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DEVELOPMENT AND FOR DIRECT ASSIMILATION OF SATELLITE DATA INTO NUMERICAL MODELS.
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1. INTRODUCTION: DERIVING GEOPHYSICAL
PARAMETERS FROM SATELLITE
MEASUREMENTS

Satellite remote sensing data are used by
numerical weather prediction (NWP), field meteorology,
fisheries, Coast Guard, the oil industry, the Navy and
others. Users work with geophysical parameters such
as pressure, temperature, wind speed and direction,
water vapor, etc. Satelite sensors generate
measurements in terms of radiances, sigma naughts,
brightness temperatures, etc. Satellite retrieval
algorithms which transform satellite measurements into
geophysical parameters play the role of mediator
between satellite measurements and users.

Conventional methods for using satellite data
(standard retrievals) involve solving an inverse (or
retrieval) problem and deriving a transfer function (TF),
f, which relates a geophysical parameter of interest, g
(e.g., surface wind speed over the ocean), to a satellite
measurement, § (€.g., SSW/I brightness temperatures),

g="f(s) M

where both g and s may be vectors. The TF, f, may be
derived explicitly or assuried implicitly.  Standard
retrievals have the same spatial resolution as the
sensor measurements and produce instantaneous
values of geophysical parameters over the areas where
the measurements are available. Geophysical
parameters derived using standard retrievals can be
used for many applications, for example, in NWP data
assimilation systems. In this case, a contribution to the
analysis cost function x, from a particular retrieval, g
IS:
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where g° =f (s°) is retrieved geophysical parameter (s°
- a sensor measurement), g - value of this geophysical
parameter in analysis; O and E - expected error
covariance of the observations and of the retrieval
algorithm. Because standard retrievals are based on
solution of inverse problem which is usually
mathematically ill-posed, it has some rather subtle
properties and error characteristics (Eyre, 1987), which
cause additional errors and problems in retrievals (e.g.,

amplification of errors, ambiguities, etc.). As a result,
high-guality sensor measurements are converted into
lower-quality geophysical parameters.

This type of errors can be avoided cr reduced,
using variational retrievals (or inversion) through direct
assimilation of satellite measurements (Lorenc, 1986;
Parrish and Derber, 1992; Phalippou, 1996; Prigent et
al., 1997).

In this case, due to direct assimilation of
sensor measurements, the entire data assimilation
system is used for inversion (as a retrieval algorithm).
In this case, a contribution to the analysis cost function
X, from a particular sensor measurement, s% is:

x5 =5{5-5°)(0 + E) i (s-57) @)

where
s=Ff(g (4)

Fis a forward model (FM) which relates an analysis
state vector g (vector of geophysical parameters in
analysis) to a wvector of simulated sensor
measurements, s; O and E - expected error covariance
of the observations and of the forward model. The
retrieval in th.; case is an entire field(global in the case
of the global data assimilation system) for the
geophysical parameter g which has the same
resolution as the numerical model used in the data
assimilation system. This resolution may be lower than
the resolution of standard retrievals. The variational
retrievals are also not instantaneous but averaged in
time over the analysis cycle (several hours); however,
the field is continuous and coherent. It is important to
emphasis one very significant difference between using
the TF for standard retrievals and the FM in variational
retrievals. In standard retrievals the TF (1) is applied
one time per sensor observation to produce a
geophysical retrieval. In variational retrievals the FM
and its partial derivatives (the number of derivatives is
equal to m x n, where m and n are the dimensions of
the vectars g and s respectively) have to be estimated
for each of k iterations performed during minimization
of the cost function (3), that is (m x n + 1) x k times
(e.g., about 3000 times for SSM/l).  Taking into
account that an FM is often much more complicated
than a TF, the requirements for simplicity of the FM
used in the variational retrievals are very restrictive,
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and variational retrievals may require some special,
simplified versions of FMs,

