms integration is set to 300 s. Additional information on this model can be found
in [1], or on the NCEP/OMB waves web page. 2 The operational model uses np,r = 6
and N = 64, based on previous timing results of NCEP’s phase-1 IBM machine. Tim-
ings are obtained directly from the executable. Such timings therefore do not include
the time needed to spin up the parallel work environment on the IBM, which typi-
cally does not take a trivial amount of time, and furthermore depend on the number
of processes requested.

Each individual test consists of up to three steps. First, the model is run in the so-
called dry run mode, without generating model output. In dry run mode, NWW3
processes input and output, but skips all calculations. The timing for this dry run
gives an estimate of the combined time required for model initialization, data ingest
and time-step management. The run will be denoted as the A run, and the run time
as t5. In the second run (B, 1), all calculations will be performed, but no output will
be generated. The time difference ¢z — 74 is an estimate for the time spent on the ac-
tual calculations. Finally, in the C run (¢c), hourly grid, point and nesting output will
also be generated, to assess the impact of output on parallel performance.

Two sets of tests will be performed. First, the effects of the number of buffers ny,r
as illustrated in Fig. 2 will be assessed for a selected number of processors N. Sec-
ondly, the parallel efficiency as a function of N will be assessed using a fixed number
of buffers nyye.

To asses the impact of the buffering scheme of Fig. 2, the test case has been run
with N = 24, 64 and 120 processors, respectively. These N have been chosen some-
what arbitrarily, although N = 64 is particularly relevant for NCEP as this is the op-
erational model setting. The number of buffers is increased from ny,y =1 (no
buffering), to np,s = 8. Because the buffer is an exclusive part of the computational
algorithm, only the isolated computing time (1g — #4) will be addressed. Resulting
run times and run time changes are presented in Table 1.

Each run is repeated five times to assess the reproducibility of timing results. The
system on which the model is tested is known to show a small but noticeable impact
on timing results of work load on the interconnecting network and on the shared file
systems. Furthermore, this machine is used for both operational weather forecasting
and for developmental work. The queueing system occasionally allows operational
Jjobs to take resources from developmental work (like the present timing runs). Such
occurrences are rare (about five of the 240 runs required for Table 1), and are easily
identified by their anomalous timing results if multiple runs are made. Because we are
interested in timing results for dedicated processors only, the above anomalous results
have been removed from the present results, and have been replaced by results from
additional runs. Note that the model itself is not a source of run-time variability with-
in the sets of five calculations (the model is purely reproducible in every single aspect).

For all three numbers of processors N considered, the buffering results in a speed-
up of the model of about 30% for ny, = 5. The largest incremental speedup is found
when the buffer depth is increased to 2 and 3, respectively. This could be expected as

2 http://polar.ncep.noaa.gov/waves.

46 H.L. Tolman [Parallel Computing 28 (2002) 35-52

Table 1
Average run times of calculational part of test case 7, = #3 — #4 for several numbers of buffers ny,: as in Fig.
2, and N = 24, 64 or 120 processors

e (=) N=24 N=164 N =120
t: (s) ay (8) A () t:(s) a, (s) A (%) 1, (8) o, (s) A (V)

1 156.1 12 - 67.1 &1 - 43.2 2,1 -

2 138.2 0.4 11.4 56.0 1.2 16.6 379 4.1 122
3 120.9 29 225 49.0 0.5 26.9 334 2.4 227
4 113.0 1.4 27.6 493 3.0 26.6 31.9 39 26.2

5 109.6 1.3 29.8 47.9 1.4 28.6 29.8 1.7 3L}
6 106.7 0.2 31.7 45.7 2.1 31.9 30.8 1.9 28.7
7 108.1 2.3 30.8 47.5 3.2 29.3 31.0 2.2 28.3
8 109.8 1.9 29.6 47.9 2.2 28.6 29.4 1.7 32.1

5 runs per case. ¢, represents the standard deviation of run time per case. The change A is the im-
provement relative to the case without buflering.

a minimum of three buffers are needed to avoid blocking behavior in the receive part
of the gather and the send part of the scatter operation. One buffer is then actively
involved in the gather operation, one in the calculation and one in the scatter oper-
ation. Although np,r = 3 is the minimum buffer depth required to avoid blocking, it
does not necessarily imply that no blocking will occur. Apparently, some additional
benefit is gained from further increasing the buffer depth to ny,; = 5. Further increas-
ing the buffer depth introduces variations in the timing results similar to the variabil-
ity for the results for a given buffer depth (¢, in the table). Whereas there is no added
benefit for increasing the buffer depth, there appears to be no penalty either. Based
on similar timing results of NWW3 on the Phase-I1 IBM at NCEP, the default buffer
depth was set to ny,r = 6. This setting will be used in the remainder of the present
tests.

