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Abstract

A new approach in satellite retrievals, multi-parameter
empirical retrievals, is introduced. It is shown that single-
parameter retrievals, compared with multi-parameter
retrievals, contain significant additional “artificial”
systematic and random errors. These errors may be
avoided using multi-parameter retrieval algorithms. NNs
are well suited for developing such multi-parameter
retrieval algorithms, The NN approach for developing
empirical multi-parameter algorithms is discussed. A new
NN empirical algorithm (OMBNN3) which
simultaneously retrieves four geophysical parameters:
surface wind speed (W), columnar water vapor (F),
columnar liquid water (L), and sea surface temperature
(SST) T from five SSM/I (Special Sensor Microwave
Imager) brightness temperatures (BTs) (T19V, T19H,
T22V, T37V, and T37H) is presented and compared with
several single-parameter algorithms to illustrate
advantages of the multi-parameter approach.

Deriving geophysical parameters from
satellite measurements

Satellite remote sensing data are used in numerical
weather prediction (NWP), field meteorology, fisheries,
Coast Guard, the oil industry, the Navy and others, Users
work with geophysical parameters such as pressure,
temperature, wind speed and direction, water vapor, etc.
Satellite sensors generate measurements in terms of
radiances, backscatter coefficients, BTs, etc.  Satellite
retrieval algorithms which transform satellite
measurements into geophysical parameters play the role
of mediator between satellite measurements and users.

Conventional methods for using satellite data involve
solving an inverse (or retrieval) problem and deriving a
transfer function (TF), f, which relates a single
geophysical parameter of interest, g; (e.g., surface wind
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speed over the ocean), to a vector of satellite
measurement, § (e.g., SSM/I BTs),
g=f@ 0]
The TF, f, may be derived explicitly or assumed implicitly.
A single-parameter retrieval algorithm is a particular
representation of the transfer function (1).

Usually satellite measurements, 5, contain information on
several related geophysical parameters. Therefore, in
principle, under favorable conditions, these parameters
can be retrieved simultaneously from the vector s,
G=F(s) )
where G ={G}i,;.. isa vector of multiple geophysically

related parameters. A multi-parameterretrieval algorithm
is a particular representation of the transfer function (2).

Single-parameter retrieval algorithms (1) produce
retrievals (e.g., g which do not correspond to any
particular atmospheric state or ocean surface state. These
retrievals cormrespond to some unknown ‘“mean”
atmospheric and surface states which can not be specified
without additional information. Thus, single-parameter
retrieval algorithms effectively average over an ensemble
of atmospheric and surface states for all of the related
geophysical parameters except for the one which is
retrieved. This averaging gives rise to additional
“artificial” errors in this single retrieved parameter which
do not arise in the multi-parameter approach. If g; is a
geophysical parameter retrieved by a single-parameter
algorithm (1) and G; is the same parameter retrieved by
the corresponding multi-parameter algorithm (2), then
this “artificial” systematic error (bias) can be estimated
as,

(G -g)=2ob+3 Bol+Y v, -!-...(3)
] T [



The horizontal bar above the symbols on the left-hand side
implies averaging over G; (i # k) which are not known for
single-parameter algorithms, b, and ¢/ are the biases and
variances of these geophysical parameters, and the ¢, are
correlation coefficients between these parameters; a;, f§;
and ¥, are coefficients which are described in [1]. Similar
estimates can be obtained for additional “artificial”
variances (random errors). It is clear from (3) that the
multi-parameter retrievals, G,, compared with single-
parameter retrievals, g, do not contain additional
“artificial” systematic (bias) or random errors. Avoiding
these additional errors is an important advantage of the
multi-parameter approach.

NNs for Multi-Parameter Retrievals

The above considerations show that both single- (1) and
multi-parameter (2) retrieval algorithms can be
considered as continuous mappings which map a vector of
sensor measurements, s € &, to a vector of geophysical
parameters, G € #™. In the case of empirical algorithms,
these mappings are constructed, using discrete sets of
collocated vectors s and G (matchup data sets {s,;, G;}).
Single-parameter algorithms (1) may be considered as
degenerate mappings where a vector is mapped onto a
scalar (or a vector space onto a line).

Linear and nonlinear regressions are standard tools that
can be used to develop single-parameter retrieval
algorithms (to model TF). If TF is nonlinear, the linear
regression can give only a local approximation, or, if it is
applied globally, this approximation usually has poor
accuracy. Nonlinear regression is usually befter suited
for modeling TFs. However, in this case, we need to
introduce a particular kind of nonlinearity in advance,
which we use to approximate the TF under consideration.
This may not always be possible, becanse we may not
know in advance what kind of nonlinear behavior a
particular TF demonstrates, or this nonlinear behavior may
be different in different regions of the TF’s domain. If an
incorrect nonlinear regression is chosen (by chance), it
may represent a nonlinear TF with less accuracy than a
linear regression. Regressions can also be used for multi-
parameter retrievals; however, from a calculational point
of view, this problem is nonstandard.

