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The use of the wavenumber-direction spectrum in wind wave models results in an effective loss
of model resolution for waves traveling from deep to shallow water and in additional numerical
disadvantages, when a conventional invariant spectral grid is used. In this paper we present a
theoretical study of how the effects of variable depths and currents may be incorporated in a
spatially varying wavenumber grid. It is shown that effects of currents cannot be efficiently
incorporated in the grid. Effects of variable depths are incorporated in a wavenumber grid
which is equivalent to a spatially invariant frequency grid. The resulting equations are nearly
identical to the conventional equations for the frequency-direction spectrum, but include a more
elegant way to address effects of temporal variations of the water depth. Furthermore, the
technique employed to derive the equations for the variable grid approach closely resembles
that used in the conversion between different spectral descriptions. The formulations presented
in this paper may therefore serve as a basis for discussion of the selection of spectral
descriptions.
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1. INTRODUCTION

Wind waves in shelf seas and oceans are historically described using their
surface elevation spectrum as a function of frequency f, as can be obtained
from a time series analysis of the water level elevation at a single point. A
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similar approach was adopted in most early spectral wave models, which
usually solve an energy balance equation for the two-dimensional spectrum
F(f, 8), where 6 represents the direction of the spectral component (see, for
instance, SWAMP Group 1985). From a theoretical point of view, however,
the wavenumber spectrum F(k) or F(k,6) has been considered more
appropriate for modeling wind waves due to its invariance properties with
respect to the water depth for the physics of wave growth and decay (e.g.,
Kitaigorodskii, 1962, 1983; Kitaigorodskii et al., 1975; Bouws et al., 1985).
For this reason, the wavenumber-direction spectrum has been used to
describe the wave field in several recent wave models (e.g., Abdalla and
Ozhan, 1993; Jansen et al., 1993; Van Vledder and Dee, 1994). For such
models the wavenumber-direction spectrum F (k, 8) is generally preferable to
the vector wavenumber spectrum F(k), because discretization of the latter
spectrum leads to a directional anisotropy of the spectral resolution.
When a component of a wave field travels from deep to shallow water
(‘shoaling’), its wavenumber undergoes large kinematic variations. This is
illustrated in Figure 1, which shows characteristics in wavenumber-depth
(k—d) space for waves propagating in water with varying but steady depths
without mean currents (solid lines). In such conditions, the frequency f
remains invariant, and k follows directly from d and the dispersion relation

o2 = gk tanh kd, (1)

where a o = 27f is the radian (intrinsic) frequency. The characteristics in
Figure 1 correspond to a set of discrete frequencies, representative for the
spectral discretization in ocean wave models. The discrete wavenumber grid
of a numerical wave model is usually kept constant throughout the model
(illustrated by the dotted lines in Fig. 1). Shoaling then leads to two
numerical disadvantages.

First, the kinematic wavenumber variations compress the wave field in .-
space for decreasing depths, resulting in an effective loss of resolution in
shallow water. This is quantified in Table I, which presents the resolution
of an invariant k-grid relative to that of an invariant o-grid for several
wave periods and water depths, assuming identical resolutions in deep
water (upper left corner of table). For intermediate depths, the resolution
of the wavenumber grid actually improves somewhat (up to 20% for
kd=21.2). For shallow water, however, (lower right side of table), the
relative resolution of the wavenumber grid deteriorates dramatically (by
more than 50% for kd < 0.27). Particularly swell energy 1s generally poorly
resolved by commonly used spectral resolutions. To assure that the spectral
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FIGURE 1 Characteristics (solid lines) in wavenumber-depth (k — d) space for quasi-steady
water depth variations in conditions without mean currents. The dotted lines represent an
exponential wavenumber grid corresponding to a frequency grid as representative for numerical
wave models (fi+; = 1.1 f;, with f ranging from 0.041 Hz to 0.41 Hz).

