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Abstract

A new generic approach to improve computational efficiency of certain processes in
numerical environmental models is formulated.  This approach is based on the neural networks
(NN) technique.  It can be used to accelerate the calculations and improve the accuracy of the
parameterizations of several types of physical processes which generally require computations
involving complex mathematical expressions, including differential and integral equations, rules,
restrictions and highly nonlinear empirical relations based on physical or statistical models.  It is
shown that, from a mathematical point of view, such parameterizations can usually be considered
as continuous mappings (continuous dependencies between two vectors).  It is also shown that
NNs are a generic tool for fast and accurate approximation of continuous mappings and,
therefore, can be used to replace primary parameterization algorithms.  In addition to fast and
accurate approximation to the primary parameterization, NN also provides the entire Jacobian
for very little computation cost. 

Two particular applications of the NN approach are presented here: (1) a NN
approximation of the UNESCO equation of state of the sea water (density of the seawater) and
an inversion of this equation (salinity of the seawater); and (2) a NN approximation for the
nonlinear wave-wave interaction.  The first application has been implemented in NCEP oceanic
forecasting model, and the second one is being developed for wind wave models.  

NNs for the density and salinity of the seawater generate the density and salinity with the
accuracy close to that of the original UNESCO equation; however, the NN density equation is
from two to four times faster than the UNESCO equation, and  the NN salinity equation is orders
of magnitude faster than the procedure based on the numerical inversion of the UNESCO
equation.   A NN based nonlinear wave-wave interaction approximation is also several orders of
magnitude faster than a computation of the exact solution.  It is twice more accurate than the so-
called Discrete Interaction Approximation, which is currently used in wind wave models,  and
requires only 4-5 times more computational effort (without optimization), while is well within
the range of what is considered as an acceptable increase in the computational efforts for a wave
forecast model. 

The NN approach introduced in this paper can provide numerically efficient solutions to
a wide range of problems in environmental numerical models where lengthy, complicated
calculations, which describe physical processes, must be repeated frequently.  The applications
considered here belong to the field of oceanic and wave modeling; however, the method can be
applied to efficiently calculate some columnar physical processes in atmospheric models as well.
For instance, NNs have been used for fast calculation of atmospheric long-wave radiation by
Chavallier et al. (1998, 2000).  In environmental numerical models which incorporate chemical
and biological components, this method can be applied to efficiently calculate chemical and
biological processes as well.  Because NN parameterizations can also provide a computationally
cheap Jacobian, they will be very beneficial when used in 3-D and especially in 4-D variational
data assimilation systems.  
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1. Introduction

Any atmospheric or oceanic  numerical forecast model is based on a set of prognostic and

diagnostic differential equations together with additional equations required to obtain a

mathematically closed system.  Such a system, in principle, can then be solved to predict the

evolution of the environment in time if the initial conditions and any required external boundary

conditions  are prescribed.  Even though the forecast problem may now be considered solvable in

a theoretical sense, in the real world of running operational forecast models, it is necessary to

deal with practical aspects of available computational resources and minimize the computer time

taken to produce a forecast by introducing certain simplifications in the system for the following

reasons.

The forecast system contains coefficients that appear in the dynamical equations, such as

turbulence coefficients representing the unresolvable subgrid scale processes which need to be

parameterized in terms of the dependent variables.  Also, implicitly contained in the system are

processes that deal with model physics such as radiation, convection, etc, which need to be

parameterized.  Accurate treatments of such parameterizations generally require computations

involving complex mathematical expressions which may include differential and integral

equations, rules, restrictions, highly nonlinear empirical expressions, etc. that are developed

based on physical or statistical models.  The complex mathematical formulations of these

processes require considerable computational resource.  

For example, a spectral atmospheric model with a well developed description of physics and

subgrid scale parameterizations may spend up to 70% of calculation time for simulating these

processes (Estrade et al-to be published).  The long wave radiative code requires > 10% of the

computing time in the European Center for Medium-Range Weather Forecast general circulation

model (Chevallier 1998) and in the National Centers for Environmental Prediction (NCEP)

global model, although the radiative variables in both models are not updated at every time step

(in NCEP model they are updated every 3 hours only).  
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In addition to above types of parameterizations, in ocean models the estimation of the full

UNESCO equation of state to compute the sea water density, represented by an empirically

derived highly nonlinear equation relating density to pressure, salinity, and temperature, takes a

very significant amount (~40%) of the total computational effort.   In addition, most forecast

models include data assimilation procedures as an integral part of the forecast system to improve

the initial conditions of the model.  When dealing with ocean models, most often the data

assimilation consists of assimilating surface and subsurface temperature observations to correct

the model’s thermal field.  This temperature correction automatically makes it necessary to

adjust the salinity field in the ocean model in order to avoid gravitational instabilities in the

water column.  This requires inverting the complicated oceanic equation of state which makes

the computational effort  even more time consuming than the forward problem of computing the

density itself.  Another example where intensive computational is needed in a forecast model is

the calculation of the land surface temperature using a set of equations describing the

atmospheric boundary layer and physical processes in the soil.  Yet another example of intensive

computational problem in forecast models is the wind wave forecasting problem in which an

exact calculation of the nonlinear wave-wave interactions using the  formulation of Hasselmann

(1962) takes a prohibitively long time.

In this paper, we use the term “parameterization” for convenience to represent in general all

the computationally expensive and complex mathematical formulations involved in forecast

systems, a few examples of which have been mentioned above.