2. FORWARD AND INVERSE PROBLEMS IN
REMOTE SENSING

2.1 Forward Models

The above consideration shows that both
standard and variational retrievals require some kind of
conversion procedure, either a TF (retrieval algorithm)
or a FM, to relate geophysical parameters to satellite
measurements. The FM and TF are sclutions of a
remote sensing forward or inverse problem
respectively. A generic remote sensing forward
problem is symbolically represented by eq. (4) where
s ¢ %" is a vector of satellite measurements (vector of
BT's in the case of SSM/I) and g = #™ is a vector of
geophysical (atmospheric and surface) parameters
which influence the measurement. For example, after
some simplification and extensive empirical
parametrization a radiative transfer FM for SSM/| BTs
(s =T,,) may be reduced to a closed algebraic version
(e.g., Wentz, 1997),

T =g, 0 o4l (-2, 3w, (Q, T+e,Ty) (5)
where all terms in eq. (5) are empirical functions of
wind speed, W, columnar water vapor, V, columnar
liquid water, L, and sea surface temperature, 7. Such
physically-based or radiative transfer-based forward
models use many empirical data for parametrization.
For example, Wentz (1997) used 35,650 buoy-SSM/|
matchups and 35,108 radiosonde-SSM/I matchups to
fit more thar 100 empirical parameters contained in
different terms of eq. (5). Finally, this SSM/I FM (5)
may be formally written as a system of algebraic
equations,

T, =F (X, whereX={(WVI,T;} (6)

An alternative empirical approach can be
applied to. develop empirical forward models (or
geophysical model function) based on empirical data.
If a set of collocated in space and time satellite s and
ground g observation - matchup data set {s, g} - are
collected or simulated, then an empirical FM can be
developed based on this data set. Recently an
empirical neural network model has been developed for
five SSM/I BTs by Krasncpolsky (1997a) based on only
about 3,500 matchups (see Section 4.1). This model
can be formally described by eq. (6); however, the
function F, in this case, is different. It is important to
note that such an empirical model requires much less
empirical data for development than the physically-
based FM (5), it is more accurate (see Table 1 below)
and much simpler (crucial for the direct assimilation)
than the latter.
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2.2 Retrieval Algorithms

A retrieval algorithm is a particular
representation for a TF (1) and is also a solution of the
inverse problem. Physically-based retrieval algorithm
is an inversion of a physically-based forward model,
therefore, it requires a physically-based FM as a
necessary prerequisite, and, as a consequence, a large
amount of empirical data for development (e.g., Wentz,
1997). An empirical algorithm does not require a FM to
be developed; but a representative matchup data set
is a prerequisite in this case. If we consider again the
SSM/I as an example, most of SSM/I empirical wind
speed algorithms (including the latest NN algorithm)
have been developed using data sets of about 3,500
matchups (an order of magnitude less than for the
physically-based algorithm by Wentz, 1997). For these
empiiical algorithms the resulting accuracies of
retrievals are comparable or even better (for NN
algorithm) than accuracies for the physically-based
algorithm (see Table 2 below).

The inversion technique which is usually
applied in physically-based retrieval algorithms to invert
FM was described by Wentz (1997) for SSM/I retrieval
algorithm. In this case, the TF, £, (1) is not determined
explicitly, it is only determined implicitly for each BT
vector {T,,,}. Symbolically, the retrieval algorithm can
be written as

X=fTT) (7)

It is important to emphasize that the algorithm (7), by
definition, is a multi-parameter algorithm, since it
retrieves a vector X of several geophysical parameters
(W, V, and L ) simultaneously. In addition to BTs, T,
this algorithm requires a SST value T, as an input to
produce retrievals.

