THE IMPACT OF A HIGH DISCHARGE EVENT ON THE STRUCTURE AND EVOLUTION OF THE CHESAPEAKE BAY PLUME BASED ON MODEL RESULTS

L. C. BREAKERa,\dagger, J. G. W. KELLEYa,\dagger, L. D. BURROUGHGSa,\dagger, J. L. MILLERb,\dagger, B. BALASUBRAMANIYANc,\dagger and J. B. ZAITZEFFa,\dagger

a National Centers For Environmental Prediction, Camp Springs, Maryland 20746-4304; b Naval Research Laboratory, Stennis Space Center, MS 39529; c General Sciences Corporation, Laurel, MD 20707; d National Environmental Satellite Data and Information Service, Camp Springs, Maryland 20746-4304

(Received May 1999; In final form August 1999)

A study was conducted to determine how well a quasi-operational ocean forecast model, given its present configuration and constraints, could reproduce and characterize a mesoscale circulation feature near the U.S. East Coast, specifically the Chesapeake Bay plume. A secondary goal was to determine the impact of anomalous discharge from the Bay on the circulation over the adjacent shelf, following a major precipitation event, Hurricane Fran. Two model runs were conducted for the period from mid-August through mid-September, 1996. One run used a discharge function based on daily "observed" river inflows to the Bay. The second run employed the climatological data used routinely in the model. Both runs employed realistic tidal forcing and surface winds from a high-resolution atmospheric forecast model.

The primary outflow following Hurricane Fran, based on the observed discharge function, was concentrated over a period of just a few days, producing what was expected to be the maximum impact on the behavior of the plume. For comparison, observations of surface salinity acquired from a recently-developed airborne microwave

\daggerOMB Contribution No. 157.
\daggerCorresponding author.
\daggerJohn Kelley was a UCAR visiting postdoctoral scientist at NCEP when this work was begun. He now works for the National Ocean Service Coast Survey Development Laboratory in Silver Spring, Maryland.
\daggerDeceased.
radiometer are compared with model output fields in the near-field region of the plume (≤~20 km from the mouth of the Bay). Salinity maps from the airborne radiometer showed that the discharge function based on daily stream flow data produced significant improvements in characterizing the near-field region of the plume compared to the monthly climatological outflow time history. The remote observations also revealed a significant reduction in surface salinity near the mouth of the Bay between the 14th and the 19th of September, 1996, which was not apparent in the model-generated salinity maps for the same period. This discrepancy is attributed to the inherent difficulties in specifying the initial conditions at the mouth of the Bay.

Although direct verification of the model results could not be made beyond the coverage provided by the airborne radiometer, the model-generated plume exhibited structure and temporal behavior which are consistent with past observations. A separate calculation of the Kelvin number from model output indicated that earth rotation should be important in determining the orientation of the plume. The surface circulation in the far-field region of the plume was strongly influenced by local winds and, to a lesser extent by the salinity gradients associated with the plume, according to the model results. Also, the structure of the plume responded quickly to rapid changes in outflow from the Bay, to wind forcing, or to both, on time scales of several days or less. A sequence of model-generated salinity profiles along a line close to the axis of the plume indicated that the strength of the halocline weakened, and that the depth of the halocline decreased from roughly 10 m near the mouth of the Bay to 5 m or so at distances of 60–75 km offshore.

Keywords: Chesapeake Bay; plume; coastal ocean forecast system; discharge function; Hurricane Fran; salinity; surface currents; salinity mapper; Kelvin number

1. INTRODUCTION

1.1. General

An ocean forecast system which includes a three-dimensional ocean circulation model, together with a coupled atmospheric forecast model and ocean data assimilation, is nearing completion as the first fully-operational, real-time coastal ocean forecast system to be developed for U.S. coastal waters (e.g., Kelly et al., 1997). This model, called the Coastal Ocean Forecast System (COFS), has been used to make experimental forecasts of the state of the coastal ocean for a region off the U.S. East Coast on a daily basis since 1993. The model domain extends from 27° to 48°N, and from the East Coast out to 50°W, covering an area of roughly 4 x 10^6 km^2. The model domain was chosen to include the Gulf Stream because of its importance in influencing the circulation closer to the coast. Because of computational considerations, the model's horizontal resolution was selected to be approximately 10 km near the coast. Further offshore the resolution decreases slightly. In the vertical, 18 layers were considered sufficient
to resolve the vertical structure. Given these system parameters, it was the primary goal of this study to determine just how well COFS could reproduce and resolve the important mesoscale structures that are typically found in the coastal ocean such as eddies, jets, fronts, and river plumes? As a case in point, we picked the Chesapeake Bay (CB) plume, a permanent feature located off the mouth of the CB, as the basis for this study.

A number of studies have indicated that winds, tides, and river discharge are three of the most important factors that influence the shelf circulation off the mouth of CB (e.g., Valle-Levinson et al., 1997; Chao, 1988b). In COFS, realistic wind forcing is provided through direct, one-way coupling with a high-resolution atmospheric forecast model. Tidal forcing from the astronomical tides is included in the model for the six primary tidal constituents.¹ Discharge from CB is presently based on the monthly climatology of Blumberg and Grell (1987). Clearly, the outflow from CB, as specified in the model, is not necessarily realistic since the time scales of variability in outflow can be as short as several days or less. This is especially true for major precipitation events such as tropical storms and hurricanes (e.g., Corps of Engineers, 1975). Consequently, we also examined the response of the model-generated plume to a major perturbation in outflow from the Bay which was reconstructed from river streamflow data following the passage of Hurricane Fran.

Hurricane Fran (HF) made landfall near Cape Fear, North Carolina on September 5, 1996 and deposited 160 to 330 mm (6–10 in) of rain over the middle-Atlantic region with up to 525 mm (16 in) of rain in parts of Virginia and West Virginia (U.S. Department of Commerce, 1997). Much of this precipitation found its way through the CB watershed and into the Bay itself. Over a period of days to several months, this excess fresh water was discharged from the mouth of CB onto the continental shelf. Two aircraft flights were conducted within a two-week period following HF as part of the Naval Research Laboratory’s Chesapeake Outflow Plume Experiment (COPE-I; Miller et al., 1998) to infer the surface salinity in a limited region just beyond

¹Comparisons of model-generated tides with observed tides at various tide gauges along the U.S. East Coast have shown generally good agreement (e.g., Aikman et al., 1998).
the mouth of CB by using a recently-developed Scanning Low-Frequency Microwave Radiometer\(^2\) (Goodberlet et al., 1997).

Model plumes were generated first with monthly climatological outflows and then with the daily "observed" outflows. The daily outflows were estimated by combining stream flow data from the nine largest rivers that feed into CB assuming no significant lags in following the waters from HF through the bay system. The details concerning this assumption are discussed in Section 6. Consequently, our results most likely correspond to the maximum impact that could have occurred on the shelf with respect to the outflow from CB following HF. As a result, we created a stringent test of the model's response to discharge from the Bay. In the model simulations, we considered three cases. The first case corresponds to the time of maximum daily outflow from CB following HF, but included no observed salinity data; the other two cases correspond to times when observed salinities were available. In all cases, salinity, surface and subsurface, and surface currents from the model were used to depict the plume and its evolution.