In the situation described above, where we do know that
the TF is nonlinear but do not kmow what kind of
nonlinearity to expect, and where multi-parameter
retrievals are desirable, we need a flexible, self-adjustable
approach that can accommodate various types of nonlinear
behavior, represent a broad class of nonlinear mappings,
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and one that can be easily used for both single- and multi-
parameter retrievals. Neural networks (NNs) are well
suited for a very broad class of nonlinear approximations
and mappings. It has been shown [2] that a NN with one
hidden layer can approximate any continuous mapping
defined on compact sets in #". Thus, any retrieval
problem which can be mathematically reduced to a
nonlinear mapping like (1) or (2) can be solved using a
NN with one hidden layer.

A SSM/I Empirical Multi-Parameter
Retrieval Algorithm: OMBNN3

As an example of the approach described above, here we
introduce a multi-parameter empirical algorithm (2)
which has been developed [3] to retrieve a vector of
geophysical parameters G={W, V, L, T} from five SSM/I
BTs (T19V, TI9H, T22V, T37V, and T37H). These
parameters are surface wind speed (W), columnar water
vapor (¥), columnar liquid water (L), and sea surface
temperature (SST) 7;. Fig. 1 shows the architecture of a
simple feedforward NN with one hidden layer which
implements the OMBNN3 algorithm.
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Fig.1.OMBNN3 architecture.

This NN has n=5 inputs, m = 4 outputs, and one hidden
layer with & = 12 neurons. This NN can also be written
explicitly as,

k n
Gqﬁqwth{;mg[mhgﬂﬁﬂ +B)J+B,} q=lmum @

where the matrix Q) and the vector B, represent weights
and biases in the neurons of the hidden layer; w, € 5"
and the B, € & ™ represent weights and biases in the



neurons of the output layer; and @, and b, are scaling
parameters.

For wind speed, high quality ground truth observations,
including buoy and ocean weather station wind speed
measurements, are available to create matchups with the
SSM/I BTs. Evaluating the different algorithms was
performed by comparing them with independent ground
truth observations. Table 1 shows the summary wind
speed statistics for clear and clear + cloudy conditions.

Table 1. Biases and RMS errors (m/s) for different
SSM/I wind speed algorithms, for clear and clear+cloudy
(in parentheses) conditions.

Algorithm Bias RMS Errors
Linear Regression [4] -0.2(-0.5) 1.8(2.1)
Nonlinear Regression [5] -0.1(-0.3) L7(1.9)
Physically-Based [6] 0.1(-0.1) 1.7(2.1)
OMBNN3 [3] -0.1(-0.2) 1.5(1.7)
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Fig. 2. Systematic (wind speed bias -a and c) and random
(standard deviation (SD) of wind speed error - b and d)
errors in wind speed retrieved by four different algorithms
as functions of colummar water vapor, ¥, (g and b) and
columnar liquid water, L, (¢ and d). Solid line -
OMBNN3, dotted line - GSWP, dashed line - GSW, and
dash-dotted line the PB algorithm.

This table compares four algorithms: two single-
parameter algorithms GSW [4], GSWP [5], and two multi-
parameter algorithms PB [6], and OMBNNS3 [3] using the
available matchups (> 15,000) for three SSM/I
instruments F8, F10, and F11. As mentioned earlier, one
of the advantages of the OMBNN3 algorithm is its ability
to retrieve not only wind speed but also three other
parameters: columnar water vapor ¥, columnar liquid
water L, and SST simultaneously. Here we show how
simultaneous retrievals of the entire vector of related
geophysical parameters (2) improves the accuracy of the
wind speed retrievals by taking into account the co-
variability of these parameters. Fig. 2 shows the



systematic and random errors (bias and SD) in wind speed
retrieval as fumctions of ¥ and L for the GSW, GSWP, PB,
and OMBNN3 algorithms. These statistics were
calculated using more than 12,000 matchups. Including
the nonlinear water vapor correction in GSWP reduces the
bias and its dependence on water vapor concentration;
however, it does not reduce the dependence on liquid
water concentration. The OMBNNS3 and PB algorithms,
which both employ the simultaneous multi-parameter
retrieval approach, reduce the bias, and the dependence of
the bias, on both water vapor and cloud liquid water
concentrations. The random errors for the OMBNN3
algorithm are significantly smaller and demonstrate
weaker dependencies on the related atmospheric
parameters than do the errors for the other algorithms.