Empirical algorithms are based on an
approach which, from the beginning, assumes the
existence of an explicit analytical representation for a
TF, f. Some mathematical model, f_, is usually
chosen (usually some regression) which contains a
vector of empirical parameters a = {8,, 8,, ... },

Gi= frooa (T, @) (8)

where these parameters are determined from .1
empirical matchup data set {g,, T}. The subscript/in
g, stresses the fact that most of empirical retrieval
algorithms are single-parameter algorithms; they
retrieve only wind speed (Goodberlet, 1989), or water
vapor (Alishouse, 1990), or cloud liquid water (Weng
and Grody, 1994), etc. Single-parameter algorithms
have certain problems which are discussed below.



3. MATHEMATICAL TOOLS FOR DEVELOPING
EMPIRICAL FORWARD MODELS AND
RETRIEVAL ALGORITHMS

The above considerations show that both

empirical forward models (4 and 5) and retrieval
algorithms (1 and 8) can be considered as mappings
which map a vector of sensor measurements,
s (orT) € ", to a vector of geophysical parameters, g
(or X) € &™ (TFs, F) or vice versa (FMs, F). These
mappings are built, using discrete sets of collocated
vectors s and g (matchup data sets {s;, g}). Single-
parameter algorithms (8) may be considered as
degenerate mappings where a vector is mapped onto
a scalar (or a vector space onto a ling).

The linear regression (LR) is the most
attractive tool for developing empirical algorithms. It is
simple; it has a well developed theoretical basis which
enables a user to perform various statistical estimates.
In the case of the LR, a linear model is built for FM or
TF. For example for (8) we have:

gi = LA {Ts a) = }:a: T:

here LR means linear regression and a is a vector of
unknown parameters (regression coefficients). The
problem with the LR is that it works with high accuracy
in a broad range of the variability of arguments only if
the problem and the function which it represents (FM
or TF), is linear. If the problem is nonlinear, the LR can
give only local approximation, or, if it is applied globally,
this approximation has poor accuracy.

Because, in general, forward models and TFs
are nonlinear functions of their arguments, nonlinear
regressions - (NRs) are better suited for modeling
forward models and TFs. NR may be applied in many
different ways. For example, f__, in (8) can be chosen
as a complicated NR function:

g=fy(la) (9)

on the other hand, f,,, can be introduced as an
expansion in a set of nonlinear functions {y }:

8= a,p,(T) (10)

J

In either case, if we use NR (9) or (10), we need to
specify in advance a particular type of nonlinear
function f,q, or ¢ which we use. In other words, we
need to introduce in advance a particular kind of
nonlinearity, which we use to approximate the FM or
TF under consideration. This may not always be
possible, because we may not know in advance what
kind of nonlinear behavior a particular FM or TF
demonstrates, or this nonlinear behavior may be
different in different regions of the FM's or TF's
domain. If an improper NR is chosen (by chance), it

may represent a nonlinear FM or TF less accurate than
alLR.

In the situation described above, where we do
know that the TF or FM is nonlinear but do not know
what kind of nonlinearity to expect, we need a flexible,
self-adjustable approach that can accommodate
various types of nonlinear behavior and represent a
broad class of nonlinear mappings. Neural networks
(NNs) are well suited for a very broad class of
nonlinear approximations and mappings. It has been
shown (e.g., Chen and Chen, 1995; Hornik, 1991;
Funahashi, 1989; Gybenko, 1989) that a NN with cne
hidden layer can approximate any continuous mapping
defined on compact sets in &". Thus, any problem
which can be mathematically reduced to a nonlinear
mapping like (1), (4), (6}, (8), etc. can be solved using
a NN with one hidden layer.

Here several main properties of NNs are
presented which make them a very suitable generic
toal for nonlinear mapping (and, therefore, for algorithm
development). Some of these properties have been
illustrated above, others are described in the literature:
- NNs are able to model complicated nonlinear
input/output relationships (any continuous nonlinear
mapping).

- NNs are robust with respect to random noise and
sensitive to systematic, regular signals (e.g., Kerlirzin
and Réfrégier, 1995).

- NNs are fault-tolerant. An output value is created
using all weights and biases so that an error in one of
them usually causes only minor change in the output
value(Cheng, 1996).