In view of the constraints imposed on the available computer resources, calculation time allowed

for each parameterization is strictly limited in most operational forecast models.  Hence, very

often it is found necessary to use simplified forms of these complex  representations in carrying

out the time integrations in a  forecast model, thereby sacrificing accuracy of forecasts to a

certain extent.   For example, the nonlinear wave interactions in a wave forecast model are

replaced by a simplified discreet interaction approximation (DIA) (see Hasselmann et al 1985). 

Similarly, oversimplified fast parameterizations of physics are used in many parts of atmospheric

and oceanic models.  In most of these cases, accurate physical models have been developed, but
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they cannot be used because they are too expensive computationally.  Often simplified 

parameterizations are obtained, for example, by neglecting higher order terms of perturbation

theory, by using empirical approximations, or simply by neglecting the effects which complicate

the calculations.  It is common in many parameterization schemes that the number of input and

output variables is relatively small, whereas the volume of internal calculations is large.  A

typical example is the parameterization of the radiative fluxes in the atmosphere.  Existing

physical models usually perform calculations over many narrow spectral bands, making them

time consuming.   Input for this algorithm includes  small number of parameters (vectors) and

output - just one vector parameter (temperature change due to radiation absorption).  Hence,

most often the specific parameterization is a result of a compromise between accuracy and

computational efficiency.

It is needless to emphasize the fact that improvements in forecast modeling can be achieved not

only by improving the representation of such parameterizations as our understanding of the

underlying physical processes increases but also by improving our ability to compute these

parameterizations accurately within the constraints imposed by the available computer resources.

In this paper we present some of the problems dealing with physical parameterizations and their

computations from a different (formal mathematical) point of view, namely that of improving the

computational efficiency of available algorithms.  We propose a generic approach which is based

on developing fast and accurate parameterizations of physics by approximating solutions of

exact physical models using neural networks (NNs).  From this formal point of view an exact

(best known) physical model representing a physical process performs a smooth conversion of an

input vector of parameters, X = {x1, x2, ..., xn}, X 0 U n into an output vector of parameters, Y =

{y1, y2, ..., yn}, Y 0 U m.  Thus, each output parameter yi is a continuous function of multiple input

variables x1, x2, ..., xn (input vector X).   Symbolically this input-output dependence is depicted in

Fig. 1.a and can be written as

Y = F(X); X 0 U n, Y 0 U m  (1.a)
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Figure 1.   Graphical representation of forward (a) and inverse (b) parameterizations.

If X and Y are related through a cause and effect principle, the forward parameterization, eq.

(1.a), can be derived from first principles.  If the inverse dependence   

X = f(Y);  X 0 U n, Y 0 U m (1.b)

is required (see Fig. 1.b) in a numerical model, the inverse problem should be solved, which

implies that eq. (1.a) should be inverted.  A solution of the inverse problem (1.b) or an inverse

parameterization provides each output parameter xi as a continuous function of multiple input

variables y1, y2, ..., yn (vector Y is an input vector now).  Both forward, eq. (1.a), and inverse, eq.

(1.b), parameterizations represent the same mathematical object - a continuous mapping which is

a continuous relationship between two vectors.  Usually these input/output relationships are

highly complex, but smooth, for physical processes taken into account in atmospheric, oceanic,

and wave models.  Hence, if exact solutions to these complex relationships are calculated,

however expensive the computational efforts may be, these solutions can be used by the generic

mathematical tool - that is, the neural networks - to produce fast and accurate approximations for
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continuous mappings.  In this approach the costly exact calculation of the physics needs to be

performed only once and “off line” to enable the development of the fast and accurate

approximation.  After that only this fast and accurate approximation will be used to calculate the

physics (coefficients of differential equations) “on line” in a numerical model.  

In their pioneering works Chevallier et al. (1998, 2000) considered a particular case of the

generic problem formulated above – the long-wave atmospheric radiation – and applied neural

network technique to solve this specific problem.  In this paper we generalize their approach and

apply it to solve several problems in oceanic and wave numerical models.  In Section 2 of this

work we demonstrate that NNs are a generic, fast, and accurate tool for approximating any

continuous mapping and, therefore, can be used for the fast and accurate calculation of the

parameterizations of physics used in numerical models.  In Section 3 we present three NN

parameterizations (for oceanic and wind wave models) developed using NNs, and, in Section 4,

formulate conclusions. 
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Figure 2.   Typical processing element (neuron).

2. NN - a generic tool for continuous mapping.

The above considerations show that both forward and inverse parameterizations (eqs. 1.a, and

1.b) can be considered as continuous mappings which map a vector of input parameters,  X 0 U n,

to a vector of output  parameters, Y 0 U m or vice versa (for the inverse parameterization).  These

mappings are defined on finite discrete sets of pairs of input/output vectors X and Y, 

{Xi , Yi}i=1,...,N.  The development data sets needed to produce accurate NN tool are generally

obtained by integrating the exact physical models separately (“off line”) even though such a

computation may be expensive in terms of computer resources, since this needs to be done only

ones.

We assume that the mappings (1.a) and (1.b) are continuous.  However, these dependencies can

be complicated and nonlinear.  Different components yi  of the output vector Y may demonstrate

different types of nonlinear dependencies on the input vector X.  Moreover, for the same

component yi, the type of nonlinear behavior may be different in different parts of the X domain. 