We have selected two algorithms, GSWP (currently used
operationally by Fleet Numerical Meteorological and
Oceanographic Center) and OMBNN3 (currently used
operationally at National Centers for Environmental
Prediction) which demonstrate the best overall
performance in accordance with Table 1 and Fig. 2. Next,
we perform a more detailed comparison and error analysis
for these two algorithms. At least two different sets of
retrieval flags have been developed for SSM/I wind speed
retrievals (RF and SF). These retrieval flags serve as
delimiters for BT over the ranges of applicability for a
given algorithm. They also are used to indicate reliability
and accuracy of retrieved wind speed. BT retrieval flags
are closely related to the amount of cloud liquid water in
the atmosphere. Fig. 3 demonstrates this close
correlation.

ean L for @ffersad flags

Fig. 3. Mean values of columnar liquid water, L,
corresponding to different retrieval flags,

Fig 4 shows a comparison of two selected algorithms for
different retrieval flags. Panel (a) shows the number of
matchups for different flags. Panel (b) shows wind speed

Fig. 4. (a) Number of matchups corresponding to
different retrieval flags. Wind speed RMSE (b) for
different retrieval flags, and for two different retrieval
algorithms, GSWP (dashed line) and OMBNN3 (solid
line).

RMSE for different flags. Flags RF0 and SFO are similar
(SFO0 includes a small portion of RF1 in addition to RFQ)
both in terms of the number of matchups included, and the
corresponding statistics. The SF1 flag includes the rest of
RF1 and RF2 and RF3.

Figs. 3 and 4 show that OMBNN3, which outperforms
GSWP under all conditions, demonstrates much better
performance than GSWP especially at SF1, RF2, and RF3
when the amount of cloud liquid water increases
significantly. Thus, we conclude that the SF flags are well
suited for use with the NN algorithms. Of considerable
significance operationally is the fact that the OMBNN3
algorithm has extended the retrieval domain from clear
(SFO or RFO), to clear plus cloudy (SFO + SF1)
conditions, yielding an increase in areal coverage of
~15% globally. This result is particularly important for
obtaining more complete coverage of synoptic weather
systems such as extratropical cyclones which are typically
characterized by higher levels of moisture and wind speed.



Conclusions

A new generic approach for developing multi-parameter
empirical refrieval algorithms based on the NN
technique is introduced. It is shown that multi-
parameter TF is essentially a continuous mapping. NNs
are well suited for continuous mapping, with
improvements over standard approaches like linear and
nonlinear regressions. Multi-parameter retrievals
preserve the correct physical relationships between the
retrieved parameters by partitioning the variance among
the variables in an appropriate manner. This approach
may find use in many other remote sensing applications
as well.

Presented approach has been applied to develop a new
empirical, multi-parameter SSM/I retrieval algorithm
OMBNN3 which is compared with other global SSM/T
retrieval algorithms. This algorithm simultaneously
retrieves wind speed, columnar water vapor, columnar
liquid water, and SST using only SSM/] brightness
temperatures. The accuracy of the wind speed
retrievals from the new OMBNNS3 algorithm (algorithm
RMS error 1.0 m/s under clear, and 1.3 m/s under clear
plus cloudy conditions) is systematically higher than the
accuracy of wind speed retrievals for the other
algorithms tested, for all SSM/I instruments. This
improvement is valid under all weather conditions and
for all wind speeds where retrievals are possible. The
OMBNN3 algorithm has extended the areal coverage by
~15% globally and even higher in areas of increased
meteorological activity (storms and fronts) which have
higher levels of moisture and wind speed .

The new algorithm successfully separates the wind
speed, columnar water vapor, columnar liquid water, and
SST signals contained in the SSM/I brightness
temperatures. The simultaneous retrieval of related
atmospheric and surface parameters is also beneficial
when cloudy and very cloudy weather conditions are
present. Because the brightness temperature retrieval
flags which we use are essentially statistical (based on
global statistics), they are not highly sensitive to local
conditions. In some cases this may lead to degraded
retrievals; therefore, any additional information about
related local atmospheric and surface conditions which
can be derived from the same brightness temperatures
may improve these brightness temperature retrieval
flags. Local atmospheric and surface parameters (¥, L,
and S57), which the OMBNNS3 algorithm now produces
simultaneously with wind speed, help to describe the
instantaneous state of the atmosphere more completely,
and, therefore may help to improve the retrieval flags
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and to further improve the accuracy of retrievals under
cloudy conditions.
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