- NNs are well-suited for parallel processing and
hardware implementations (Cheng, 1996) (all neurons
in the same layer are completely independent and can
be evaluated simultaneously).

- While training the NN is sometimes time consuming,
its application is not. After the training is finished (it is
usually performed only once), each application of the
trained NN is practically instantanecus (several tens of
floating point additions and multiplications --
microsecaonds on modern computers).

4. NEURAL NETWORKS FOR SSM/I DATA.

In previous sections we discussed theoretical
possibilities and premises for using NNs for modeling
TFs and FMs. In this section we illustrate these
theoretical considerations using applications of the NN
approach to the SSM/I forward and retrieval problems.
Many different retrieval algorithms and several forward
models have been developed for SSM/I sensor; and
several different databases are available for the
algorithm development and validation. For a detailed
discussion of the database used here see
Krasnopolsky et al, (1996), and Krasnopolsky,
(1997a).
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4.1 NN empirical forward model for SSM/I.

The empirical SSM/I FM represents the
relationship between a vector of geophysical
parameters X and a vector of satellite BTs T, where T
={T19V, T19H, T22V, T37V, T37H}, X ={W, V. L, T,
(or SST)}. Four geophysical parameters were included
in X (wind speed, W, columnar water vapor, V,
columnar liquid water, L, and SST ) which are the main
parameters determining satellite BTs, and which are
used as inputs in the physically based FMs of Petty
and Katsaros (1994) and Wentz (1997) (see Table 1).
The NN, OMBFM1, which implements this FM has 4
inputs, {W, V, L, SST}. one hidden layer with 12
neurons, 5 standard BT outputs {7719V, T19H, T22V,
T37V, T37H}, and 20 auxiliary outputs which produce
derivatives of the outputs with respect to the inputs, or
oT,/ &, These derivatives constitute the Jacobian
matrix K[X] = {JT,/ <X} which emerges in the process
of direct assimilation of the SSM/IBTs when the
gradient of the SSM/I cantribution to the cost function
(3), X, is calculated.

Fig. 1 shows the OMBFM1 architecture.
Since these auxiliary outputs (Jacobian matrix K) are
not independent, we did not include them in the error
function during the training, hence, only the standard
outputs T are involved in the fraining process.
Inciuding these additional outputs in the NN
architecture simplifies the use of our NN FM for direct
assimilation because, as we showed in Section 1, in
the process of variational retrievals the FM and its
derivatives have to be estimated about 3,000 times per
satellite measurement.

The matchup database for the F11 SSM/I has
been used for training (about 3,500 matchups) and
testing (about 3,500 matchups) our forward model.
Only matchups with A < 15 km and t = 15 min have
been selected. The FM was trained on all matchups
which correspond to clear + cloudy conditions in

Y
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Fig. 1. NN forward model OMBFM1
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Table 1. Comparison of physically based radiative
transfer and empirical NN forward models for clear and
clear+cloudy (in parentheses) conditions.

Auther Type Inputs BT RMS Error
' H
Petty & Physically- W V L, SST, 1.9 3.3
Katsaros based Theia', P(?, 2.3) 4.9
HWV", ZCLD', Ta’,
G°
Wentz (1897) Physically- W, VL, SST, 23 34
based Theta' 2.8 15.1)
Krasnopolsky NN, W, V. L, 8ST 15 30
empirical 1.n 3.4)

"Theta - incidence angle; ? PO - surface presure
8 HWV - vapor scale height; * ZCLD - cloud height
5 Ta - effective surface temperature; ® G - lapse rate

accordance with the retrieval flags introduced by
Stogryn et al. (1994).

More than 8,000 matchups for the F10
instrument have been used for wvalidation and
comparison of the NN FM with physically-based
forward models by Petty and Katsaros (1994) and
Wentz (1997)2. For detailed training, testing and
validation statistics see Krasnopolsky (1997a,b). Table
1 presents total statistics (RMS errors) for three FMs
discussed here. RMS errors (in degrees Kelvin) are
averaged over different frequencies for the vertical and
horizontal polarizations separately for the F10 SSM/I
data.