When we approximate (1.a) or (1.b), we also usually do not know in advance what kind of

nonlinearity to expect; therefore, we need a flexible, self-adjustable approach that can

accommodate various types of nonlinear behavior and represent a broad class of nonlinear

mappings.  
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Neural networks (NNs) are well suited for a very broad class of such nonlinear 

approximations and mappings (Funahashi, 1989).  A neural network is a complicated

combination of uniform processing elements, nodes, units, or neurons.  A typical processing

element is shown in Fig.2.  Each processing element has usually several inputs (components of

vector X) and one output, zj .  The neuron usually consists of two parts, a linear part and a

nonlinear part.  The linear part calculates the inner product of the input vector X and a weight

vector Sj (which is a column of the weight matrix Sji ), and adds a 

bias, %j  The result of this linear transformation of the input  vector X goes into the nonlinear part

of the neuron as the argument of an activation function N.  The neuron output,  zj , can be written

as,

                                            (2)

For the activation (squashing, transition) function N, it is sufficient to be a Tauber-Wiener

(nonpolynomial, continuous, bounded) function (Chen and Chen, 1995).  The three mostly 

popular activation functions are sigmoid, hyperbolic tangent, and step function.  The sigmoid

function can be expressed as:

(3)

The neuron is a nonlinear element because its output  zj  is a nonlinear function of its inputs X. 

Neurons can be connected in many different ways into networks with complicated architectures

(or topologies).   

The most common topology is the multilayer perceptron which is shown in Fig. 3. In a

multilayer perceptron, neurons are situated into layers.  A multilayer perceptron always has one

input layer which receives inputs and distributes them to the neurons in the hidden layer.  The 
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Figure 3.   Multilayer perceptron - feed forward, fully connected topology.
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neurons in the input layer are linear; they are simple distributors of inputs.  The number of  input

neurons in the input layer is equal to the number of inputs (dimension of input vector X ).   A

multilayer perceptron always has one output layer.  The neurons in the output layer may be

linear and/or nonlinear, depending on the problem to be solved.  The number of output neurons

in the output layer is equal to the number of outputs (dimension of output vector Y ).  A

multilayer perceptron always has at least one hidden layer.  The neurons in the hidden  layer(s)

are usually nonlinear.  The number of hidden layers, the number of neurons in each hidden layer,

and the type of connections between neurons and layers depend on the complexity of the

problem to be solved.  The topology of the multilayer perceptron shown in Fig. 3 is called feed-

forward (there are no feedbacks; the data flow moves only forward) and fully-connected (each

neuron in a previous layer is connected to each neuron in the following one).  We will consider

here only this topology because it is sufficient for solving any continuous mapping problems. 
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From the discussion above it is clear that the NN generally performs a nonlinear mapping of an

input vector  X  0 U n (n is dimension of the input vector or the number of inputs) onto an output

vector Y  0 U m (m is dimension of the output vector or the number of outputs).  Symbolically

this mapping can be written as,

Y = FNN (X ) (4)

where FNN denotes this neural network mapping.  If we assume for the NN the topology shown in

Fig.3, then, using (2), for the NN with k neurons in one hidden layer and activation function,

N(x) = tanh(x), the symbolic expression (4) can be written down explicitly  as,  

(5)

where the matrix Sji and the vector %j represent weights and biases in the neurons of the hidden

layer; Tqj and the $q represent weights and biases in the neurons of the output layer; and aq and bq

are scaling parameters.  For some applications (e.g., see Section 3.1) we need to know the

Jacobian matrix, whose elements are partial derivatives Myi / Mxj.  From (5) these derivatives can

be calculated analytically,

(6)

 

It has been shown by many authors (e.g., Chen and Chen, 1995; Hornik, 1991; Funahashi, 1989;

Gybenko, 1989) that a NN with one hidden layer, like NN (5), can approximate any continuous

mapping defined on compact sets in U n.  It means that any problem, which can be
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mathematically reduced to a nonlinear mapping like (1.a) or (1.b), can be solved using the NN

represented by (5).  What is the difference between NN solutions given by (5) for different

problems?  These NNs can have different number of inputs, n, and outputs, m.  They can have

different numbers of neurons, k, in the hidden layer.  They will also have different weights and

biases in the hidden and output layers.  The next and crucial problem is how to determine all

these parameters.

For each particular problem,  n and  m are determined by the dimensions of the input and output

vectors X and Y.  The number of hidden neurons, k, in each particular case should be determined

taking into account the complexity of the problem.  The more complicated the mapping, the

more hidden neurons are required (Attali and Pagès, 1997).  Unfortunately, there is no universal

recommendation to be given here.  Usually k is determined by experience and experiment.  After

these topological parameters are defined, the weights and biases can be found, using a procedure

which is called NN training.  To explain the training procedure, let us assume that we have a

training database which consists of pairs of vectors CT = {Xp, Qp }p=1,..N, where

and an independent matchup data set CV = {Xp, Qp}p=1,...,M for validating (or testing) the NN after

the training is completed. We also assume that vectors Xp, Qp are related by an unknown

continuous mapping F, 

Qp = F(Xp),     p = 1,..., N (7)

and we want to find a NN 

Yp = FNN (Xp), (8)

which gives the best (in the sense of some criterion or metric) approximation for mapping  F. 
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This criterion may be defined as the minimum (with respect to weights, S and T, and biases, %

and $ ) of an error or cost function E, which characterizes a difference between mappings (7) and

(8),  

when Euclidian metric is used the error function, E, can be expressed as,

(9)

Thus, optimal values for weights and biases can be obtained by minimizing the error function

(9). Therefore, the training of the NN (8) can be reduced to a minimization problem; this

problem, however, is a nonlinear minimization problem, which is not an easy problem to solve. 