The text is divided into seven sections which include the introduction (Section 1), a description of the ocean model (Section 2), a brief description of the salinity mapper that was used to produce the salinity maps on the 14th and the 20th of September 1996 (Section 3), an explanation of the model runs and data acquisition procedures (Section 4), the results (Section 5), a discussion of selected topics (Section 6), and a summary and conclusions (Section 7).

1.2. Background

A number of observational (Subsection 1.2.1) and modeling (Subsection 1.2.2) studies provide useful background for this study and are cited below.

1.2.1. Observational Studies

The CB is the largest estuary that drains into the Middle-Atlantic Bight (Beardsley and Hart, 1978). To a first approximation, CB is a

\(^2\)From this point on, we refer to the Scanning Low-Frequency Microwave Radiometer as the salinity mapper.
two-layer system with the upper layer discharging low salinity water onto the shelf, while the lower layer takes in higher salinity water from the adjacent shelf. Near the bottom, observations (Boicourt, 1973) indicate that CB takes in water over an alongshore band of the order of 30 km in width. The distribution of salinity within CB tends to be oblique with higher salinities on the eastern side and lower salinities on the western side, consistent with the fact that most of the “freshwater” discharge originates on the western side of the Bay. In a recent study on the effects of bathymetry in determining the transport of water and salt across the entrance of CB, Valle-Levinson and Lwiza (1995) found that the depth-averaged mean longitudinal flow into the Bay occurred over the deep navigational channels, and outflow occurred over the shoals on either side of the channels. Near the mouth of the Bay, hydrographic data indicate that the vertical stratification is primarily controlled by salinity (Boicourt, 1973), and, as a result, the horizontal circulation is likewise expected to be primarily determined by the distribution of salinity. The low salinity core of the plume which emanates from the mouth of the bay tends to overlie the deep channel located on the south side of the bay mouth that extends offshore and turns to the southeast (Holderied and Valle-Levinson, 1997). The buoyant plume of low salinity water is deflected south past Cape Henry by the Coriolis force and forms a southward-flowing coastal current. According to Boicourt (1973), this coastal current has the characteristics of a quasi-geostrophic jet. The area covered by the plume expands and contracts in direct response to discharge from the Bay (e.g., Thomas, 1981).

Three of the primary factors that determine the outflow from CB are river discharge or buoyancy forcing, wind forcing, and tidal rectification over the shoal which separates the two channels located at opposite sides of the bay entrance (Valle-Levinson et al., 1997). The circulation of the shelf waters off the mouth of the Bay varies with changes in discharge from the Bay, the local winds, and to a lesser extent, stratification (Norcross and Stanley, 1967). According to Goodrich (1987), both gravitational and meteorological forcing contribute to the nontidal exchange across the mouth of CB. Under typical conditions, the CB plume extends offshore several tens of km or more. The plume may extend southward along the coast as far south as Cape Hatteras, particularly after extreme events such as Tropical
Storm Agnes (Boicourt, 1973). At the offshore boundary of the plume, a sharp salinity front often occurs. Tidal variability associated with the outflow from CB is significant and is primarily due to the semidiurnal constituent (e.g., Valle-Levinson et al., 1997; Beardsley and Hart, 1978). According to Ruzecki et al. (1976), the plume expands and contracts on tidal time scales in accordance with the ebb and flood tides, respectively. Following Tropical Storm Agnes, the distribution of flood waters on the shelf indicated that pulses of low-salinity water left the Bay during the ebb tide and were separated from one another by intrusions of high-salinity shelf water on the flood tide (Kuo et al., 1976).

The location of the plume is also affected by the local winds and the circulation on the shelf. Winds from the southwest tend to disperse and extend the plume, especially during ebb tide (Munday and Fedosh, 1981), and allow it to move further offshore before turning south along the coast (Holderied and Valle-Levinson, 1997). Winds from the north-northeast act to constrain the plume by keeping it close to the coast south of the mouth. Consistent with the results of Munday and Fedosh, Boicourt et al. (1987) found that downwelling-favorable winds suppressed the seaward excursion of the plume near the mouth, but intensified the coastal jet further downstream. On the other hand, upwelling-favorable winds caused the plume to spread seaward away from the coast. Increased stratification may also extend the influence of bay waters further offshore (Boicourt, 1981).

1.2.2. Modeling Studies

Using a simple one layer model, Beardsley and Hart (1978) found that CB draws in water from a relatively wide alongshore band, of the order of 30 km, in general agreement with the observations of Boicourt (1973). In a series of modeling studies which employed a threedimensional, primitive equation model, Chao and Boicourt (1986), and Chao (1988a and b; 1990), showed how the winds, tides, and river discharge, plus other factors affect the local circulation for mid-latitude estuarine/shelf environments such as CB. Chao and Boicourt (1986) showed that plume-induced circulations derive their energy primarily from the release of potential energy associated with river discharge which produces pressure gradients that spread the plume seaward. The CB plume itself to the right of the plume. They also found that the plumes that are dretained by the shelf. Chao (1988a) showed the circulation of a numerica tion scheme for the development of a dimensionless model. For downwelling wind, the downwind coastal drift is retarded and is demonstrated to be the semidiurnal period. Two counter-rotating eddies at these eddies enhance the development of the plume.

Wang and Knauss (1984) found that estuarine waters discharge were affected by the circulation of the shelf. Further support comes from Zhang et al. (1984) who used a more sophisticated model to examine the behavior of the plume. Unlike many other plumes, the steepness is an important factor in the development of the plume beyond the shelf. Using a layer model which are affected by the boundary layer toward the coast, the coastal current. A primitive equation model of shelf water was released through the shelf, a first bar
offshore boundary of the plume. Tidal variability associated with it and is primarily due to the presence of water and wind. Beardsley et al. (1976), the plume exchanges in accordance with the ebb and flood tidal range, indicated that pulses of low-salinity shelf water on the flood tide were affected by the local winds and further offshore before turning. Valle-Levinson, 1997). Winds in the plume by keeping it close to the results of Munday and Valle-Levinson, 1997). Winds in the plume by keeping it close to seaward. The Coriolis force was apparent in deflecting both the plume itself to the right, as well as the local wind-driven surface currents. They also found that the loss of mass in the upper layer of the plume through detrainment should be taken into account in order to generate plumes that are more realistic further offshore.

Chao (1988a) showed the importance of lateral asymmetries in the circulation of a river-forced estuary. He further presented a classification scheme for river-forced plumes that relate the Froude number to a dimensionless parameter indicating the amount of dissipation that occurs. Chao (1988b) showed that the primary effect of wind forcing on estuarine plumes over the shelf is to produce surface Ekman drift. For downwelling-favorable winds, an elongated coastal jet occurs in the downwind direction. For cross-shelf winds, the nearshore Ekman drift is retarded by sea level setup or setdown. Chao (1990) demonstrated that a three-dimensional model which included forcing from the semidiurnal tide resulted in a residual circulation that included two counter-rotating eddies off the mouth of the estuary. Although these eddies enhanced plume growth in the near-field, they retarded the development of the coastal jet in the far-field.