4.2 NN empirical SSM/| retrieval algorithms
About ten different SSM/I wind speed retrieval
algorithms, both empirical and physically-based, have
been developed using a large variety of approaches
and methods. Here we perform a comparison of
several of them in order to illustrate some properties of
the different approaches mentioned in previous
sections and some advantages of the NN approach.
The first global SSM/I wind speed retrieval
algorithm (GSW) was developed by Goodberlet et al.
(1989). This algorithm is a single-parameter algorithm
(it retrieves only wind speed), and it is linear with
respect to BTs (a muttiple LR was used). This algorithm
met specified accuracy criteria (2 m/s between 3 and
25 m/s) under rain-free and low moisture conditions.
According to Goodberlet et al., however, this algorithm
deteriorates rapidly in areas where rain and cloud
cover occur. Wentz (1997) developed a physically-
based approach to estimate surface wind speeds from
the SSM/I. However, Wentz's approach requires scme
external inputs not available in the SSM/I data stream.

“The author coded both Wentz's FM and
retrieval algorithm based on the detailed description
published by Wentz (1997).



The first NN algorithm for SSM/I has been
developed by Stogryn et al. (1994) for retrieving wind
speed from the SSM/I BTs. This algorithm consists of
two NNs, one of them performs retrievals under clear
and another, under cloudy conditions. Krasnopolsky
et al. (1994, 1995a) showed that a single NN
(OMBNN1) with the same architecture can generate
retrievals with the same accuracy as the two NNs
developed by Stogryn et al. under both clear and
cloudy conditions. This algorithm can be represented

as:
W = fudT) (11)

where W is the wind speed, and T = {T13V, T22V,
T37V, T37H}. Application of the OMBNN1 algorithm
led to a significant improvement in wind speed retrieval
accuracy for clear conditions. For higher
moisture/cloudy conditions, the improvement was even
far greater (25-30%) compared to the GSW algorithm.
The increase in the areal coverage due to an
improvements in accuracy was about 15% on average
and higher in areas with higher meteorological activity.

First NN algorithms give very similar resuits
because they have been developed using the same
matchup database. This database, however, does not
contain matchups with the wind speed higher than
about 20 m/s and contains very few matchups with
wind speeds higher than 15 m/s. These algorithms also
are single-parameter algorithms, i.e. they retrieve only
one parameter - wind speed, therefore they can not
account for the variability of all related atmospheric
(e.g., water vapor and liquid water) and surface (e.g.,
S8T) parameters (especially important at higher wind
speeds). This is why these NN algorithms demonstrate
the same problem; they can not generate wind speeds
higher then 18 - 19 m/s. The high wind speed
performance has been improved in the OMBNN2
algorithm (Krasnopolsky et al., 1995b) by introducing
new methods of NN training which enhance learning
the high wind speed behavior and by using a bias
correction. The OMBNNZ2 aigorithm performs better
than OMBNN1 for wind speeds higher than 15 m/s;
however, it still can not generate wind speeds higher
than 19 - 20 m/s without a bias correction because the
same training set was used. It is also a single-
parameter algorithm and is sensitive to the the
variability of related atmospheric and surface
parameters at higher wind speeds.

The next generation NN algorithm - a multi-
parameter NN algorithm (OMBNN3; Krasnopolsky et
al., 1996) solved the high wind speed problem through
three main advances. First, a new buoy/SSM/I
matchup database, created by NRL and enriched by
high latitude, high wind speed events (up to 26 m/s)
from European OWS MIKE and LIMA, was used for the
development of this algorithm. Second, the method of
NN training which enhances learning the high wind
speed behavior was used. Third, the variability of the

primary related atmospheric and surface parameters
was taken into account: wind speed, columnar water
vapor, columnar liquid water, and SST are retrieved
simultaneously. In this case, the relation (11) is
modified:

X = folT) (12)

where X = {W, V, L, S§T} is now a vector, and W is the
wind speed, V - columnar water vapor, L - columnar
liquid water, and SST - sea surface temperature. The
OMBNNS3 algorithm uses five SSM/I channels: 19 GHz
ard 37 GHz (horizontal and vertical polarization) and
22 GHz (vertical polarization). It does not use any
additional inputs. 88T is an output here rather than
additional input as in Wentz algorithms.