A number of methods have been developed for solving this problem (e.g.,Beale and Jackson,

1990).  Here we  consider a simplified version of the steepest (or gradient) descent method

known as the back-propagation training algorithm.

The back-propagation training algorithm is based on the simple idea that searching for a

minimum of the error function (9) can be performed step by step, and that on each step we

should increment or decrement weights and biases in such a way as to decrease the error

function.  This can be done using, for example, a simple steepest descent rule as follows:

(10)

where 0 is a so-called learning constant and W is one of the weights, S and T, or biases, % and $. 

Using (9) and (5), the derivative in (10) can be expressed through the derivative of the activation

function NN.  For example, if W is a weight TqNjN in the output layer:

(11)
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For activation function N(x) = tanh(x), we have NN = (1 - N2) and from the first line of (5),

N = (ypqN - bqN ) / aqN 

so, finally, the adjustment for a weight TqNjN can be written as:

(12)

Adjustments for other weights and biases can be calculated similarly, following the same

procedure.  

All values on the right-hand side of (12) can be calculated using (5) and the values for weights

and biases can be taken from the previous step of the training.  Therefore, after r  iterations, the

simplest rule for calculating new weights and biases is 

(13)

Here we returned to notations used in (10), and )W r is given by (12) or a similar expression.

When r = 0, the initialization problem familiar to people who use various kinds of iteration

schemas arises: how can we calculate the right-hand side in (13) and (12) at the first step when

we do not have weights and biases from a previous step of training.  Many publications have

been devoted to this problem (e.g., Nguyen and Widrow, 1990;  Wessels and Bernard, 1992).  A

random initialization is usually used.

The simple version of the back-propagation training algorithm described here may be modified

and improved in many different ways (Beale and Jackson, 1990; Chen, 1996); however, the

above discussion introduces the main ideas of this method.  Usually the training process is

terminated after some maximum number of adjustment steps, which is a given parameter of the

training procedure, or after the error function becomes less than some value, which is also a

given parameter of the training procedure.



15

Here, in the conclusion of this section, several main properties of NNs are presented which make

them a very suitable generic tool for nonlinear mapping (and, therefore, for fast parameterization

of physics).  Some of these properties have been illustrated above, others are described in the

literature.  

< NNs are able to accurately approximate complicated nonlinear input/output relationships

(any continuous nonlinear mapping). 

< While training the NN is often time consuming, its application is not.  After the training

is finished (it is usually performed only once), each application of the trained NN is an

estimation of (5) with known weights and biases which is practically instantaneous

(several tens of floating point additions and multiplications). 

< NNs are analytically differentiable.

< NNs are well-suited for parallel processing (Cheng, 1996) (all neurons in the same layer

are completely independent and can be evaluated simultaneously).  
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3. Oceanic and Wave Applications  

3.1 Application of neural networks for efficient calculation of sea water density

or salinity from the UNESCO equation of state 

Here we apply a NN technique to two related problems of fast calculation of physics in oceanic

modeling and data assimilation.   (i) In most ocean models, the UNESCO International Equation

of State for Seawater (e.g., UNESCO, 1981) (UES) is used for the calculation of the density at

each point of a 3-D grid using a relatively small time step.  The frequency of updating the

density depends on specifics of the model.  For example, if the model explicitly describes

external waves, the time step for recalculating the density should not be more than several times

larger than the global time step.  Hence, for high-resolution models, the solution of this equation

consumes a significant part of the overall computation time.  (ii) In the data assimilation process,

assimilation of temperature only in ocean models which employ the full equation of state,

without making corresponding adjustments to salinity can lead to problems of gravitational

instabilities (Woodgate  1998, Chalikov et al. 1998).  To adjust the salinity, we need to calculate

the salinity from UES as a function of temperature, density and depth (or pressure), i.e. solve an

inverse problem in many points.  Numerical inversion of the UES is an iterative procedure which

can consume several orders of magnitude more time than solving of the UES itself. 

The UES for sea water gives the following  expression for the density anomaly *D  (kg/m3)  as

described by Foffonoff and Millard (1983),

  (14)

where D  is the density of seawater in kg/m3, T is the temperature in °C,  S  is the salinity in psu,

P is the pressure, and K(T,S,P) is a bulk modulus.

The UES (14) is empirically based and given over a three-dimensional domain for D = { -2 < T

< 40°C, 0  < S < 40 psu, and 0 < P < 10000 decibars}.  This domain represents all possible
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combinations of T, S, and P which are  encountered  globally.  Mathematically, the functions

D(T,S,0) and K(T,S,P) are represented by multidimensional polynomials and, as a result, the

density (14) is a ratio of two, three-dimensional polynomials which contain more than 40

parameters.  

The UES has several drawbacks when it is applied in the context of ocean modelling.  First  is its

cumbersome form.  In most ocean models, the UES, if it is used for calculating the density,  is

estimated at each point of a three-dimensional grid for each time step.    For high-resolution

models, the solution of this equation consumes a significant part (up to 40%) of the overall

computation time.  Second, in spite of the fact that this equation is accurate and smooth enough

for density itself, its first derivative is locally non-monotonic because eq. (14) is constructed

using high order polynomials and because it has poles (zeros of the polynomial in denominator). 

Third,  it is not a simple matter using the UES, to obtain solutions for salinity since this solution

represents an inverse dependence. 