Wang and Kravitz (1980) showed that the initial injection speed of waters discharged from an estuary onto the shelf has only a small effect on the circulation induced within the plume itself. This conclusion was further supported by the model studies of Chao and Boicourt (1986). Zhang et al. (1987) used an analytical model together with observations to examine the behavior of three different river plumes including the CB plume. Unlike many other studies, Zhang et al., emphasized the importance of the prevailing alongshore flow in determining the directionality of the plumes. For CB, their model results indicated that bottom steepness is an important factor in influencing flow characteristics of the plume beyond the mouth of the Bay.

Using a layer model, Garvine (1987) demonstrated that plumes which are affected by earth rotation initially develop fronts along their outer boundary. As further development takes place, the plume turns toward the coast under the influence of the Coriolis effect, and, finally, a coastal current develops further downstream. Using a primitive equation model, Weaver and Hsieh (1987) found that when fresh water was released from a mid-latitude estuary onto the continental shelf, a first baroclinic-mode Kelvin wave propagated into the estuary,
and along the continental shelf in the direction of a coastal trapped wave. Numerical techniques developed by O’Donnell (1990) were employed in a model to investigate the unsteady behavior of small-scale river plumes. He found that tidally-reversing crossflows diluted the plume through vertical mixing immediately following high and low tides.

Oey and Mellor (1993) examined the evolution and variability of an estuarine plume, and its associated coastal front and coastal current. The plume and front were found to be unsteady with a period of 5-10 days. The plume pulsed and coastal currents propagated down the coast intermittently. Wheless and Klinck (1995) examined the evolution of buoyancy-driven flow over a sloping bottom using a two-dimensional, vertically-averaged numerical model. They found that the interaction of horizontal density gradients and a sloping bottom led to vortex stretching, cross-isobath flow, and the development of a cyclonic gyre further offshore, following outflow from a coastal estuary of dense, winter-like waters from a point source. Using the Princeton Ocean Model (Blumberg and Mellor, 1987) with a horizontal resolution of 0.25 km, Wheless and Valle-Levinson (1996), examined the exchange between an estuary and a sloping shelf through a narrow inlet. Buoyancy forcing and the semidiurnal tides were included. A radially spreading buoyant plume was formed over the shelf with strong anticyclonic flow along the front. Two tidally-induced asymmetric eddies were formed, one on each side of the inlet, which strongly influenced the circulation locally, reminiscent of the results obtained by Chao (1990).

The modeling studies referenced above have provided guidance for the present study. However, this study is unique because it incorporates all of the primary forcing elements that affect the behavior of the CB plume including the tides, winds, and river discharge within the framework of a realistic ocean forecast system.

2. THE COASTAL OCEAN FORECAST SYSTEM

The Coastal Ocean Forecast System is being developed by the National Weather Service, the National Ocean Service, and Princeton University to provide a regional ocean forecasting capability for U.S. coastal waters on an operational basis. The model is a three-dimensional, primitive equation, model (Blumberg and Mellor, 1987). This model uses a free surface and a free upper surface to parameterize the exchange of mass, heat, and momentum with the atmosphere. The model is coupled to the National Centers for Environmental Prediction’s (NCEP) high resolution ETA Model (McFarlane and Richardson, 1994) which provides lateral boundary conditions at three-hour intervals and a one-way coupler which has great potential for operational forecasting. The model utilizes NCEP’s GDEM to provide the model’s initial conditions and is dynamically spun up from rest. The model is driven by climatological tidal forcing along the coastal boundary. The model domain for the study area extends from 37°00’N to 39°00’N, 76°00’W to 78°00’W, with 205 grid points in the long

The model is driven by climatological tidal forcing along the coastal boundary. The model domain for the study area extends from 37°00’N to 39°00’N, 76°00’W to 78°00’W, with 205 grid points in the long
and direction of a coastal trapped eddy as predicted by O'Donnell (1990) were the unsteady behavior of small-lly-reversing crossflows diluted immediately following high and low

evolution and variability of an ingonal front and coastal current. The unsteady with a period of 5–
costal currents propagated down the shelf on a sloping bottom using a two-
erial model. They found that gradients and a sloping bottom flow, and the development of
owing outflow from a coastal front or point source. Using the model (Blumberg and Mellor, 1987) with a horizontal
nd Valle-Levinson (1996), entrance and a sloping shelf through the semidurnal tides were
ume was formed over the shelf front. Two tidally-induced tides on each side of the inlet, which
ally, reminiscent of the results
ove have provided guidance for y is unique because it incorporates phenomena that affect the behavior of
s, and river discharge within the the water

CAST SYSTEM

being developed by the National Service, and Princeton University ing capability for U.S. coastal

ters on an operational basis. It is based on the Princeton Ocean Model, a three-dimensional ocean circulation model (e.g., Blumberg and Mellor, 1987). This model is based on the primitive equations, employs a free upper surface, and has a second order turbulent closure submodel to parameterize mixing (Mellor and Yamada, 1982). COFS at the present time produces 24-hour forecasts of temperature, salinity, the three components of velocity, and surface elevation. COFS is coupled to the National Centers for Environmental Prediction's (NCEP's) high resolution ETA regional atmospheric forecast model (Black, 1994) which provides surface fluxes of heat, moisture and momentum at three-hour intervals. Coupling between the atmosphere and ocean is one-way which has generally proven to be satisfactory for real-time forecasting. The model is reinitialized every 24 hours with the previous day's forecast. The U.S. Navy's Generalized Digital Environmental Model (GDEM; Teague et al., 1990) is used to provide the model's initial conditions for temperature and salinity when it is initially spun up from rest. The current version of COFS includes astronomical tidal forcing along the open boundaries and body forcing within the model domain for six tidal constituents (Chen and Mellor, 1998). The model is driven along its open boundaries with climatological estimates of temperature and salinity from GDEM, and constant volume transport which is specified separately.

Fresh water inputs are specified for 16 rivers, bays and estuaries along the U.S. East Coast and are based on monthly climatological data (Blumberg and Grehl, 1987; Koutitonsky and Bugden, 1991). In the model, the outflow from CB (and the other rivers, bays and estuaries within the model domain) is specified as a volume flux from a single grid point (i.e., a point source) located at the mouth of the Bay at 37.02°N, 76.05°W (P. Chen, 1998, personal communication). A salinity of zero psu and an injection velocity of zero are initially assigned to the outflow. This fresh water is mixed with saline water from the previous time step in the surrounding grid cell to produce water

3One exception is for hurricanes, and, as a result, two-way coupling may be implemented in the future.
4The assignment of zero velocity to the water discharged from CB is consistent with the results of Wang and Kravitz (1980) and Chao and Boicourt (1986) who both indicated the importance of the potential energy associated with the plume, and not its kinetic energy in influencing its behavior over the shelf.
of lower salinity. The lower salinity is calculated according to

\[S_t(x, y, z) = S_{t-1}(x, y, z) - V F_t \ast (2.0 + D_t / H + D_{t+1}/H) \ast (2.0 \ast \Delta T) / A(x, y) \ast D_t \]

where \(S \) is the salinity at time steps \(t \) and \(t-1 \) for location \(x, y, \) and \(z \), \(V F_t \) is the volume flux in \(\text{m}^2/\text{sec} \) at time \(t \), \(D_t \) is the \(t \)th depth, \(H \) is the bottom depth, \(\Delta T \) is the internal model time step, and \(A \) is the area of one grid cell. The outflow is distributed vertically so as to provide a linear decrease with depth. This is accounted for above by the term \((2.0 + D_t/H + D_{t+1}/H)\). If the mean outflow, \(Q_m \), is assigned to the middle of the volume, then the flow at the surface is approximately \(2 \ast Q_m \), and the flow at the bottom is approximately equal to zero.

