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1). INTRODUCTION

New data sets are now available for operational weather
analysis and forecasting using the latest neural network
(NN) algorithm developed at the National Centers for
Environmental Prediction (NCEP) (Krasnopolsky , et al.
1999) using the Special Sensor Microwave/lmager
(SSM/I) instrument flown aboard the satellites of the
Defense Meteorological Satellite Program (DMSP). This
NN algorithm provides detailed and accurate fields of
meteorological variables over the oceans and the
coverage is extensive because of the number of satellites
that are currently in operation. The new NN algorithm
derives surface wind speed (W), columnar water vapor
{(\), columnar liquid water (L) and sea surface
temperature (SST) simultianeously from SSM/! brightness
temperatures. Although these parameters have already
been retrieved separately by other techniques, it is the
simultaneous retrieval by the new NN that is unique,
allowing the information from one parameter to contribute
to a better estimate of the other parameters.

The DMSP satellites are polar orbiting satellites which
provide coverage over a particular ccean area twice a
day, once during a descending orbit and once during an
ascending orbit. The spatial resolution is about 50km.
The SSM/I infers brightness temperatures from the
ocean surface passively through seven channels
receiving microwave radiation emitted by the ocean
surface and passed through the atmosphere. The
emission is effected by the surface wind speed (which
changes the roughness of the ocean surface) and by
SST. The propagation of the microwave radiation
through the atmosphere is influenced by the integrated
amounts ofwater vapor and liquid water in thé
atmospheric column. As a result the brightness
temperatures carry signals from all these geophysical
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parameters and can then be converted into geophysical
parameters (surface wind speed, columnar water vapor,
columnar liquid water, and SST) using retriov:
algorithms. These data are used by marin
meteorologists to improve ocean surface weather m
analyses, and by numerical analysis systems to improve
initial conditions in numerical weather prediction model
With three satellites in orbit (F11, F13 and F14) and with
a swath width of about 1400 km for each of th
satellites, almost complete high-resolution coverage
now available over the global oceans on a daily basis.

Empirical retrieval algorithms have been previous
developed separately for various geophysical parametors
such as surface wind speed (Goodberlet et al. 1980,
Petty 1993), columnar water vapor (Alishouse et al. 1990}
and columnar liquid water (Weng and Grody 1994). Tha
empirical retrieval algorithm is usually derived from &
high-quality data set that collocates the satelita
brightness  temperatures ~ with  buoy-  and/or
radiosonde-measured geophysical variables in time and
space. The physically based algorithms use a large
amount of such empirical data for parameterizations
(Wentz, 1997). A satellite vs. buoy collocated matchup
data set requires a large sample in order to be
representative of the wide range of possible global
meteorological conditions. High wind speed events have
been fairly rare in most matchup data sets because of
the collocation requirements. Winds speeds of gale
force.(> 17 m/s) or greater at a given time cover no moré
than 5 % of the global ocean surface.

The purpose of this paper is to discuss the history of
developing SSM/| retrievals at NCEP and the new data
sets that are now made available for operational weather



nnulysis and forecasting using the latest SSM/I NN
#igorithm.

2 IMPROVEMENT OF ACCURACY OF SSM/I
METRIEVALS

The original global algorithm for refrieving surface wind
apuad from SSM/l was developed by Goodberlet et al. in
1189 (GSW algorithm). This algorithm is based on linear
- togression and is primarily limited to low moisture
tonditions.  Further, there were no wind speed
ubsaervations in the high range (>18 m/s) available in
s matchup data set used in the formulation of the
akjorithm, so the GSW algorithm could not be expected
i perform well at retrieving high winds. Because of
these limitations, wind speeds cannot be accurately
dutermined with this algorithm in areas with significant
- lswols of atmaospheric moisture and cannot be retrieved
i the vicinity of storms and fronts. Pety (1993)
mtroduced a nonlinear correction to the GSW algorithm
{(48WP algorithm) which improves the accuracy of the
wirid speed retrievals in areas with higher amounts of the
water vapor.

Ior the past five years, NCEP has concentrated on
improving the accuracy of SSM/I satellite derived ocean
wind speeds, columnar water vapor, and columnar liquid
witer for both marine meteorology applications and
Humerical weather prediction. A succession of algorithms
hian been formulated using NN, each one more complex
uid accurate than the previous one. NNs were chosen
timcause they have been highly successful in
mateorological and oceanographic applications (Hsieh

- and Tang, 1988) They can deal with nonlinear relations

#nd do not need apriori assumptions on the nature of the
fion-inearity. Hence, they have been able to provide an
slfoctve method for dealing with high moisture conditions
while deriving wind speeds.