The UES determines the density field from observed temperature, salinity, and pressure to within

a standard error of approximately 0.009 kg m-3;  however, due to variations in the composition of

dissolved salts, the uncertainty in the density of natural seawater is of the order of 0.05 kg m-3

(Apel, 1987).  The UES is usually applied in numerical models in combination with an

approximate hydrostatic pressure - depth relationship of the following form:

                            

                  P = " D(T,S,0) g Z (15)

where g is the acceleration of gravity.  This linear approximation neglects the dependence of g

on latitude and the nonlinear terms in the dependence of  Z on P (Foffonoff and Millard, 1983)

which introduce additional uncertainties in the calculation of D(T,S,Z) of about 0.05 - 0.1 kg m-3.  
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Figure 4.   Schematic representation of
NN parameterizations for the density and
salinity of sea water.

Taking these uncertainties into account, the accuracy of the NN parameterization for density is

expected to  be # 0.1 kg m-3, and the accuracy of the NN parameterization for salinity expressed

in terms of density to be # 0.1 kg m-3. 

The UES defines two relationships (second relationship for salinity through inversion),

D = D(T,S,Z) (16.a)   

S = S(T,D,Z) (16.b)  

which are continuous mappings (degenerated mappings because one dimensional vectors are on

the left).  As we learned from the previous sections the NN technique can be applied to

approximate these mappings (see also Krasnopolsky et al 2000a).  To create a training set for

these NN parameterizations, in the three-dimensional domain D (see above), 4,000 points

(Ti,Si,Zi) were generated.  The UES was used to estimate the density of seawater, Di, for each

point.  This simulated data set {Di;Ti, Si, Zi} was used as a proxy for experimental data in order to

train the NNs to extract density and salinity.  Two expressions were obtained (see also Fig.  4):

D = DNN (T,S,Z) (17.a)   
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S = SNN (T,D,Z) (17.b)  

where both DNN  and  SNN are expressed by eq.  (5). 

To evaluate the accuracy of the NN approximation (17), 16,000 points were generated within the

domain  D.   The expression (14) for the UES, and the NN which was trained to extract density, 

DNN(T,S,Z) (17.a) were used to obtain separate estimates for the density of sea water, and then the

results obtained from each were  compared.  These comparisons are presented in Tables 1 and 2

below.  Table 1 shows statistics for the density anomaly, * = D(T,S,Z) - 1000,  for seawater,

generated by the UES, and by the NN (17.a).  Table 2 shows several statistical measures of the

differences between the UES and the NN estimates for density.  In terms of the bias and the

RMS differences, the NN results for density clearly satisfy the criterion mentioned above; both

the bias and the RMS values do not exceed the uncertainties indicated there, and are less than 0.1

kg m-3 .

Table 1.  Statistics for the density anomaly * = D(T,S,Z) - 1000.  Minimum, maximum, and mean

values together with the standard deviations F*  are shown (kg m-3).

Expression Min * Max * Mean * F*

UES (14) -2.26 56.58 27.16 11.02

NN (17.a) -1.80 55.95 27.16 11.02

Table 2.   Minimum, maximum, and mean differences (i.e., the biases), g = DUES  -  DNN,  and the

RMS differences, all expressed in kg m-3.

Min g Max g Bias RMS

-0.62 0.63 0.00 0.06

To further evaluate the accuracy of the NN-derived densities, the partial derivatives of density

with respect to temperature, salinity, and depth were calculated, recognizing the fact that any
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errors in the NN approximation will be amplified in the process of taking first differences.  To

estimate the deviations of the NN-obtained estimates from those obtained using the UES,  the

partial derivatives of density were calculated using UES (14) and the NN (17.a) representation

(see eq. (6) in the Section 2) for the same 16,000 points.  They were then compared as before. 

Table 3 summarizes the results which have been normalized  by dividing the biases and RMS

differences by the absolute mean values of the corresponding derivatives.  The results show that

the NN representation (17.a) produces derivatives of density which are similar to those obtained

from the UES  (14).  The largest differences occur with respect to temperature but even in this

case they do not exceed 5%.

Table 3.   Differences for the normalized biases and RMS values for the derivatives of seawater

density with respect to temperature, salinity, and depth.

Derivatives Normalized Bias Normalized RMS Differences

MD/MT 0.008 0.048

MD/MS 0.001 0.016

MD/MZ 0.000 0.001

To evaluate the errors in using the NN approach to estimate the salinity, we used the same

16,000 points (Di, Ti, Si, Zi) which were used for estimating  the density.  Initially, the NN for SNN

(17.b) was applied to calculate a new salinity, si, using the corresponding values (Ti, Di, Zi).  Then

the differences (Si - si) were utilized to estimate the accuracy of the NN-derived salinities (first

line in Table 4).  To further evaluate the quality of the NN-derived  salinities,  the UES was

applied again, this time to the triad (Ti, si, Zi) to recalculate the density of seawater, DNi.  If the

NN-obtained values for salinity were perfect, then the density, DNi, would be equal to Di.  The

differences between these two values, (Di - DNi), were then used to further estimate the accuracy

of the salinity-trained NN in terms of the density  (second line in Table 4).
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Table 4.  Accuracies of the salinities estimated by the NN in terms of salinity and density. 

Minimum, maximum, and mean errors together with the RMS errors  are presented.

Units Min error Max error Mean error RMS error

psu -0.33 0.85 0.00 0.10

Kg m-3 -0.27 0.71 0.00 0.08

Table 4 shows that the NN estimates of salinity (17.b) have an RMS error of 0.1 psu.  In terms of

the related error in density, this accuracy corresponds to an RMS error of 0.08 kg m-3,  which

again does not exceed the uncertainties discussed above.