The model employs a terrain-following sigma coordinate system in the vertical, and a curvilinear grid in the horizontal. The model has 18 layers with increased vertical resolution in the mixed layer and the upper thermocline. The spatial resolution increases from 20 km offshore to 10 km near the coast. The coastal boundary corresponds to the 10 m isobath. A no-slip boundary condition is employed at the coast which produces a boundary layer whose thickness is less than one half the distance between grid points. Because the Arakawa C staggered grid system is used in the model (O’Connor, 1991), the velocity components are zero on the coastal boundary, and the nearest non-zero velocities are one-half grid cell away from the coast. The model bathymetry is based on the U.S. Navy’s digital bathymetric database with 5-minute resolution (DBDB-5) and 15-second resolution digital data from the National Ocean Service over the shelf. Finally, ocean data assimilation is underway and uses in situ SSTs and satellite retrievals of SST from the Advanced Very High Resolution Radiometer. Ongoing evaluations of COFS which include data assimilation have shown significant improvement in model performance over model runs without data assimilation (Kelley et al., 1997).

3. THE SCANNING LOW-FREQUENCY MICROWAVE RADIOMETER

The ability to measure surface salinity over the ocean can be traced back to at least 1977 when Blume et al. (1978) estimated sea surface salinity from an airborne radiometer in the vicinity of the

Airborne microwave radiometer to monitor sea surface temperature and the salinity, see Goodfellow and O’Connor (1993), to changes in salinity of 1 psu, or better, by using small single-frequency HF stream flows of 1 km for a 10 km path of 2.5 km. Reccomendation for the

4. THE EXPERIMENT

Hurricane Frederic greatly increased the interest in data assimilation. Data from the 14 and 20, 1989, our model results remained excellent. We chose the Bay which is the largest rivers in percent of the U.S. included to accurately, ground wa
Salinity from microwave measurements of brightness temperature from an airborne radiometer. Kendall (1981) used an L-band microwave radiometer aboard an aircraft to measure surface salinity in the vicinity of the CB plume as part of the Superflux II experiment.

Airborne measurements of surface salinity off the mouth of CB and Virginia Beach have been made on several occasions during the past two years using a recently-developed salinity mapper called the Scanning Low-Frequency Microwave Radiometer. The salinity mapper is an L-band passive microwave radiometer operating at a frequency of 1.413 GHz. The salinity mapper also has a dual-channel infrared radiometer to measure SST which is also required in the measurement of sea surface salinity. For a more detailed description of this instrument and the factors which affect the measurement of sea surface salinity, see Goodberlet et al. (1997). Although the instrument’s sensitivity to changes in salinity is somewhat limited, it can provide an accuracy of 1 psu, or better, in most coastal areas. The mapper is mounted on a small single-engine aircraft and has the capability to produce maps of surface salinity at the rate of 1000 km² per hour with a spatial resolution of 1 km for an aircraft speed of 50 m/sec operating at an altitude of 2.5 km. Recent applications are described in Miller et al. (1998).

4. THE EXPERIMENT

Hurricane Fran produced an extreme rainfall event which resulted in greatly increased outflow of low salinity water from the mouth of CB. Data from the salinity mapper were available on two dates (September 14 and 20, 1996) following HF which provided a means of validating our model results at least over the near-field region of the plume domain. We chose the simplest scenario for generating outflows from the Bay which were computed from August 15–September 20, 1996 in response to the river inflows that took place before, during, and following HF. These outflows were generated by summing up the observed streamflows from the U.S. Geological Survey gages for the nine largest rivers that flow into CB. These account for approximately 93 percent of the surface input into CB. An additional 7 percent was included to account for surface water input from all other sources. Finally, ground water entering the Bay was accounted for by taking 10 percent
of the total surface input and adding it to the total daily surface water input to CB. The resulting discharge function does not take into account the time required for the riverine waters to circulate through the bay system. As a result, the discharge is treated as a single pulse in the outflow which occurs over a period of just a few days in early September following the passage of HF. A more realistic discharge function would have distributed the outflow volume over a much longer period. The resulting discharge function created conditions that were expected to have maximum impact on the model-generated plume. Figure 1 shows the discharge function based on daily values of stream flow together with the discharge time history based on climatology. A volume of water more than ten times greater than the climatological outflow for September was discharged between 6 and 10 September, 1996.

Two model runs were conducted: a control run which used outflows based on the existing climatological data, and a separate hindcast run which used the daily outflows from the discharge function depicted in Figure 1. Both runs were initiated on August 15, 1996, approximately 30 days prior to the period of interest. The model output for each date is valid at 2400 UTC on the day in question. Figure 2 shows the study area and the model grid point locations for all grid points in water depths of 10 m or greater. Surface forcing from the ETA regional atmospheric forecast model was identical for both COFS runs. Three dates were considered in generating plumes of low salinity water off the mouth of CB from COFS: September 8, 14, 20, 1996. The first date corresponds to the time of maximum outflow from CB following HF (Fig. 1 – no corresponding salinity map was available for this date), and the last two dates correspond to times when salinity maps were available.

The two variables of primary interest in this study are salinity and velocity (x and y components) in the top layer of the model. The exact depth of these “surface” variables corresponds to the mid-depth of the top layer in the model. This layer depth, in turn, depends on bottom depth because of the sigma coordinate system which is used. However, near the mouth of CB, it is always less than one meter. To suppress the influence of the tides, the salinities and currents have been daily-averaged.

5Satellite maps of sea surface temperature (SST) were also examined, but the gradients in SST in the area of interest were less than 0.05°C/km.
At the mouth of the river, the water is very salty, and it responds to the tidal cycle. The riverine waters mix with the estuarine water, creating a plume that spreads out into the ocean. The plume is characterized by the density and salinity of the water, which affects the movement of the plume in the bay.

![Discharge function showing daily volume outflow](image.png)

FIGURE 1 Discharge function showing daily volume outflow (solid curve) for Chesapeake Bay from August 15 through September 20, 1996. Details on how the function was computed are given in the text. The monthly climatological outflow employed in the COFS control runs is shown by the dash-dot curve.
FIGURE 2 Model grid point locations for the study area. Dotted contours indicate bottom depths in meters.
The salinity data used in this study were acquired with an airborne salinity mapper on two separate dates, September 14th between 1845 and 2149 UTC, and September 20th between 1910 and 2207 UTC, 1996. These data were collected aboard a DeHavilland Beaver aircraft which is owned and operated by the Virginia Institute of Marine Science. The maps of surface salinity produced by this instrument are shown in Figure 3. They were constructed from 10 east-west parallel
flight lines flown at an altitude of approximately 2.6 km. The area covered was about 2500 km² at a spatial resolution on the ground of approximately 1 km.