In 1994 (Krasnopolsky et al., 1995), an initial NN
ualgorithm (OMBNN1) was formulated using the same
sitolite matchup data base of satelite brightness
lamperatures with buoy wind speeds that was used to
dovelop the GSW algorithm. The OMBNN1 algorithm
ined brightness temperature from four of the SSM/I
thannels to produce one output, wind speed. That initial
ftudy showed that OMBNN1 was capable of providing
ncean surface wind speeds from SSM/l brightness
tamperatures with better accuracy, and in areas with
lilgher levels of atmospheric moisture, than the GSW
nlgorithm. But when the OMBNN1 algorithm was applied
1o global SSM/I data for operational use, the algorithm
wis unable to provide high wind speeds (> 15 m/s) with
acceptable accuracy (wind speed RMS errors < 2m/s
under all weather conditions) . This problem is usually
ittributed to the lack of high winds in the matchup data.
A bias correction was developed in the next algorithm
{OMBNN2) to correct this problem.

More recently, a rather comprehensive SSM/l and buoy
inatchup data set was provided by the Naval Research

Laboratory (NRL) for algorithm development. The NRL
data set contains more data and has better coverage of
high wind events than the previous data set used by
GSW. Further, other high latitude SSM/I ocean weather
ship matchup data sets were obtained from Bristol
University (D Kilham, personal communication).

This expanded database permitted us to develop a new
NN architecture which takes into account the
interdependence of physically-related atmospheric and
oceanic parameters (wind speed, columnar water vapor,
columnar liquid water and sea surface temperature). The
new OMBNN3 algorithm (Krasnopolsky, et al., 1999,
1998) utilizes five SSM/| brightness temperature
channels. It  simultaneously produces all four
parameters. This algorithm was trained to preserve
proper physical relationships among these parameters.
The algorithm has extended the range of wind speeds
over which useful retrievals can be obtained. It not only
improves the accuracy of the wind speed retrievals,
especially at high wind speeds, but makes available three
additional fields. Evaluation of the simultaneous
multi-parameter retrievals from the OMBNN3 algorithm,
using buoy data, shows that it reduced the bias and
RMS errors of wind speed more than retrievals from any
other algorithms. Validation of water vapor and liquid
water is difficult due to lack of data. However, tentatively
these retrievals appear to be consistent with other
algorithms. Validation of the NN SST retrievals with buoy
data showed that they were less accurate than the
operational high resolution radiometer (AVHRR) SST
retrievals, and will not be discussed further. But it is
important to note, that by retrieving SST the accuracy of
the wind speed refrievals, especially at high wind speeds,
was improved. Because this algorithm is inherently
nonlinear, it increases areal coverage in areas with
significant levels of atmospheric moisture and under more
active and critical weather systems such as storms and
fronts.

3. INTERPRETATION OF SSM/I NEURAL NETWORK
DERIVED DATA FOR WEATHER ANALYSIS.

The three meteorolegical variables (ocean surface wind
speed, columnar water vapor and columnar liquid water)
which are produced simultaneously by the new OMBNN3
algorithm can provide a clear descriptive analysis of the
weather over the ocean. Moreover, we show how the
interpretation of the three variables together can give a
more complete description of marine weather than by
using the ocean surface wind speed data alone.

The ocean surface wind speed data have the most direct
use in marine weather analysis and weather forecasting.
Although these data provide wind speed only, the
extensive coverage of the three satellies depicts
high-resolution wind speed patterns across synoptic
weather system. These data can be used directly to
improve ocean surface wind analyses, and indirectly to
improve sea level pressure analyses.
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The columnar water vapor and columnar liquid water are
:the vertically integrated values through the entire
atmosphere. The columnar water vapor is also known as
"total precipitable water", which is the depth of water that
would fall on the ocean if all the water vapor were
condensed and precipitated. Columnar water vapor is an
air mass characteristic closely related to synoptic scale
features. lts primary source is the warmer waters of the
tropics, and it is advected to higher latitudes by storms
and low- and mid-level jet streams. As a result, regions
with large gradients of columnar water vapor have been
shown to be good objective indicators of the position of
an ocean surface front (Katsaros et al. 1989) .