TABLE I Resolution of an invariant wavenumber grid relative to an invariant relative
frequency grid for several wave periods T and depths 4. Relative resolution defined as inverse
ratio of grid increments Ak or Acg. Identical deep-water resolutions

T(s) d(m)

80 40 20 10 5 2.5
5 1.00 1.00 1.02 1.15 1.19 1.03
10 1.02 1.15 1.19 1.03 0.81 0.60
20 1.19 1.03 0.81 0.60 0.44 0.31

resolution for target swell periods of the k-grid is comparable to that of a
o-grid, the number .of discrete wavenumbers has to be increased by the
inverse of the normalized resolutions presented in Table I. This will
obviously have a significant impact on memory and run-time constraints of
a practical model.
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Secondly, shoaling corresponds to significant propagation in the k-space
of the spectrum, which invites numerical errors, and might impose stability
constraints on a model. Numerical errors depend directly on the schemes
used, and can therefore not be addressed obijectively without selecting
specific numerical schemes. Stability (and accuracy), however, can be
assessed objectively by considering CFL (Courant-Friedrichs-Lewy) limita-
tions of a numerical model. Consider, for example, a numerical model with a
spatial resolution of 25km and a logarithmic distribution of discrete
wavenumbers with Ak = 0.21k (which in deep water corresponds to the
common Ac = 0.1¢). Assume that the longest spectral components have a
deepwater period of 25s, and that CFL < 1 in all spaces for reasons of
stability or accuracy. Spatial propagation then allows a maximum time step
of approximately 900s. In a shelf sea, where the change in depth between
grid points is typically smaller than the local depth, propagation in k-space
generally will allow larger time steps, unless extremely shallow water 18
encountered (depth less than Sm). At the edge of a continental shelf,
however, the depth may drop from the order of 100m to 1000 m between
grid points. In such conditions, the required time step for propagation in k-
space becomes an order of magnitude smaller than the required time step for
spatial propagation. For most wave models this implies a serious increase of
computational effort, or requires modifications like smoothing of the
bathymetry or filtering of propagation velocities in k-space.

Because the frequency of wave components is invariant with respect to
shoaling (for steady depths), both disadvantages of using wavenumber
spectra do not occur when using frequency spectra. Because kinematic
wavenumber variations due to shoaling are reversible, a natural way of
getting around these disadvantages of the wavenumber spectra is to include
kinematic effects in the discrete grid, in other words, to use the
characteristics in k — d space (solid lines in Fig. 1) to generate a spatially
varying wavenumber grid to replace the spatially invariant grid (dotted lines
in Fig. 1). The present paper discusses the application of such variable
wavenumber grids to a conventional action balance equation. In Section 2 a
spectral balance equation for arbitrary grids is discussed. In Section 3
practical grids are discussed. It is shown that effects of variable depths can
be incorporated in the grid, but that effects of currents should not be
included in the grid. In Section 4 the equations for a grid incorporating
effects of depth variations are discussed. The corresponding equations
closely resemble the balance equations for a spectrum defined in terms of the
intrinsic frequency, except for the treatment of temporal variations of the
water depth. A final discussion is presented in Section 5.
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2. VARIABLE WAVENUMBER GRIDS

The surface elevation spectrum F(k, 6) adequately describes ocean surface
waves. The action spectrum N(k, 8) = F(k, 6)/o, however, is more suitable
for the use in numerical wave models due to its invariance characteristics for
propagation over slowly varying depths and currents [U = (U,, U,)] (e.g.,
Bretherthon and Garrett, 1968; Whitham, 1974). The governing equations
for the evolution of this spectrum can be written as (e.g., Hasselmann et al.,
1973; Willebrand, 1974)

ON 0 g 5} d

&= ¢yc088+ Uy, (3)
y = cgsinf + U, (4)
y 0o dd ou
k=—gids X5 ©)
1[d0g od ouU
"‘z[@%"“'a—m‘]’ (©)

where ¢, = 00/0k is the group velocity, s is a coordinate in the direction 6, m
Is a coordinate perpendicular to s and S represents the net source term for
wave generation and dissipation. Formally N and S depend on %, 6, the spa-
tial coordinates (x, y) and time #; N = N(k,0;x,y,1) and S=S(k, 0;x, y, 1).
For convenience of notation, however, the spectrum and source terms are
simply denoted as N and S.