A substantial additional acceleration of calculations may be achieved by use of differential

increments of density, temperature, and salinity.  Hence, we extend our approach to estimate

these quantities also.  Additionally, an efficient way of substantially reducing the computational

burden is to replace the calculations of density per se by calculations of its total differential

 

                           (18)

     

where ªT and ªS are increments of T and S, MD/MT, and MD /MS are functions of T, S, and z, where

z is usually constant. Because the increments ªT and ªS are usually small, accuracy requirements

in this case are not stringent.  As a result, these terms can be represented at fixed depths by low-

order NN approximation.  As a precaution, however, it may be advisable to recalculate the

densities and its derivatives periodically, using the exact form or NN approximation of the UES,

to update the estimated values obtained using (18). 

As we already pointed out, the derivatives MD/MT and MD /MS can be accurately calculated from

the NN DNN, eq. (17.a), using eq. (6) (see also Fig. 4).  Equation (18) can be reduced to   

(19)
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Figure 5.  Error in the density as a function of computational gain when eq. (19) is
used for density calculations. 

This use of NN and its derivatives has been shown to accelerate model performance

significantly.  Statistics which compare this NN with the derivatives calculated using the UES

are presented in Table 4.  Table 5 estimates an absolute accuracy in calculating ªD from equation

(19), as compared with ªD calculated using UES with the same  ªT and ªS.  In this case bias is

negligible and the RMSE < 0.5%.  Fig. 5 shows that using eq. (19) the calculations may be

accelerated  

Table 5.   Mean, standard deviation (F), and mean differences (i.e., biases) and the standard

deviations (SD) for the differences for ªD calculated using eq. (19) with ªT = 0.1 and ªS = 0.1

Mean F Bias SD

ªD 0.052 0.012 -0.00001 0.0002
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about 10 times with the error in the density calculations not exceeding the natural uncertainty 0.1

kg/m3.

Finally, we accepted the following scheme for calculating the density.  At the beginning of each

run of the model, the density and its derivatives are calculated using the NN approximation. 

Then for each time step assigned for updating the density, the density increment values are

calculated using Eq. (19), with the initial density and its derivatives kept unchanged.  The

frequency of updating (recalculating) the density and its derivatives depends on specific

properties of the model and region to which the model is applied.  For the global version of the

NCEP ocean model with the horizontal resolution of about 80 km the density and its derivatives

are updated once per 90 time integration steps of the external mode (i.e., every 180 min).  This

updating period may probably be enlarged, but the current 90 time steps period already decreases

expenses for density calculations about 10 times. 
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3.2 A Neural Network Approximation for Nonlinear Interactions in Wind Wave

Models.

Ocean wind wave modeling for hindcast and forecast purposes has been at the center of interest

for many decades.  Numerical prediction models are generally based on a form of the spectral

energy or action balance equation

(20),L+++= dsnlin SSS
Dt
DF

where F is the spectrum,  Sin  is the input source term, Snl is the nonlinear interaction source term,

Sds is the dissipation or 'whitecapping' source term, and … represents additional (shallow water)

source terms.  The JONSWAP study (Hasselman et al 1973) identified the active role of the

nonlinear interactions in wave growth.  The SWAMP study (SWAMP Group 1985) then

identified the need for explicit modeling of Snl in wave models.  State-of-the-art or so-called third

generation wave models therefore explicitly model this source term.

In its full form (e.g., Hasselmann and Hasselmann 1985), the calculation of the interactions Snl

requires the integration of a six-dimensional Bolzmann integral:  

           (21)

with the complicated coupling coefficient G which contains moving singularities (K.

Hasselmann 1963).  This integration requires roughly 103 to 104 times more computational effort

than all other aspects of the wave model combined.  Present operational constraints require that

the computational effort for the estimation of Snl should be of the same order of magnitude as the

remainder of the wave model.  This requirement was met with the development of the Discrete

Interaction Approximation (DIA, Hasselmann et al 1985).  The development of the DIA allowed
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for the successful development of the first third-generation wave model WAM (WAMDI Group

1988, Komen et al. 1994).  More than a decade of experience with the WAM model and its

derivatives have identified shortcomings of the DIA. The DIA tends to unrealistically increase

the directional width of spectra, has a systematic spurious impact on the shape of the spectrum

near the spectral peak frequency, and has a much too strong signature at high frequencies.  In

present third generation wave models, these deficiencies can be countered at least in part by the

dissipation source term Sds, which is generally used for tuning energy balance in the equation

(20).  Although this approach gives good results, it is counterproductive, because it prohibits

development of dissipation source terms based on solid physical considerations.  With our

increased understanding in the physics of wave generation and dissipation, this becomes an even

bigger obstacle for the further development of third-generation wave models.