With the above buffer depth, the impact of the number of processors N on the
run time and the corresponding scalability of the model will be assessed. To this
end the model has been run on a variable number of processors ranging from 1
to 450. For N <50, all possible N have been considered. For larger N, runs have
been performed with a regular increase in the increment of N. To simplify dealing
with anomalous timing results as discussed above, optimum results of 5 runs per
case are considered.

The parallel performance of the model has been assessed using three parameters.
The first is the overall run time for N processors (ty), as is shown in Fig. 3. The sec-
ond parameter is a measure for the overall parallel efficiency of the model. This ef-
ficiency { is defined as the ratio of the measured model speed up (1,/ty) to the
potential speed up N

I
C=n (7)
{ =1 corresponds to a perfectly parallel behavior, lower values identify less-than-
ideal parallel behavior. This parallel efficiency is presented in Fig. 4. The final

H.L. Tolman | Parallel Computing 28 (2002) 35-52 47

a1
e |
1

4 Model calculations only.
o Full model, no output.

&\;w | v Fullmodel with output. ||

1000f——

10

1 ' 10 100 7000

N ()

Fig. 3. Run times 1 for the test case as a function of the number of processors N. Solid line: Estimate from
Amdahl’s law (8) with p = 0.990. Dashed line: Estimate from (8) with p = 0.996.

1.0%

g

04—

' 4 Model calculations only.
0.2 ﬂ o Full model, no output.
| ¥ Full model with output.

' T E BEiia A
: 0 100 1000
N ()

Fig. 4. Parallel efficiency { according to Eq. (7) estimated from run times in Fig. 3. Lines as in Fig. 3.

0.0

parameter considered is the parallel fraction p of the model, as estimated using
Amdahl’s law. This law states that the minimum run time ¢, for a given parallel
fraction p of a model is

48 H.L. Tolman [Parallel Computing 28 (2002) 35-52

100
Poin |
81—
()
96
94f— —
V. et o
gt | & Model calculations only. I
92 .| © Full model, no output. |}
I v Full model with output.
N ()

Fig. 5. Estimate of minimum parallel fraction of model p from Eq. (9) estimated from run times in Fig. 3.

t
fmin = (1 _P)[l 'J"Pﬁl- (8)

Considering that #ni, < ty, because ty consist of 4y, plus an overhead for the explicit
communication needed in a distributed memory environment, Eq. (8) can be re-
written as

N ty
= L i
P Z Pmin N 1 (1 %)! (9)

where pyin is the minimum parallel fraction required to attain the observed run time
ty. This estimate for the minimum parallel fraction is presented in Fig. 5.

6. Discussion

Fig. 3 shows a systematic decrease of the run time ¢y as a function of the number
of processors N, up to N & 240. For larger numbers of processors there appears to
be little or no gain in run time, or perhaps even an increase. The latter behavior is
difficult to assess due to the variability in the timing results. The three run times con-
sidered (symbols, see legend) are similar, particularly for smaller N. For larger N
their differences become noticeable, but never dominating. For larger N timing re-
sults are roughly bounded by timing estimates according to Amdahl’s law (8) with
a parallel fraction of p = 0.990 (solid line) and p = 0.996 (dashed line).

Fig. 4 shows somewhat more complicated behavior for the parallel efficiency {(N).
For N <4 the efficiency { > 0.9. For N = 5, the efficiency drops to { =~ 0.8, where it

H.L. Tolman | Parallel Computing 28 (2002) 35-52 49

remains for N up to approximately 30. For further increasing N, { systematically de-
creases, roughly equivalent to an expected decrease of as estimated from Amdahl’s
law (8) (solid and dashed lines). As in Fig. 3, differences between the three run-time
estimates are most pronounced for larger N, but do not differ dramatically.

Fig. 5 shows the corresponding behavior of the minimum parallel fraction py;, as
estimated from Eq. (9). Different behaviors again can be seen for N < 4 and for larger
N. For larger N, pyi, systematically increases to pui, =~ 0.990 for N ~ 30, after which
Pumin Stays constant, or slowly increases, depending on which timing is used (compare
symbols). For N > 200, p appears to display a small but systematic decrease with N.
Contrary to previous figures, py, shows distinct differences between estimates based
on the three different time definitions for small N, with the largest parallel fractions
for the model including output (7).

Figs. 3-5 show several distinct ranges of parallel behavior.

