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The quality of analyzed ocean surface winds from the Global Data Assimilation System
(GDAS) and forecasted winds from the early or ‘aviation’ cycle of the global medium range
forecast model (AVIN) of the National Centers for Environmental Prediction (NCEP) is
assessed as part of a validation study of a new wave forecast system. This validation is
performed using conventional buoy data and satellite retrieved wind speeds from the ERSI
altimeter and scatterometer. Both GDAS and AVN wind fields are shown to include moderate
systematic biases, for which statistical corrections based on both satellite and buoy data are
presented. Furthermore, buoy data are shown not to be representative for a global validation
study.

The altimeter data are potentially of significant importance for wave model validations, as
they include collocated wind and wave measurements. The altimeter winds, however, are shown
to be seriously contaminated by the development stage of the wave field. As it does not appear
to be possible to remove this contamination, altimeter wind data should not be used in the
validation of wave models.
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1. INTRODUCTION

This paper presents the first part of a validation study of a new ocean wind-
wave forecast system at the National Centers for Environmental Prediction
(NCEP). Wave forecast systems consist of two parts; a model for near-
surface winds, and a model to predict waves based on these winds. The new
NCEP forecast system takes its wind from NCEP’s operational Global Data
Assimilation System (GDAS, Derber et al., 1991; Parish and Derber, 1992)
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and from the early or ‘aviation’ cycle of the operational medium range
forecast system (generally denoted as AVN, Kanamitsu 1989; Kanamitsu
et al., 1991). The wave model is a recent version of WAVEWATCH
(Tolman, 1991). This paper presents the validation and statistical correction
of the wind fields. Subsequent papers will present a validation of the wave
model and of the entire forecast system.

Wave heights approximately scale with the square of the wind speed. This
implies that an error of 10% in the wind speed leads to an error of 20% in
the wave height. Wave forecast errors therefore are often dominated by
errors in the wind fields, and it is thus important for both the forecast system

and for an intercomparison of wave models to obtain the best possible wind ~

fields. Here, the GDAS and AVN wind fields are validated and where
possible corrected using buoy observations and remotely sensed wind speeds
from satellites. These data cover a three month period from Dec. 1994
through Feb. 1995. .

Wind fields are generally validated with in situ measurements from buoys.
Unfortunately, buoy data do not provide global coverage (Fig. 1), and
hence the corresponding validation cannot claim global validity. Global
validation can only be obtained with satellite data. Of particular interest for
the present study are altimeter data, as they provide collocated wind and
wave estimates. Such collocated data can potentially be used to separate
wind input errors from wave model errors in a wave forecast system.
However, satellite-retrieved winds are generally inferred rather than direct

FIGURE 1 Buoy locations. Numbering as in Table L.
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measurementis. Because the algorithis are tuned or validated with buoy
data, their global validity is also in question. This is particularly true for the
aliimeter wind speeds, as they are potentially contaminated by swell. the
present study therefore also includes scatterometer daia from ERSI,

The wind driving the wave model is inhetently a vector quaniity. The
present study, however, concentrates on the scalar wind speed for several
reasons. (i) Potential impact: wind speed correction has a poientially large
impact on a wave model due to the roughly quadratic scaling behavier. Wind
directions are more or less uniformly distributed over its entire domain, and
are therefore expected io incorporate random rather than systematic errors,
(i) Data availability: the altimeter does not provide an estimate of the wind
direction, whereas the scatterometer wind directions require (subjective)
ambiguity removal (up to four solutions). This makes it difficult or even
impossible to consider the full wind vector A consistent analysis considers the
same parameter for all instruments, ie., the wind speed. (iii) Ease of
correction: wind speeds are easily correcied. For the GDAS winds, the
underlying assumption of such a correction could be that the weather
patterns are generally well analyzed, but that the corresponding wind speeds
have systematic biases. This is consisient with the experience of NCEP’s
operaiional {orecasters {personal communication). Vector wind corrections
are much more complicated. The additional complication is not jusiified by
the expecied small impact of correcting wind divectious. Note that scalar
wind speeds from GDAS and AVN at buoy locations and satellite tracks are
obtained by vector interpolation unless specified differently.

The layout of this paper is as follows. In Section 2 the wind fields and data
are discussed. In Section 3 analysis techniques are described briefly.