Fig. 2 illustrates the evolution of our NN
algorithms from OMBNN1 to OMBNN3. Table 2 shows
a condensed comparison of the GSW, Wentz, and
OMBNNS algorithms for more than 15,000 matchups
from three different SSM/I instruments F08, F10, and
F11.

iT19V T22V T37Vv T37H T19V T22V Ta7Vv T37H T85V

Bias Gorrection

w
OMBNN1 OMBNN2

T19V T19H T22V T37V T37H

OO

Fig.2 Evolution of the NN architecture from
OMBNNT1 to OMBNN3

Table 2. Biases and RMS errors (in m/s) for different
SSM/lI wind speed algorithms for clear and
clear+cloudy (in parentheses) conditions.

Algorithm Bias RMS Ermrors
Linear Regression’ -0.2(-0.5) 18(22)
Physically-Based® 05(02) 2.0(23)

OMBNNS® -0.1(-0.2) 1.6(1.7)

'Goodberlet et al., 1989; *Wentz, 1997;
*Krasnopolsky et al., 1996
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The OMBNN3 algorithm demonstrates the best
performance under both clear and clear+cloudy
conditions.

In this section we have demonstrated that the
NN FM and retrieval algorithm give results which are
better than the results obtained with more sophisticated
physically-based and empirical approaches. The NN
FM simultaneously calculates the BTs and Jacobian
matrix. It is much simpler and faster (only several tens
of floating point additions and multiplications) than
radiative transfer-based FMs. The OMBNN3 retrieval
algorithm is also more accurate and robust than the
physically-based and empirical algorithms developed
for SSM/I retrievals (Krasnopolsky, 1997b).

4, CONCLUSIOMS

In this work we discuss standard and
variational (based on direct assimilation of satellite
measurements) retrievals. Both standard and
variational retrievals require a data convertor to convert
satellite measurements into geophysical parameters or
vice versa. Standard retrievals use a TF (sclution of
the inverse problem) and variational retrievals use a
FM (solution of the forward problem) for this purpose.
In many cases the TF and the FM can be represented
as a nonlinear mapping. Because the NN technique is
a generic technique for nonlinear mapping, it can be
used advantageously for modeling TFs and FMs.

To illustrate advantages which one can get
from applying the NN approach to the FM and TF
development, we have presented a new NN-based
empirical SSM/I FM called OMBFM1 and a new NN-
based OMBNN3 transfer function (i.e., retrieval
algorithm) for SSM/I retrievals. OMBFM1, given the
wind speed, columnar water vapor, columnar liquid
water, and SS7, generates SSM/I BTs with acceptable
accuracy. It is also significantly simpler than the
physically-based FMs which is very important for
voriational retrievals where the FM is estimated several
thousand times per satellite measurement.

The NN-based OMBNNS3 transfer function
(i.e., retrieval algorithm) for SSM/I retrieves the wind
speed, the columnar water vapor, the columnar liguid
water, and the SST. It demonstrates high retrieval
accuracy overall, together with the ability to generate
high wind sneeds with acceptable accuracy. The
OMBNN3 systematically outperforms all algorithms
considered for all SSM/I instruments, under all weather
conditions where retrievals are possible, and for all
wind speeds. Some other applications of the NN
approach to problems in the remote sensing can be
found in a special issue of the International Journal of
Remote Sensing (Neural Networks in Remote Sensing,
1997).
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