The first range is from N = 1 to 4, and is clearly bounded by the almost discon-
tinuous behavior when increasing N from 4 to 5. The high efficiencies { (Fig. 4) in
this range are a direct consequence of the hardware used here. For N <4, all proces-
sors used are located on the same node. In such conditions, the parallel environment
on the IBM routes MPI communications through shared memory. Once communi-
cations are required between nodes (N = 5 for the present hardware), MPI commu-
nications have to go through the slower interconnections between nodes. The
notable decrease of { for N — 5 indicates that the limitation of parallel efficiency
for such N is for a significant part due to the overhead introduced by the explicit
communications.

The second range goes from N = 5 to N = 30, and is characterized by a nearly
constant bulk efficiency {, and a systematically increasing minimum parallel fraction
Pmin- An explanation for this behavior may be found in the mechanics of the commu-
nication, which correspond to that of an MPI_AIIToAll operation. For each gather
operation, * the target processor m; receives a message from each processor n # n,
with a message size M /N, where M is the total number of sea points in the model.
When N increases, the message size gets smaller, and the message will therefore ar-
rive faster at its destination. As messages from different sources should show mini-
mal interference, this implies that all data are available at the target processor
earlier. Because the travel time over the interconnect network dominates communi-
cation times, this implies that the full gather operation can become more efficient if N
increases. The increase in py, is expected to saturate if the message size gets so small
that the latency in the communications dominates the actual data transfer. Note that
the use of buffers reduces the impact of the efficiency of the gather operation, but
does not remove it completely, as the buffering by definition will not work for the
first and last field to be processed.

The third range covers N = 25-150, and is characterized by a nearly constant
minimum parallel fraction pn, and a systematically decreasing bulk efficiency (.
The reduced bulk efficiency is a direct result of Amdahl’s law (compare symbols
and solid and dashed lines in Fig. 4).

* For each scatter operation the same holds true for the native data to be received.

50 H.L. Tolman | Parallel Computing 28 (2002) 35-52

A fourth range covers N > 150, and in many ways shows similar behavior as the
third range. Specific differences are that embedded within the systematic behavior,
sub-ranges can be identified. Particularly clear is the sudden increase of { and py,
for N = 220, which proved reproducible with additional calculations. A second dif-
ference is that py;, shows a small but systematic decrease for N > 220. Both behav-
iors can be attributed to load balancing for the solution of Eq. (2), which is expected
to break down when N approaches the number of discrete spectral components (600
in the present test cases). This is expected to lead to a increased sensitivity to the ac-
tual N, and to a reduced parallel behavior. Note that this behavior is noticeable, but
does not yet have a dramatic impact on the scalability of the model for N up to 450.

As mentioned above, the differences in timing results for the computational part
of the model, the model without output, and the full model (A, o and ¥7 in Fig. 3) are
moderate. The mostly linear initialization of the model (difference between A and o
in Fig. 3) takes about 5% of the run time #z for N = 1, increasing to 10% for N = 30,
20% for N = 100 and 35% for N = 450 (figure not shown here).

Adding output (compare o and 7 in Fig. 3) has a similar but smaller impact, with
an increase of 10% for N = 100 and up to 25% for N = 450. Attempts to further par-
allelize the output also have not been deemed necessary at NCEP at the present. Two
additional remarks have to be made considering output. First, the model with output
actually has a higher parallel fraction than the other timing results for small N, but a
lower parallel fraction for large NV (symbols in Fig. 5). This can be explained because
individual types of output are performed by different processors. This apparently is
efficient if each processor has his own output type (N = 5), However, because there
are only five output types, little is to be gained when N > 5, and in effect the output
will become less parallel. Secondly, writing a single restart file (not included in the
test case) adds approximately 30 s to the run time on NCEP’s phase II IBM system.
This rather slow I/O can be attributed to inefficient token passing when writing from
many processors to a single direct access file. Alternatives to this method of gener-
ating restart files might be considered in the near future, but are not deemed neces-
sary in the present NCEP environment.

The parallel approach used in NWW3 with its accompanying data transposes
proved excellently suitable for massively parallel systems. For N > 30, the model
is well over 99% parallel, as required to scale properly for large numbers of proces-
sors. For smaller numbers of processors (N < 30) the model is less parallel
(Pmin < 0.99, Fig. 5). The bulk efficiency {, however, remains as large as { = 0.8
(Fig. 4), indicating that a more parallel approach can speed up the model by less than
20% for smaller numbers of processors. Comparing actual timing results with Am-
dahl’s law in Fig. 4, in practice such a speed up could be expected to be no more than
10-15% for N < 10, and 5-10% for 10 < N < 20. Hence the present approach is pro-
ven to be viable and efficient for essentially arbitrary numbers of processors.