5. RESULTS

5.1. Plume Characteristics

The results of the model runs for surface salinity, using the climatological outflows (control runs), and the daily outflows (hindcasts) are shown in Figures 4, 5 and 6 for September 8, 14, and 19, respectively. The surface salinities are shown in the top panel for the control runs and in the bottom panel for the hindcasts, for each date. Because of the relatively large discharge that was specified for the period between 6 and 10 September, a significant impact on plume structure for the hindcast runs was anticipated. Indeed, in the immediate vicinity of the bay mouth, salinities as low as 10 psu were predicted by the model using the daily discharge function, whereas, the control run only forecasted salinities as low as 28 psu in the same area (Fig. 4). At this early stage, the impact of the anomalous outflow extended out to approximately 50 km offshore. Almost a week later on September 14th, major differences between the two runs are apparent. Salinities as low as 27 psu exited the Bay in the hindcast, while the lowest salinities for waters leaving the Bay in the control run were 31 psu (Fig. 5). Perhaps even more significant is the spatial extent of the low-salinity waters associated with the hindcast which extend almost 60 km offshore out to the position of the 36 psu isopleth. It is important to note that, although the location of the 36 psu isopleth in the model lies this close to shore, in reality, waters with salinities in this range are located considerably further offshore, usually within the Gulf Stream. The reason for this intrusion of higher salinity water off the mouth of CB is due to the fact that the model-generated Gulf Stream tends to follow the bathymetry around Cape Hatteras for a short distance, creating a fictitious meander just north and east of the Cape, rather than separating correctly and

The model output for September 19th was used since it was actually closer to the time when the salinity observations were acquired.
approximately 2.6 km. The areal resolution on the ground of surface salinity, using the climatological daily outflows (hindcasts) for September 8, 14, and 19, shown in the top panel for the hindcasts, for each date. A high significant impact on plume structure was indicated. Indeed, in the immediate area, salinities as low as 10 psu were predicted by the model, whereas, the control run showed salinities of 31 psu in the same area (Fig. 4). At the surface, an anomalous outflow extended out to a depth of 16 m at a week later on September 14th, as is apparent. Salinities as low as 10 psu were predicted by the model, while the lowest salinities for the control run were 31 psu (Fig. 5). Perhaps most important to note that, although the model lies close to shore, the isobaths are located considerably offshore, indicating that the Gulf Stream. The reason for this is that the mouth of CB is due to the fact that the model tends to follow the bathymetry instead of the bathymetry, creating a fictitious meander rather than separating correctly and used since it was actually closer to the time...
FIGURE 5 Same as Figure 4 except that the date is September 14, 1996. The area enclosed by the box outlined with light thick lines is the area covered by the salinity map for the same date displayed in Figure 3 (upper panel).

FIGURE 6 Same as Figure enclosed by the box outlined w for the same date presented in
FIGURE 6 Same as Figure 5 except that the date is September 19, 1996. The area enclosed by the box outlined with light thick lines is the area covered by the salinity map for the same date presented in Figure 3 (lower panel).
flowing directly offshore at this location. Although this problem is apparently common to other ocean circulation models (Dengg et al., 1996), it has recently been corrected to some extent in COFS through the assimilation of satellite-derived SSTs (Kelley et al., 1997).

Although the plume initially follows the coast south of Cape Henry, further offshore it turns cyclonically to the northeast. This curvature, which is evident in both runs, is particularly apparent in the hindcast. A weak low-pressure system moved through the area on 12 September with wind speeds of up to 14 m/sec generally from the south and may have contributed to a greater offshore transport of water and cyclonic rotation of the plume. The axis of the plume in the hindcast extends south of Cape Henry to approximately 36.6°N and is located roughly 10 km offshore. According to the observations of Boicourt et al. (1987) and the model results of Chao (1988b), winds from the south (i.e., upwelling-favorable) cause the plume to spread seaward due to the influence of Ekman transport. These results are also in general agreement with past observations in this area acquired during periods of high seasonal outflow from the Bay (Ruzek, 1981). Also, the additional waters which were discharged onto the shelf in the hindcast, sharply increased the salinity gradients in several locations favoring frontal intensification, i.e., frontogenesis, locally. Comparisons of the model-generated salinities near Cape Henry just inside the Bay and near the coast south of Cape Henry (Fig. 5), with observed salinities from the salinity mapper, show that the salinities from the hindcast (∼26 psu) are much closer to the observed salinities (≤ 20 psu) than are the salinities from the control run in this area (∼31 psu). Also, the stronger gradients indicated in the hindcast appear to be generally more consistent with the gradients observed in the data from the salinity mapper than are the gradients produced in the control run. The actual gradients from the salinity mapper for the 14th were as high as 1.4 psu/km northeast of Cape Henry compared to gradients as high as 0.5 psu/km from the model hindcast in the same area. Because the spatial resolution of the model is approximately 10 km in this region (Fig. 2), the strength of the gradients from the model were not expected to match the gradients estimated from the salinity mapper which has a resolution in the neighborhood of 1 km.

The shape of the plume in the hindcast changed from the 14th to the 19th (Fig. 6), and the offshore extent was somewhat reduced. The axis of the plume, rather than following the coast. The plume retractions particularly prominent due to volume fluxes (Fig. 1). Thus, based on the plot of surface wind for the 17th, a second, deeper, with maximum wind from the south and the wind direction change pressure system, the plume close to the model. However, the model may have been to confine the plume close seaward interpreted. A comparison between the 14th and 19th shows that northerly winds plume to spread seaward interpretation. A comparison shows that the salinity mapper with the model reveals that the observed salinities the salinities of the hindcast appreciably from the map. The observed salinities the 19th (10-15 psu) that the salinities on the 19th at least 5 psu lower off. These lower salinities of the freshwater outflow surface salinity between the model hindcast runs, shows a slight increase between 17th and 19th Significant difference much further so in the control run (∼4 vs. 5 psu) as a result, is more consistent with the stronger gradients.
of the plume, rather than turning cyclonically, more-or-less parallels the coast. The plume structure for the control run indicates contractions particularly for isopleths between 32 and 35 psu where forcing due to volume flux at the mouth was maintained at a constant level (Fig. 1). Thus, based on past observations and model results, the effects of surface wind forcing should also be considered. On September 17th, a second, deeper low-pressure system moved through the area with maximum wind speeds of at least 17 m/sec which were initially from the south and then shifted to the northwest on the 18th. Because the wind direction changed significantly during the passage of this low-pressure system, the net effect of the winds is not intuitively clear. However, the model results suggest that the overall effect of the winds may have been to constrain the development of the plume at least between the 14th and 19th of September. Boicourt et al. (1987) found that northerly winds suppressed the seaward development of the plume close to the mouth of CB, whereas, southerly winds caused the plume to spread seaward. Our results are generally consistent with this interpretation. A comparison of the salinity maps from the salinity mapper with the model-generated salinity maps for the 19th again shows that the salinities from the hindcast near Cape Henry just inside the Bay and further south along the coast are much closer to the observed salinities than are the salinities from the control run. Neither the salinities of the hindcasts, nor those of the control runs changed appreciably from the 14th through the 19th near the bay mouth, while the observed salinities near Cape Henry were significantly lower on the 19th (10–15 psu) than they were on the 14th (15–20 psu). Observed salinities on the 19th are not only lower near Cape Henry, but are at least 5 psu lower offshore over most of the region that was mapped. These lower salinities on the 19th may reflect the increasing influence of the freshwater outflow which resulted from HF. This decrease in surface salinity between the 14th and the 19th is not obvious in the model hindcast runs, even though the hypothetical discharge function shows a slight increase in outflow (from ~3400 to ~5400 m³/sec) between 17th and 19th September. On the 19th, the low salinity plume extends much further south along the coast in the hindcast than it does in the control run (~40 km further south for the 34 psu isopleth), and, as a result, is more consistent with the observed data. As on the 14th, the stronger gradients in the hindcast compared to the control run on
the 19th are again in better agreement with the salinity gradients in the observed data from the salinity mapper. On this occasion, actual gradients from the salinity mapper northeast of Cape Henry are of the order of 1.4 psu/km, and from the model are again only as high as 0.5 psu/km.