Considering the above, it is of crucial importance for the development of third generation wave

models to develop an economical yet accurate approximation for Snl.  Here, we explore a Neural

Network Interaction Approximation (NNIA) to achieve this goal (see also Krasnopolsky et al

2000b).  NNs can be applied here because the nonlinear interaction (21) is essentially a nonlinear

mapping (symbolically represented in eq. (21) by T) which relates two vectors (2-D fields in this

case).  Thus, the nonlinear interaction source term can be considered as a nonlinear mapping

between a continuous source term Snl and a continuous spectrum F

Snl = T(F) , (22)

where T is the exact nonlinear operator given by the full Bolzmann interaction integral (21)

(Hasselmann and Hasselmann 1985, Resio and Perrie 1991).  Discretization of S and F (as is

necessary in any numerical approach) reduces (22) to continuous mapping of two vectors of

finite dimensions.  Modern high resolution wind wave models use descretization on a two

dimensional grid which leads to dimensions of S and F vectors of order of N > 600 ((Tolman

1999).  It seems unreasonable to develop a NN approximation of such a high dimensionality

(more than 600 inputs and outputs).  Moreover, such a NN will be grid dependent.         
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In order to reduce dimensionality of the NN and convert the mapping (22) to a continuous

mapping of two finite vectors independent on the actual spectral discretization, the spectrum F

and source function Snl are expanded using systems of two-dimensional functions each of which

(Mi and Qq) creates a complete and orthogonal two-dimensional basis

(23)∑ ∑
= =

Ψ≈Φ≈
n

i

m

q
qqnlii ySxF

1 1

,,

where for xi and yq we have

, (24)∫∫∫∫ Ψ=Φ= qnlqii SyFx ,

where the double integral identifies integration over the spectral space.  Because both sets of

basis functions {Mi}i=1,…,n and {Qq}q=1,…,m  are complete, increasing n and m in (23) improves the

accuracy of approximation, and any spectrum F and source function Snl can be approximated by

(23) with a required accuracy. Substituting (23) into Eq. (22) we can get

Y = T (X) , (25)

which represents a continuous mapping of the finite vectors X 0 Un  and Y 0 U m , and where T

still represents the full nonlinear interaction operator.  As described in the previous section, this

operator can be approximated with a NN with n inputs and m outputs and k neurons in the hidden

layer

Y = TNN (X) . (26)

The accuracy of this approximation (TNN) is determined by k, and can generally be improved by

increasing k (see Section 2 above).

To train the NN approximation TNN of T, a training set has to be created which consists of pairs

of vectors X and Y.  To create this training set, a representative set of spectra Fp has to be

generated with corresponding (exact) interactions Snl,p using eq. (21).  For each pair (F, Snl)p, the
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Figure 6.  Graphical representation of the NNIA algorithm.

corresponding  vectors (X,Y)p are determined using eq. (24).  These pairs of vectors are then used

to train the NN to obtain TNN.

After TNN  has been obtained by training, the resulting NN Interaction Approximation (NNIA)

algorithm consists of three steps :

# Decompose the input spectrum, F, by applying Eq. (24) to calculate X.

# Estimate Y from X using Eq. (26).

#      Compose the output source function, Snl, from Y using Eq. (23).

A graphical representation of the NNIA algorithm is shown in Fig. 6.

The above describes the general procedure for developing an NNIA. Development of an actual

NNIA requires the following steps:

< Select basis functions Mi and Qq and the number of each (n,m).

< Design a NN topology (number of neurons k).
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< Construct a representative training set.

< Select training strategies.

The first three points all have a significant impact on both accuracy and economy of a NNIA.

Unfortunately, there is no pre-defined way to tackle these issues as mentioned in section 2.  It is

therefore unavoidable that the development of a NNIA involves many iterations.  The first

requirement of an NNIA to be potentially useful in operational wave modeling, is that the exact

interactions Snl are closely reproduced for computational costs comparable to that of the DIA. 

The following shows the potential of this approach with the design of a simple ad-hoc NNIA.

To address the basic feasibility of a NNIA, we have considered an NNIA to estimate the

nonlinear interactions Snl(f,2) as a function of frequency f and direction 2  from the

corresponding spectrum F(f,2).  We first also consider deep water only.  To train and test this

NNIA, we used a set of about 20,000 simulated realistic spectra for F(f,2), and the corresponding

exact estimates of Snl(f,2) (Van Vledder et al 2000).  Simulation has been performed using a

generator that calculated a spectral function as a composition of several Pierson-Moskowitz

(1964) spectra for different peak frequencies each peak oriented randomly in [0,2B] interval. 

Comparison of simulated spectra with spectra simulated by the WAVEWATCH model (Tolman

1999, Tolman and Chalikov 1996) shows that this approach allowed us to simulate reasonably

realistic and complicated spectra describing a broad range of wave systems.  Spectra with four

peaks were used in calculations below.  Separate data sets have been generated for training and

validation. 

As is common in parametric spectral descriptions, we choose separable basis functions where

frequency and angular dependence are separated. For Mi  this implies:

(27))()(),( ,, θφφθ θ jifiji ff =Φ⇒Φ

A similar separation is used for Qq.  Considering the strongly suppressed behavior of F and Snl

for  f 6  0, and the exponentially decreasing asymptotic for f 6  4, generalized Laguerre's
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polynomials (Abramowitz and Stegun 1964) are used to define Nf and Rf.  Considering that no

directional preferences exist in F and Snl, a Fourier decomposition is used for N2 and R2. The

number of base functions is chosen to be n = 51 and m = 64 to keep the accuracy of

approximation for F on average better than 2% and for Snl  - better than 5-6%.  The number of

hidden neurons was taken k = 30 which allows a satisfactory approximation (26) for the mapping

(25).

Table 6.  RMSE statistics for 10,000 Snl

Mean RMSE FRMSE Max RMSE
DIA 0.0133 0.0111 0.104

NNIA 0.0068 0.0063 0.065

Table 6 compares three important statistics for the source function RMS errors (with respect to

exact solution) calculated using DIA and NNIA for 10,000 spectra (independent validation set). 