Apart from the general parallel design, the success of the implementation in
NWW3 depends on two details of implementation. First, the buffer techniques used
in the data transpose appear to result in a systematic reduction of the model run time
of about 30% (Table 1). Secondly, the data transposes have been implemented with-
out any ‘hard’ synchronization of processors using MPI_Barrier calls. Instead, all

H L. Tolman [Parallel Computing 28 (2002) 35-52 51

synchronization takes place using the logical waiting for local communication to be
finished. This allows for processors to be temporarily ‘out of synch’, without resulting
in an increased overall run time. Instrumentation of the code for timing purposes sug-
gests that this is also an important reason for the highly parallel behavior attained.

The potential of domain decomposition for NWW 3 has so far only been discussed
qualitatively. For large numbers of processors W, individual blocks will become
small. Casual inspection of the local and instantancous time steps used in Eq. (4)
for the present test case, suggest that local and instantaneous increases of computa-
tional time per block of 20-40% will be common. Such load imbalances, combined
with the highly parallel behavior of the present approach, make further investigation
of domain decomposition for NWW3 moot.

As discussed in the beginning Section 5, the machine on which NWW3 is run is a
hybrid shared/distributed memory machine, where four processors on a node share
their memory. The parallel approach of NWW3 as presented here, however, uses a
strict distributed memory paradigm. Tentatively, addition gains in parallel perfor-
mance could be achieved if a hybrid parallel approach is adopted for NWW3.

A previous version of NWW3 was run on a Cray C90 using a strict shared-mem-
ory parallel approach. This model reached parallel fractions p of just over 98% on up
to 12 processors. This code was ported to the present IBM computer and other plat-
forms, resulting in significantly lower parallel fractions (typically 95%). Because all
these configurations represent poorer parallel behavior than achieved with the pre-
sent approach for massively parallel configurations (see Fig. 5, p > 98% for
N > 20), it is not likely that a more complex hybrid parallel approach would prove
more efficient than the present distributed memory approach of NWW3 on our pre-
sent IBM supercomputer.

7. Conclusions

Parallel concepts for spectral wind-wave models have been discussed in the con-
text of the WAVEWATCH 111 model as implemented at NOAA/NCEP. Conven-
tionally, domain decomposition methods have been used for the parallelization of
such models. In particular for this model, however, a more unconventional data
transpose method appeared more suitable on theoretical grounds. Having imple-
mented such a data transpose method, extensive timing and scaling tests have been
performed. It was shown that the model shows excellent parallel behavior for a large
range of numbers of processors on NCEP’s IBM RS6000 SP supercomputer. Fur-
thermore, it is shown that a data buffering technique used in the data transpose is
essential in attaining such parallel behavior.

Acknowledgements

The author would like to thank Jim Tuccillo and George Vandenberghe for their
support during the design and testing of NWW3 on the IBM phase I and II systems

52 H.L. Tolman | Parallel Computing 28 (2002) 35-52

at NCEP, and D.B. Rao, Joe Sela and Mark Iredell for their comments on early
drafts of this paper. The present study was made possibly by funding from the
NOAA High Performance Computing and Communication (HPCC) office.

References

[1] H.S. Chen, L.D. Burroughs, H.L. Tolman, Ocean surface waves, NWS/NCEP Tech. Procedures Bull.
453 (1999).

[2] W. Gropp, E. Lusk, A. Skjellum, Using MPI, MIT Press, Cambridge, MA, 1997.

[3] G.J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, P.E.A.M. Janssen, Dynamics
and Modelling of Ocean Waves, Cambridge University Press, Cambridge, MA, 1994,

[4] B.P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream
interpolation, Comput. Methods Appl. Mech. Eng. 19 (1979) 59-98.

[5] B.P. Leonard, The ULTIMATE conservative difference scheme applied to unsteady one-dimensional
advection, Comput. Methods Appl. Mech. Eng. 88 (1991) 17-74.

[6] J.G. Sela, Weather forecasting on parallel architectures, Parallel Comput. 21 (1995) 1639-1654.

[7] H.L. Tolman, User Manual and System Documentation of WAVEWATCH III Version 1.18. NOAA/
NWS/NCEP/OMB Techn. Note 166, 1999. Available from http://polar.ncep.noaa.goviwaves/wave-
watch.

[8] H.L. Tolman, D.V. Chalikov, Source terms in a third-generation wind wave model, J. Phys.
Oceanogr. 26 (1996) 2497-2518.

[9] WAMDIG, The WAM model - a third generation ocean wave prediction model, J. Phys. Oceanogr.
18 (1988) 1775-1810.

[10] N.N. Yanenko, The Method of Fractional Steps, Springer, Berlin, 1971.