5.2. Model-generated Currents

Model-generated surface currents for the 8th, 14th, and 19th of September are shown in Figures 7, 8, and 9, respectively. As indicated earlier, these currents were daily-averaged to reduce the impact of the astronomical tides. For each date, the panel in the upper left shows the results from the control run, the panel in the upper right, the results from the hindcast, and below, the vector difference (hindcast minus control). As stated in Section 2, the coastal boundary for the velocity components is located approximately 5 km seaward of the coastal boundary in the model, i.e., the 10 meter isobath. The currents for September 8th (Fig. 7) are on the order of 30 cm/sec and clearly directed to the northeast for both model runs. Winds at the C-Man station located approximately 30 km off the mouth of the Bay were consistently from the southwest (200°-210°) for most of the day and, thus, primarily responsible for producing the observed patterns of flow in the model, allowing for 10°-15° of rotation to the right due to the Coriolis force. The difference pattern indicates the impact of outflow from the Bay at the three successive grid points nearest the mouth with a maximum speed of 25 cm/sec directed to the southeast. On September 14th (Fig. 8), the model-generated currents generally flow to the southeast with speeds of 15-30 cm/sec in response to winds which were consistently from the northwest. South of about 37°N, the direction of surface flow changes more to the south reflecting the influence of the circulation associated with the plume itself. The difference plot reveals four current vectors which overlie the area where the salinity gradient is a maximum. Although the direction of flow here may be unexpected, it is probably due to the fact that the model-generated plume does not lie against the coast, but is located further offshore, allowing return flow to develop along its southern flank. The model-produced currents on the 19th of September (Fig. 9) indicate surface flow to the south at speeds of 15-30 cm/sec. Again, the primary influence appears to be from the winds.
FIGURE 7 Surface currents from the Coastal Ocean Forecast System for September 8, 1996. Results from the control run (upper left) were obtained using monthly climatological outflows for Chesapeake Bay. The hindcast results (upper right) were obtained using a hypothetical discharge function based on a simple summation of the daily observed river inputs to the Bay. The vector difference between the hindcast and the control run are shown below.
which were from the north-northwest, allowing for slight, Coriolis-induced rotation. The difference map again shows several current vectors whose locations and direction suggest the influence of the strong salinity gradients associated with the plume. By differencing the control run and the hindcast, we have removed those elements which are common to both fields, which certainly include the effects of wind forcing, but have also removed any effects due to salinity forcing which were common to both fields. Thus, our attempt to separate the effects of wind and salinity forcing are most likely not complete. In any case, the importance of wind forcing on the surface flow is clearly apparent. These results are in good agreement with the effects of wind forcing contained in the observational results of Boicourt et al. (1987) and in the model results obtained by Chao (1986b). However, the impact of salinity forcing due to the strong salinity gradients in the region surrounding the plume is also evident, but not as obvious as the impact of wind forcing.

5.3. Subsurface Salinities from the Model

The primary emphasis so far has been on the surface manifestation of the low salinity plume that emanates from CB. Here, we examine the subsurface structure of the low salinity plume by displaying a sequence of 8 vertical profiles of salinity from COFS along a line of model grid points that is closely aligned with the axis of the plume (Fig. 10). Profile sequences for the 14th and 20th of September are displayed for both the hindcast (solid) and the control run (dotted). The average distance between profiles is 10.6 km, and the profile furthest offshore (profile 8) is approximately 75 km from the mouth of the Bay. Although the individual profiles vary significantly, there is a tendency for the strength of the halocline to weaken and the depth of the halocline to become shallower as we proceed offshore. The location of the halocline provides an indication of the depth that effectively separates the plume from the waters below. Based on all of the profiles shown (both dates), this depth appears to be a maximum of about 10 m near the mouth, but further offshore generally shoals to a depth of 5 meters or less. Detrainment or the loss of mass from the plume to the waters below may contribute to the gradual decrease in plume
FIGURE 10 A sequence of eight vertical salinity profiles extending along a line from the mouth of CB out to a distance of 74 km offshore for September 14th (upper sequence) and September 20th (lower sequence), 1996. This line corresponds approximately with the major axis of the CB plume. For each location, profiles from both the control run (usually of higher salinities) and the hindcast (usually of lower salinities) are included. The location of each profile is shown in the inset below.
thickness proceeding offshore (Chao and Boicourt, 1986). These model-generated halocline depths agree with plume depths inferred from in situ salinity data acquired beyond the mouth by Ruzecki (1981) where plume thicknesses varied from 5–8 m. On the 20th, the three profiles closest to the mouth indicate much lower salinities down to 10 m than the corresponding profiles on the 14th and may reflect the influence of the additional fresh water discharge that is indicated in Figure 1 between the 17th and 19th of September. However, further offshore, profiles on the 20th indicate slightly higher salinities within the plume at least out to the last two profiles. Major differences occur in the profiles between the hindcasts and the control runs for both dates near the mouth where the influence of the higher discharge associated with the hindcast is apparent, but these differences decrease further offshore and almost disappear for profiles 7 and 8.

Overall, the results indicate that (1) COFS has reproduced essential features associated with the CB plume, including its preferred location, length scales, evolution, and variability particularly for cases where the plume lies offshore in response to southerly winds, (2) major differences in plume structure occur using the daily versus the climatological discharge functions, including stronger salinity gradients along the periphery of the plume, (3) the structure of the plume responds quickly to rapid changes in volume flux at the mouth of the Bay and/or to changes in surface wind forcing, with time scales of several days or less, (4) a major reduction in surface salinity occurred in the immediate vicinity of the mouth of CB between the 14th and 19th of September, based on observations from the salinity mapper which were not reflected in the model results, (5) the effect of salinity forcing on the model-produced surface currents, although noticeable, was less important than the effect of wind forcing, and (6), the strength of the model’s halocline tended to weaken proceeding offshore, and that the depth of the halocline decreased from roughly 10 m near the mouth of the Bay to 5 m or so at distances of 60–75 km offshore.

6. DISCUSSION

In this section we discuss several issues directly related to the results which were presented earlier. These topics include the specification of the initial condition scales for the Bay, the importance of earth tides, and

6.1. Initial Conditions

From results presented salinities in the nearshore of September were observed from maps of surface salinity from the model hindcast differed only slightly from reality for a number of reasons.

First, because we are flows that resulted in backscatter lags for each inflow at any points may not be realistic. It would be necessary to take into account the period surroun-dered to determine the time required to travel the mouth where they were located.