Equations (2) through (6) are usually solved on a spatially and temporally
invariant k — @-grid and a temporally invariant spatial grid. To facilitate its
transfer to an arbitrary grid, Eq. (2) is rewritten as

0

—(wN) = 8§, 7

5 (W) =5, ™)
where the summation convention is used and where x = (,x,,k, 6)
represents the conventional grid. The characteristics x; = v; are given by
Egs. (3) through (6) and by 7 = 1. Let y be a second grid where y; = f(x). Its
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characteristics 7; = w; have to coincide with the characteristics in x, so that

0y;
ij v‘“

(8)

After some algebra (see Appendix), the equations on the new grid become

5045

where J is the Jacobean of the grid transformation, i.e., the determinant of
dy/0x;. As expected, this equation implies that the transformed spectrum
N (y) = N(x)/J is subject to a similar spectral conservation equation, as
long as the Jacobean J#0.

To include effects of kinematic variations of the wavenumber in the grid
we replace the coordinate k in X by a variable wavenumber « (2, X, ¥, k,9)
while leaving the other coordinates and the definition of N on x unchanged.
The corresponding Jacobean J 1s given as

Ok

The balance equation (9) and the velocity £ according to (8) then become

ON 93N OjN 9N 86N _S

57 5% "oy T mJ T06T I W
8k Ok Ok Ok .0k
n—a+xa+y5;+k—a-g+95é, (12)

It should be noted that the above grid transformation by definition implies
that spatial derivatives like 0/0x are calculated along ~ planes. The
evaluation of such derivatives therefore does not require interpolation in &
or k space at adjacent grid points.

3. PRACTICAL WAVENUMBER GRIDS

In practical wave models balance equations like (2) or (11) are usually not
solved directly. Instead, a fractional step method is commonly used (e.g.,
Yanenko, 1972), where several parts of the equation are solved by applying
consecutive solvers to the wave field. Most models thus separate wave



MODELING WIND WAVES USING WAVENUMBER-DIRECTION SPECTRA 301

propagation from source terms. For the balance equation (11) on the ‘k-
grid’ the propagation and source term steps read

ON _O%N BN 8kKN 86N _

57 kT oy T T TeeT (13)

~|=Z
<o

(14)

|

Most effects of the variable x-grid are incorporated in the propagation
equation (13). Incorporation of this grid in the source term Eq. (14) is
relatively straightforward. The propagation equation can be split into other
sub-steps, depending on requirements of numerical schemes used, or on
economy of memory use.

Ideally, the x-grid incorporates kinematic effects of all variations of the
medium (d and U) on the wavenumber £, i.e., follows the characteristics of
wave propagation. Then £ =0, which eliminates a term from the
propagation equation, as well as the resolution problem described in the
introduction. For simplicity, we will consider a steady medium first. In such
conditions, the absolute frequency w=oc + k-U 1s constant along
characteristics (e.g., Mei, 1983, p. 96), so that & is defined by

wg — v/ gk tanh kd = kUcos(6 — 6.) = kU, (15)

where 6. is the current direction, U, 1s the current velocity in the direction 0,
and where w, 1s constant along a k-plane in (x,y,0) space. The
corresponding characteristics or x-grid for deep water are illustrated in
Figure 2 as a function of the current velocity U,. Equation (15) and Figure 2
highlight some shortcomings of this grid.