The liquid water resides in clouds, and is more directly
related to regions of precipitation and to active weather
systems such as storms and fronts (McMurdie and
Katsaros, 1996). Large liquid water amounts are
generally associated with strong convective activity
(cumulus clouds) and turbulent surface weather
conditions, whereas small amounts of liquid water are
associated with near neutral or stable regions (stratiform
clouds) and constant or steady surface weather
conditions.

4. CASE STUDIES

Since the 1997, the use of the satellite derived data
retrieved from the OMBNN3 neural network has been
investigated in more than 60 case studies at NCEP.
These studies supported general conclusions discussed
in the previous section. Two regions have been
investigated and discussed (Gemmill and Krasnopolsky
1998): one for the eastern North Pacific, and one for the
western North Atlantic Oceans. For each case, a marine
weather map analysis, which identifies major weather
features over the region, was used as an independent
source of information for comparison and validation.
Marine weather maps for the North Pacific Ocean and the
North Atlantic Ocean are produced every six hours by the
Marine Prediction Center. These analyses combine a
variety of data sources, including the six hour sea level
pressure forecast from the global numerical weather
prediction model as a first guess, AVHRR satellite cloud
imagery, and quality controlled surface data from ships,
fixed and drifting buoys and coastal stations.

Each study included a series of fields: SSM/I ocean
surface winds speed, SSM/l columnar water vapor,
SSM/I columnar liquid water, ocean surface wind data
from buoys and ship, ERS2 scatterometer wind vector
data, and the sea level pressure analysis available from
the NCEP Global Data Analysis System. The fields of
satellite data are within a +/- 3 hour time window about
the analysis time. The SSM/I data are a composite from
three DMSP satelltes (F11, F13 and F14), which
together provide almost complete and extensive regional
coverage. The selected cases dealt with synoptic weather
patterns that were in agreement with other real-time data
sources. We showed (Gemmill and Krasnopolsky 1989,
Krasnopolsky et al. 1999) that the variables retrieved from
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the SSM/l through the NN algorithms can provide
information that augments interpretation and is consistent
with the actual weather situation. These studies
demonstrate that neural networks have the capability to
retrieve useful meteorological information from SSM/|
brightness temperatures.

In particular:

° The NN algorithm successfully separates wind
speed, columnar water vapor, and columnar
liquid water signals contained in the SSM/I
brightness temperatures. Multi-parameter
retrievals preserve the correct physical
relationships among the retrieved parameters.

° The new algorithm generates high wind speeds
(>15 m/s) in areas where such winds are well
supported by other data. These winds and sea
level pressure analyses are in close agreement.
Regions of large pressure gradients match wall
with high wind speeds.

® Large gradients of the columnar water vapot
are related to the position of ocean surface
fronts. On the other hand, the structure of the
water vapor field is very different from both wind
speed and liquid water, and its large values are
related to a moist atmosphere which originates
from subtropical sources.

® Greater amounts of columnar liquid water arg
related to areas of water vapor convergenca
which are closely associated with active storms,
frontal locations, and extensive clouds.

Itis important to stress that the conventional data set of
ships and buoys cannot in itself produce accurate
detailed ocean surface analysis. These data are much
too sparse. Although these winds can depict tha
circulation associated with a storm, the intensity and
location of the storm center can be not determined from
the ship and buoy data alone. Improvements to
interpretation of the weather situation are aided by the
SSM/I derived data, and where there are in-situ surface
wind reports, they corroborate the values of the SSM/I
derived wind speed data. Likewise, the ER&E
scatterometer wind retrievals also provide furthat
information to augment and substantiate other data anil
improve the analysis.

5. CONCLUSIONS

Examining simultaneous retrievals of wind speed
columnar water vapor and columnar liquid water fielda
using OMBNN3 can reveal significant informatian
concerning weather patterns over the ocean. These dati
can be used to improve the interpretation of the weathiai

at the ocean surface. These fields can be viewed evary :

6 hours at:
hitp://polar.wwhb.noaa.gov/winds/.
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i1t general, positive impact has been demonstrated from
ihe assimilation of wind speed retrieved by the NN
ulgarithm into the global operational numerical weather
firediction model (Yu et al., 1997) at NCEP. The new
algorithm has been tested and implementation for
oporational use at NCEP since April 1998.
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