Second, the volume of the lack of spatial resolution for bay outflow is introduced when in reality, the data and perhaps, by employing the model, we could have higher salinities at the observation of Holderi and vertical, a simple 0 decrease in transport. Based on the observations formulation with wat
with plume depths inferred beyond the mouth by Ruzekci (1986) from 5—8 m. On the 20th, the salinity decreased to much lower salinities down to 14th and may reflect the discharge that is indicated in September. However, further control runs for both profiles and the higher discharge at the COFS has reproduced essentially the salinity variations particularly for cases (3) the structure of the plume flow with time scales of insolation in surface salinity occurred during the initial and forcing, and (4) the volume flux at the mouth of the plume between the 14th and fifth from the salinity mapper results, (5) the effect of salinity current, although noticeable, and forcing, and (6), the strength of plume volume flux was specified for only one grid point due to the lack of spatial resolution near the entrance of the Bay. Thus, the bay outflow is introduced into the model domain as a point source, when in reality, the source should be distributed across the entire mouth. By employing a higher-resolution distributed source across the mouth, we could have prescribed lower salinities at the south end, and higher salinities at the north end, in accordance with the recent observations of Holderied and Valle-Levinson (1997), for example. In the vertical, a simple one-layer approximation that provided a linear decrease in transport with depth was used to distribute the outflow. Based on the observations of Valle-Levinson et al. (1997), a two-layer formulation with waters of lower salinity leaving the Bay in the upper

6.1. Initial Conditions at the Mouth of the Bay

From results presented in the last section, the model-generated salinities in the near-field region of the plume for the 14th and 19th of September were not necessarily consistent with the corresponding maps of surface salinity from the salinity mapper. Near-field salinities from the model hindcasts where the daily discharge function was used differed only slightly for the two dates, whereas the results from the salinity mapper showed that the near-field salinities had actually decreased significantly (−5 psu) over the same time period. The plume structures which were generated in the various model runs may depart from reality for a number of reasons.

First, because we used a discharge function which treated the outflows that resulted from HF as a single pulse rather than including lags for each inflow component, the outflow from CB that was specified may not be realistic. In order to construct a realistic discharge function, it would be necessary to run a 3-D circulation model for CB with initial conditions, surface forcing, and boundary conditions appropriate for the period surrounding HF. Such a model could be used to determine the time required for riverine waters entering the Bay at various locations to travel through the bay system until they arrived at the mouth where they would be combined to produce a realistic outflow.

Second, the volume flux was specified for only one grid point due to the lack of spatial resolution near the entrance of the Bay. Thus, the bay outflow is introduced into the model domain as a point source, when in reality, the source should be distributed across the entire mouth. By employing a higher-resolution distributed source across the mouth, we could have prescribed lower salinities at the south end, and higher salinities at the north end, in accordance with the recent observations of Holderied and Valle-Levinson (1997), for example. In the vertical, a simple one-layer approximation that provided a linear decrease in transport with depth was used to distribute the outflow. Based on the observations of Valle-Levinson et al. (1997), a two-layer formulation with waters of lower salinity leaving the Bay in the upper
layer and waters of higher salinity entering the Bay in the lower layer would have been much closer to reality.

Third, we assigned a value of 0 psu to the volume flux from CB in our model runs, and even with a value this low, results near the mouth indicate that the model-generated salinities were too high, particularly for the 14th and the 19th of September. Clearly, the assignment of appropriate values for salinity in the near-field is problematic. Finally, although no injection velocity was assigned to the volume fluxes which were specified in our model runs, previous work by Wang and Kravitz (1980) and Chao and Boicourt (1986) indicates it is the potential energy associated with the plume and not the kinetic energy that is most important in influencing the circulation which is induced by the discharge of low salinity water onto the shelf.

Further offshore in the far-field region where realistic atmospheric forcing and other environmental factors could be incorporated, the overall position and orientation of the plume appears to be in reasonable agreement with past observations of this feature (e.g., Munday and Fedosh, 1981; Boicourt et al., 1987). However, on closer inspection, several factors affect the geometry of the model-generated plume which may cause the exact position and orientation of this feature to be unrealistic. First, the origin for the model where the volume flux is specified is the single grid point located at 37.02 N, 76.05 W, a distance of 5 km west-northwest of the actual bay mouth. Although this is a relatively small distance, it alters the path taken by the discharge out of the Bay and onto the shelf, resulting in a small but noticeable difference in the preferred location of the plume at greater distances away from the mouth. Second, the coastal boundary in the model is the 10 m isobath and not the coast itself, a factor which prevents the plume from "hugging" the coast, as it often does, particularly under the influence of winds from the north. According to Chao (1990) on summarizing the results of Boicourt et al. (1987), there appear to be two dominant patterns that characterize the CB plume. Under the influence of winds from the north, the seaward extension of the plume is suppressed and it tends to lie next to the coast south of Cape Henry with an intensified coastal jet that follows the coast further down stream. Under the influence of winds from the south, the plume tends to spread seaward with its axis lying further offshore and oriented in a generally southwesterly direction. Based on the ability of COFS to generate plumes for each of the two situations described by Chao, it appears that the model has a tendency to do so when surface winds are blowing along the coastal boundary rather than at the coast, as observed for the discharge of the plume from lying on the shelf.

6.2. Estimating A

Previously, in Section 5.1 we estimate the time taken for various locations of surface gravity waves to reach the coastal boundary. Since the wavelength, the period and the speed of propagation are given, we used our assumption that the waves propagate as riverine waves traveling down the Bay as a function of time. This approach was justified for a significant fraction of the plume due to the results in better agreement with the observations. Hess (1986) also employed this approach, and found that flows into the Bay tended to occur with delays propagating down the coastal boundary. The results for the aftermath of the plume were not observed to exhibit significant delays. We also considered the effects of unsteady three-dimensional flow. According to Walstad et al. (1997), the plume was no stronger for the internal (i.e., coastally trapped) component of the water depth c.
appears that the model will produce more realistic plume behavior when surface winds are from the southern sector. This is true because the coastal boundary in the model is located at the 10 m isobath instead of at the coast itself, a constraint which effectively prevents the plume from lying next to the coast.

6.2. Estimating Advective Time Scales for the Bay

Previously, in Section 4, we mentioned the fact that it is difficult to estimate the time required for riverine waters that enter the Bay at various locations to reach the mouth. For barotropic waves, i.e., surface gravity waves, where the water depth, h, is small compared to the wavelength, the phase speed, c, is given by $(gh)^{1/2}$, where g is the acceleration due to gravity. A simple calculation in this case yields time scales on the order of a day or less for shallow-water (i.e., barotropic) waves to propagate through the Bay. This time scale is consistent with our assumption that there are no significant lags associated with riverine waters traveling through the Bay. However, this assumes that the Bay acts as a one-layer system, and, clearly, this is not the case for a significant fraction of CB where a two-layer approximation is in better agreement with observations (e.g., Pritchard, 1952; Wang, 1979). Hess (1986) calculated flow rates for suddenly increased river flows into the Bay and found that increased flows at the mouth occurred with delays of one-to-three tidal cycles, with the increased flow propagating down the Bay at gravity wave speeds. However, during the aftermath of Tropical Storm Agnes (6/72), minimum salinities were not observed at the mouth of the Bay until about a month after peak flooding (Schubel et al., 1976). Holderied and Vallee-Levinson (1997) also employ a one-month lag to account for the time required for the effects of river discharge to reach the mouth of the Bay. According to Walstad (personal communication), advective time scales for the internal (i.e., baroclinic) mode range from 10 to 30 days. Such delays would argue against a simple one-layer approximation following major discharge events from the Bay. For a two-layer system, the phase speed for waves where the wavelength is much greater than the water depth can be expressed as

$$c = \left[g \left(\frac{h_1}{h_1 + h_2} \right) \frac{\rho_2 - \rho_1}{\rho_1/\rho_2} \right]^{1/2}$$
difference between the plume and the layer below, the Kelvin number will be seasonally dependent and should increase during winter when the density difference is a minimum.