The NNIA improves the accuracy about twice as compared with DIA.  

Figure 7.  RMSE as functions of frequency f and angle (averaged over entire test set). 

Dashed line – error of approximation (lower bound for all other errors).  Solid line – DIA, line

with squares – NNIA (51:20:64), and line with triangles – NNIA (51:30:64) 

Figure 7 shows mean RMSE as function of the frequency f (left) and the angle 2 (right).  It also

illustrates the improvement of the NNIA accuracy with the increasing of the number of neurons,
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k, in the hidden layer from 20 to 30.  Numbers in Table 6 correspond to a NNIA with 30 neurons

in the hidden layer (51:30:64).  Fig. 8 shows 3 pairs (one row in the figure corresponds to one

pair) of one dimensional, integrated over 2, source functions Snl (f) (left column) and one

dimensional, integrated over f, source functions Snl(2) (right column) from the validation data set. 

Thick solid curves correspond to the exact Snl. Dashed curves correspond to DAI of Snl.  Curves

with triangles correspond to the NNIA estimate of Snl.  Numbers inside the panels show DIA and

NNIA errors in percents with respect to exact solution.

Figure 8.  See explanations in the text.
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Figure 9.  Comparison of the accuracy and computational efficiency of the DIA,
NNIA , and exact algorithms.  The horizontal time scale is logarithmic.  

The results in Fig. 8 are fairly representative for the validation data set.  In general, the NNIA

reproduces the exact Snl accurately.  Even if though spurious oscillations are present in the DIA

spectrum (e.g., dashed lines in middle and lower panel on the left), the NNIA shows no such

behavior, and gives reasonable results.  In general, many DIA source functions exhibit

complicated behavior and spurious oscillations.  Major peaks in these functions coexist with

more or less random small-scale fluctuations.  These fluctuations are probably an artifact

produced by a simplified nature of DIA.  Exact interactions are the result of averaging over much

lager number of resonant sets of wave numbers, and are therefore much smoother than the results

of the DIA.     

And finally, Fig. 9 compares the DIA, NNIA, and exact algorithms in terms of the accuracy and

computational efficiency.   Computational time (in sec) corresponds to a control calculation

performed on the same computer.  The current preliminary version of the NNIA algorithm is

twice more accurate and only about 5 times slower than the DIA algorithm.  In current version of
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the wind wave models an algorithm which is up to 20 times slower than DIA can be

accommodated; therefore, we still have enough room for further improvement of the NNIA

accuracy.  Considering that no optimization has yet been applied in the development of the

NNIA, in the composition and decomposition procedures, it appears reasonable to expect a final

NNIA algorithm with similar computation requirements as the DIA and significantly better

accuracy.
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4. Conclusions

In this paper we formulated a new approach for simplifying and accelerating time consuming

calculations in environmental numerical models using neural networks technique.   

Parameterization of physical, chemical, biological, etc. processes which occur at different scales

constitute an important class of such calculations .  It is shown that, from mathematical point of

view, descriptions of such processes can usually be considered as continuous mappings

(continuous dependencies between two vectors).  It is also shown that neural networks are a

generic tool for approximation of such mappings and, therefore, can be used for fast and accurate

approximation of parameterizations of such processes.  In addition to fast and accurate

approximation to the primary parameterization, NN also provides the entire Jacobian for very

little computation cost.  Because NN Jacobian is computationally cheap , this approach is

expected to be very beneficial when used in 3-D and especially in 4-D variational data

assimilation systems.  We also illustrated this approach applying it to three specific problems. 

These applications belong to the field of oceanic and wave modeling; however, such an approach

has been be applied to parameterization of physical processes (e.g., long-wave radiation,

Chevallier et al., 1998, 2000) in atmospheric models as well. 

The first application considered in the paper deals with the oceanic equation of state, which is 

used for estimating the density and salinity of sea water in ocean circulation models.  Separate

neural networks for density and salinity were developed using the UES as a basis.  Although the

estimation of density represents a forward problem, estimating salinity from the UES represents

a complicated inverse problem which has been very efficiently solved using the NN approach. 

The accuracy of the  neural network-generated densities and salinities were of the same order as

those  obtained directly from the UES itself.  However, the time required to perform the

calculations of density using the neural network is several times less than that for UES.  The time

required for calculating salinity using the neural network is several hundred times less than that

required for the numerical inversion of the USE.  Consequently, this approach has direct

application to numerical ocean models where the equation of state must be estimated repeatedly. 

At NCEP, a NN equation for sea water density is currently used in the NCEP oceanic model. 
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The second application deals with the nonlinear wave-wave interactions in wind wave models. 

A prototype of the NN approximation for this interaction is presented in this work.  The NNIA

calculations improve the accuracy of DIA Snl calculations by a factor of two and require roughly

4-5 times more computational effort than the DIA calculations with less than 5% of this time

spent in the actual NN part of the algorithm [i.e., Eq. (7)].   Decomposition of the input spectra F

and composing the source function Snl from the NN output accounts for the rest.  Having

established that a NNIA has the potential of being both accurate and efficient, we intend to take

the following steps towards developing a NNIA for application in operational wave models: (1)

Use more realistic spectra and Snl calculated from them for training; (2) Optimize the NNIA by

successive integration of physical properties in the base functions, normalizing F and Snl,

optimizing the number of base functions and network topology, and optimizing numerical

aspects of the decomposition / compositions algorithms; (3) Expand the NNIA to arbitrary water

depths, either by expanding the underlying NN or by scaling as in the DIA. 
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