First, the Jacobean J = 0k/0k = 0 at the edge of the shaded area in
Figure 2. In such ‘blocking’ conditions (e.g., Peregrine, 1976; Phillips, 1977,
Peregrine and Jonsson, 1983; Shyu and Phillips, 1990) an opposing current
is sufficiently strong to stop the propagation of a wave group. For stronger
currents or shorter waves (inside the shaded area), wave energy is swept
downstream by the current. For J = 0, Eq. (11) breaks down. Consequently,
the x-grid defined by w, can only be used if currents are sufficiently weak for
wave blocking to occur outside the discrete spectral domain of the model.

Secondly, this grid varies with the wave direction #. Hence, the
wavenumber k for each discrete spectral component at each spatial grid
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FIGURE?2 Characteristics and ideal x-grid (solid lines) as a function of the current velocity in
the propagation direction of the waves U, for waves propagating on steady currents in deep
water. Dotted lines represent the corresponding invariant grid (as in Fig. 1). The shaded area
identifies ‘blocked’ waves.

point has to be stored or has to be recalculated for every discrete time step.
Storing this information roughly doubles the memory requirements of an
efficient wave model. Recalculation is potentially expensive, as it requires
the iterative solution of Eq. (15) for every discrete spectral component and
every discrete time step.

Furthermore, this grid has repercussions for the calculation and
integration of source terms, in particular for third-generation wave models
which explicitly account for nonlinear wave—wave interactions (e.g., WAM,
WAMDI Group, 1988; Komen et al., 1994). Presently, the only feasible
method to estimate nonlinear interactions in an operational wave model 1s
the discrete interaction approximation (DIA, Hasselmann et al., 1985). The
DIA as implemented in WAM utilizes the regularity of a o—0 grid to
economically estimate nonlinear interactions. The present grid does not
provide such regularity.
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Considering the above, the wavenumber grid including all effects of depth
and current variations has only a limited applicability and several numerical
disadvantages (even if only steady depths and currents are considered).
Except for special applications (for instance, swell propagation on weak and
steady currents), these numerical disadvantages will generally outweigh
those of a invariant wavenumber grid. Consequently, its usefulness is
limited.

Most of the above disadvantages of the ‘ideal’ k-grid are caused by the
incorporation of effects of currents in the grid. It is therefore useful to
consider a grid which incorporates effects of depth variations only. For
simplicity, we will again consider a steady medium first. In such conditions
the intrinsic frequency o remains constant. The x-grid following such
characteristics (as illustrated in Fig. 1) is given by

og = /gk tanh rd, (16)

where o, is constant along the x-grid. This grid contains none of the
disadvantages of the -grid defined by w,. First, it has a non-zero Jacobeans
for any depth' (Fig. 1), so that Eq. (11) remains generally applicable.
Secondly, the grid is independent of the direction 6, so that the memory
required for the storage of the local wavenumbers defining the grid is small
compared to the memory required for the storage of the actual spectra.
Finally, this grid corresponds by definition to a universal o—6-grid
throughout a model, simplifying the application of the DIA.

The above grid, however, considers steady depths only. If the water depth
varies not only in space but also in time (i.e., due to tides and storm surges),
the intrinsic frequency of a wave component no longer remains constant
during propagation [Eq. (20)], and systematic frequency shifts might occur.
It nevertheless appears logical to retain the grid definition in terms of an
invariant o,. In shallow water this grid will then vary in time as a function of
temporal variations of the local water depth.