7. SUMMARY AND CONCLUSIONS

The purpose of the work presented here has been to determine the ability of the Coastal Ocean Forecast System, given the existing model constraints, to portray the structure and evolution of the low salinity plume formed by the discharge of low salinity water from CB following a major discharge event. Realistic tidal and wind forcing were included. Monthly climatological outflow data for CB that are used routinely in the model were also included in a parallel model run in order to determine the impact of discharge from the Bay on the behavior of the plume. Observations of surface salinity from a recently-developed airborne microwave radiometer, i.e., salinity mapper, were included for comparison with, and evaluation of, COFS, particularly in the near-field region of the plume. In the absence of observations, a discharge function was constructed to specify the outflow from CB following HF based essentially on a simple summation of the major river inputs. This scenario is consistent with waters which travel through the Bay at barotropic wave speeds, but not consistent with baroclinic wave speeds which indicate circulation time scales on the order of a month. The resulting discharge time history concentrated the primary outflow over a period of just 3 days or so, producing what was expected to be the maximum impact on the behavior of the low salinity plume.

The salinity maps from the salinity mapper revealed a significant reduction in surface salinity near the bay mouth between the 14th and the 19th of September 1996. The model-generated salinity maps, however, did not indicate such a trend. This discrepancy can be attributed to the inherent difficulties in specifying the initial conditions at the mouth of the Bay including a discharge function which was most likely unrealistic, and the relatively coarse spatial resolution of the model. Although the salinity maps from the airborne radiometer extended only 20–25 km offshore and covered primarily the near-field region of the plume, the model results extended almost 100 km offshore and, thus, covered.

We have no direct verification from the bay mouth, but more realistic due to the interaction with, such factors as atmospheric action with the prevailing wind. The plume structure in the far field region are consistent with general agreement with past observations, by a separate calculation which clearly indicated the necessity of the coastal boundary current and not to the coast with the proper location a kilometer away from the coast which would otherwise be the case.

A major result from the monthly climatological outflow function based on daily observed flow data and significant improvements in the model are the results obtained from the model runs. In particular, the model results were much more consistent with observations than the model results, which were not always as realistic as observed conditions.

The surface circulation patterns, as influenced by the local wind and temperature gradient, agreed very well with the model output. The changes in wind forcing, however, were not as realistic as the model output. As the model was forced to characterize
The layer below, the Kelvin number would increase during winter when offshore and, thus, covered the far field region of the plume as well. We have no direct verification of the model results beyond ~25 km from the bay mouth, but our expectation is that they should be far more realistic due to the increasing influence from, and/or interaction with, such factors as atmospheric forcing, earth rotation, mixing, interaction with the prevailing circulation, and possible bathymetric influence. The plume structures that were generated in the model in the far field region are consistent with this interpretation, and are in general agreement with past observations of this feature. In this regard, the modeled plume displayed the effect of earth rotation by turning to the right along the coast south of Cape Henry, in general agreement with past observations. This result was further supported by a separate calculation of the Kelvin number which yielded a value that clearly indicated the importance of earth rotation. However, because the coastal boundary for the model corresponds to the 10 m isobath and not to the coast per se, the model should produce a plume with the proper location and orientation in cases where it is located away from the coast which often occurs when the prevailing winds are from the south.

A major result from the simulations was that our use of a discharge function based on daily observed river inflows to the Bay showed significant improvements in characterizing the plume as compared to the monthly climatological outflow time history that is presently used in the model. In particular, the salinity gradients in the region of the plume were much stronger for the hindcasts than they were for the control runs. Based on these results, it is recommended that daily observed and forecast outflows be used in the COFS wherever they are available within the model domain in place of the climatological outflows that are presently used.

The surface circulation off the mouth of the Bay was strongly influenced by the local winds and to a lesser, but noticeable, extent by the strong salinity gradients around the periphery of the plume, according to the model results. Also, the structure of the plume changed rapidly in response to rapid changes in outflow from the Bay, to changes in wind forcing, or to both, on time scales of several days or less.

Although the primary emphasis in this study was on the ability of the model to characterize the surface manifestation of the CB plume,
the model was also used to construct a sequence of vertical profiles of salinity along a line close to the axis of the plume. The strength of the halocline tended to weaken offshore. Also, the depth of the halocline decreased from roughly 10 m near the mouth of the Bay to depth of 5 m or so at distances of 60–75 km offshore.

It is a difficult task to construct discharge functions that realistically portray the outflow from CB. This problem arises, first, because direct observations are lacking, and, second, because it is difficult to estimate the time required for riverine waters which enter the Bay at various locations to circulate through the bay system until they reach the mouth. Studies are needed to provide additional guidance in this area.

In the future the possibility of acquiring surface salinities on a regular basis would provide a new source of data which could be assimilated into coastal circulation models such as the COFS. This information would be particularly useful along the U.S. East Coast where a number of major rivers and bays feed directly into coastal waters.

Acknowledgments

Thanks to the following individuals for providing various forms of support and counsel during the period of this study: Frank Aikman, Carl Cerceo, Ping Chen, Richard Garvine, Mark Goodberlet, Zhen Li, Scott Philips, D. B. Rao, Arnoldo Valle-Levinson and Leonard Walstad. The NOAA Airborne Scanning Low Frequency Microwave Radiometer was developed under funding from the Small Business Innovative Research Program of the Department of Commerce. It is with deep sorrow that we acknowledge the death of Dr. Jim Zaitzef. Jim was essentially the inspiration behind the salinity mapper whose development he shepherded from its inception to its present status.

References

Army Corps of Engineers, 1975: Impact of Tropical Storm Agnes on Chesapeake Bay, Summary. Baltimore District, Department of the Army, p. 46.

tract a sequence of vertical profiles of axis of the plume. The strength of the bore. Also, the depth of the halocline at the mouth of the Bay to depth of 1 km offshore.

A discharge function that realistically this problem arises, first, because direct it is difficult to estimate which enter the Bay at various points in the bay system until they reach the provide additional guidance in this area.

acquiring surface salinities on a regular acquiring surface salinities on a regular the U.S. East Coast where a number of directly into coastal waters.

duals for providing various forms of period of this study: Frank Aikman, Mark Goodberlet, Zhen Li, and more.

 scanning Low Frequency Microwave under funding from the Small Business of the Department of Commerce. It is in the death of Dr. Jim Zaitzeff. behind the salinity mapper whose in its inception to its present status.

COLOR PLATE II Maps of surface salinity obtained from the Scanning Low-Frequency Microwave Radiometer for September 14 (upper panel) and September 20 (lower panel), 1996. "CC" refers to Cape Charles located at the north end of the entrance to Chesapeake Bay, and "CH" refers to Cape Henry located at the south end of Chesapeake Bay. The distance from Cape Charles to Cape Henry is approximately 15 km. Each pixel represents a one km² area. (See L. C. Broaker et al. page 325).