4. A GRID INCLUDING SHALLOW WATER EFFECTS

As discussed in the previous section, many effects of variable depths can be
incorporated in a, x-grid defined by a set of (globally invariant) discrete
frequencies o, the local water depth d, and the dispersion relation (1). The
derivation of the governing propagation equations for this grid requires the
evaluation of partial derivatives of « in Egs. (10), (12) and (13). As k is a
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function of o, and 4,

Ok 3;{% 35_@{

a;:éo—gax,-—i_?ﬁaxi' (17)

Furthermore considering that o, is independent of ¢, x, y and 6, and that

Ok OkOo 6&6](730’_.]*130'

5= 8004 9kDo0d "t Bd’ (18)
the partial derivatives of x become
Ok _,000d _
'a—x—i-v-JCg -6—da_xi for x; = (t,x,y,@). (19)
Substitution of (19) in (12) then results in
do [ 0d ou
T | ol .o X _ N B
I 5d ( % +U d) ck 3 = (20)

where V is a gradient operator in physical (x, y) space. As expected the
propagation velocity £ closely resembles the conventional propagation
velocity ¢. The corresponding spectral balance equation (13) can be
expressed in several ways. Amongst others, it can be shown to reproduce the
corresponding balance equation of N(o) = N(k)c;1 exactly, which 1s not
surprising considering the present choice of the x-grid. Before actual balance
equations are discussed, additional splitting of the equations, in particular
the treatment of unsteady depths will be considered.

As described above, the k-grid will vary in time due to temporal variations
of the water depth. Equations (2) and (5) show that the wavenumber
spectrum is not influenced by temporal variations of the depth. This implies
that the modification of the s-grid due to temporal variations of the depth
corresponds to a change of grid without modifying the spectrum. If a
separate fractional step is considered to deal with the water level variations,
the grid conversion can be performed using a simple interpolation scheme,
the conservation properties of which are easily controlled.

In shelf seas away from the coast, depth variations are generally
dominated by the spatial variability of the (steady) bathymetry. The
contribution of temporal water level variations to such depth variations then
is expected to be small. In some shallow coastal areas, temporal water level
variations can locally be larger that the spatial variability of the bathymetry.
Such areas, however, are generally sufficiently small for wave, depth and
current conditions to be quasi-steady on the time scale of wave propagation
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through the area (e.g., Holthuijsen ez al., 1989). This suggests that water
levels can be updated sparsely, at intervals dictated by the time scale of the
water level variation. The x-grid thus suggests a simple and elegant way to
deal with temporal water level variations.

If effects of the water level variations on the present x-grid are treated
with a sparsely invoked fractional step, the remaining steps become quasi-
steady with respect to the water depth (but not with respect to the currents).
For numerical economy, and to simplify implementation of accurate
numerical schemes, the remaining quasi-steady propagation equation can be
solved with separate fractional steps for spatial and intra-spectral
propagation. Considering that

Ik Ok
B e e 21
7= = %5y 1)
where dx/8c by definition should be considered independent of x, the spatial
propagation step can be written as

ON 9 xN O yN

22
dtcg  Ox ¢, By cg =4 (22)

where x and y are given by Eqs. (3) and (4), respectively. Not surprising, this
equation is identical to the conventional propagation equation for N(o).
Considering that J is independent of ¢ and 7 (in this fractional step), the
intra-spectral propagation step becomes

AN _8KN 8 .
2 5 T 550N =0, (23)

which in turn can be written as

ON , 9 8
5 T apkel + 556N =0, (24)

docU-Vd K ou

Y, o Y} e
p=d " od ¢, s’

(25)

where 8 is given by Eq. (6). By design, k. = 0 in cases without currents. In
such cases the grid incorporates all effects of shoaling. In cases with
currents, the second term in (25) represents the conventional effects of
currents as in Eq. (5), and the first term implies that mean currents result in
different shoaling behavior.
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5. DISCUSSION AND CONCLUSIONS

Ocean wind waves are generally described with variance spectra in terms of
the absolute frequency w, relative freqnency o, or wavenumber k. Several
previous authors have chosen the description of wind waves with the
wavenumber spectrum for physical reasons (see introduction). If this
spectral description is used, shoaling results in an effective loss of resolution,
and in an (unnecessary) propagation term in k-space. In the present paper,
an attempt is made to include the kinematic effects of the medium on the
wavenumber of spectral components into a spatially varying wavenumber
(k) grid. The resulting equations for grids incorporating effects of shallow
water and currents, or of shallow water only, closely resemble the
conventional balance equations for the absolute and relative frequency
spectrum. The equations and arguments presented here can therefore also be
used to address the applicability of the basic equations for the different
spectral descriptions.

In a x-grid that incorporates effects of shallow water and currents, the
absolute frequency remains constant along grid lines. The corresponding
equations (not presented here) therefore closely resemble the conventional
equations for absolute frequency spectra N(w, 6) (e.g., Tolman, 1991). This
k-grid (or spectral description) is not suitable for general applications, as it
cannot describe wave components that are blocked by strong opposing
currents! , and as it has economical disadvantages with respect to the
solution of the dispersion relation and parameterizations of nonlinear
interactions. There are nevertheless applications for which this x-grid or
spectral description might be preferable. Examples are the propagation of
long swell over steady currents (£ = 0), where one term drops from the
equations, or studies where the effects of unsteadiness of depths and currents
are explicitly investigated (see Tolman, 1991).

Effects of shallow water can be included in a k-grid if the intrinsic
frequency o is kept constant along grid lines, or, in other words, if the
equations are solved on a o-grid. Effects of currents then remain an integral
part of the equations [compare Egs. (25) and (5)]. Temporal water level
variations result in a simple grid adjustment, which in most cases can be
sparsely invoked. The equations for this s-grid are practically identical to
the conventional equations for the frequency spectrum N(o, 6). The only

LIf the absolute frequency spectrum is used t0 describe the wave field, not only the equation
but the entire spectral description breaks down at the blocking point as the spectrum
N(w) = (¢ + Up)~' N(k) becomes undefined.
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exception 1s the treatment of temporal variations of the water level. As
described above, temporal water level variations shift the x-grid without
modifying the corresponding spectrum N(k). The corresponding frequency
spectrum N(c), however, is influenced by a temporal change of water depth
(the spectrum N(k) is unchanged, and the Jacobean transformation to N(o)
is a function of the depth). This complicates sparse updating of the water
level in the equations for N(o).

The similarity between the equations for the wavenumber spectrum on a
frequency grid and the conventional equations for the frequency spectrum
raises the question of the validity of arguments for choosing a wavenumber
spectrum to describe the wave field. The main argument appears to be the
parameterization of the physics of wave growth and decay. However, as the
Jacobean transformation describing the conversion from N(k, 6) to N(c, )
and vise versa is well behaved, it can easily be included in the
parameterization of the source terms. This argument thus appears irrelevant
for numerical wave models. Additional numerical disadvantages of the
conventional equations for N(k,#) as described in the introduction then
suggest that there is no justification for using the conventional equations for
N(k, ).

From a computational perspective, differences between solving the
equations for N(k,6) on a frequency grid or solving the conventional
equations for N(c, d) are small. The advantage of the former approach is the
more elegant and therefore simpler treatment of temporal depth variations.
The only additional computational effort occurs in the calculation of some
Jacobean transformations. When this approach was applied to the third-
generation wave model WAVEWATCH-III (Tolman, 1997), the added
computational effort proved insignificant.
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APPENDIX

Using Egs. (8), (7) can be rewritten as

8 8v; ON
a—xj(VJN) _S—BEN_'_VJEVC—J-_S

_{@z@_’z} by o
- By,- 3Xj 4 6}7;' 6xj
={awf 8 Byf}N+Wi3_]\T_S

A oyiox 0y;
9 ox; 8y
—8_321(%)1]\0 —S—ij-é}':-"—-axjax! (Al)

Defining the Jacobean J as the determinant of dy;/8x;, the right side of this
equation becomes

5} Ox; %y; 0 w; OJ

S iN = K. e = —— (W _ S - N—e

9yi (i) S &y 0y 0x;0x;  Oy; (ol -~ 8- J Oy;
10 01
0 N

Combination of Egs. (A.1) and (A.2) results in Eq. (9).