In Section 4, the GDAS and AVIN wind fields are validated against the
buoy data. In Section 5 the GIDAS and AVIN wind fields are validated with
satellite data. The latter wvalidation includes bias corrections and an
assessment of global validity of altimeier and scatterometer winds. In the
final discussion in Section 6 systematic and random errors of the GDAS and
AVN winds are separated, and statistical corrections for sysiematic errors
are suggested. Furthermore, the quality of altimeter wind speeds is
considered for the use in subseguent parts of this study.

2. WINDS

As described in the iniroduction, the wind fields of the wave forecast system
are obtained from WNCEP’s GDAS and AVIN. The 48h forecast will be




246 H. L. TOLMAN

considered representative for the forecast winds for the wave model and will

simply be denoted as the AVN winds. The spectral resolution of the wind .

fields is T126. For the use in the wave forecast, the lowest level winds are
extracted on 1.25° x 1° longitude-latitude grid. The winds are converted
from their nominal height of 35m to 10m assuming neutral atmospheric
stratification. The time interval between wind fields if 6h. In the wave
model, the wind speed and direction are separately interpolated in time to
hourly values. Compared to wind fields which are kept constant for 6h
intervals, this reduces the standard deviation relative to hourly buoy
observations by approximately 20%, with a minor impact on biases (figures
not presented). :

Hourly data for the 29 buoys presented in Figure 1 and Table I have been
obtained from the operational archive at NCEP. One of these buoys
reported wave data only, and is therefore not used in the present part of the

TABLE I Buoys used in the wave forecast system validation study

WMO ID Location Anemometer Region
number height (m)
1 46035 57.0°N 177.7°W 10.0
2 46003 51.9°N 150.9°W 5.0
3 46001 56.3°N 148.3° W 5.0
4 46184 53.9°N 138.8°W 5.0 A
5 46006 40.8°N 137.8°W 5.0
6 46005 46.1°N 131.0°W 5.0
7 46002 42.5°N 130.4°W 5.0
8 46059 38.0°N 130.0°W 5.0
9 51001 23.4°N 162.3°W 5.0
10 51003 19.2°N 160.8°W 5.0 B
11 51002 17.2°N 157.8°W 5.0
12 51004 17.5°N 152.6°W 5.0
13 32302 18.0°8 85.1°W 5.0
14 41018 15.0°N 75.0°W 5.0 e
15 42002 25.9°N 93.6°W 10.0
16 42001 25.9°N 89.7°W 10.0
17 41006 29.3°N 77.4°W 5.0
18 41002 32.3°N 75.2°W 5.0
19 41001 34.7°N 72.7°W 5.0
20 44008 40.5°N 69.4°W 5.0 D
21 44011 41.1°N 66.6°W 5.0
22 (44142) 42.5°N 64.2°W 5.0
23 44141 42.1°N 56.1°W 5.0
24 44138 44 2°N 53.6°W 5.0
25 62029 48.7°N 12.4°W 4.0
26 62081 51.0°N 13.3°W 4.0
27 62108 53.6°N 15.5°W 4.0 E
28 62105 55.9°N 14.2°W 4.0
29 62106 57.0°N 9.9°W 4.0
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validation study. NCEP obiaing this data from near real-time GOBS and
TS transmissions. All wind speeds have been converied {0 a COmINon
height of 10m, using the anemometer height as presented in Table I and
assuming neutral stratification. This data sei consisis of over 42,000
observations.

Two tynes of ERS1 products are available; the “fast delivery’ products,
which are distribuied in near real time, and the ‘operational’ producis,
which are distributed with some defay. Because the ERSI data are also
used in operational models, MCEP and the present stndy exclusively use
fast delivery data. The fast delivery data might be expecied to be of
somewhat lesser quality than the operational daia. This is not expecied (o
be a problem, because both systematic and random wind spesd erTors
ave expliciily estimated and accounted for in the present study (Sections 5
and 3).

ERSI fast delivery altimeter data include (amomngst others) a direct
measurement of the wave height, and an estimate of the wind speed based
on the algorithm of Witter and Chelton (1991). The wind speed is inferred
from high-frequency wave CUEIgY, and is potentially sensitive to the
development stage of the wave field and the presence of background swells
{e.g., Brown, 1979; Glazman and Pilorz, 1990; Lefevre ei al, 1994).
Furthermore, the algorithm saturates at high wind speeds, with a maximuin
ceiievable wind speed of approximately 21 ms ™ (Witter and Chelton, 1991).
These wind and wave data are regularly used at WCEP for validation of, and
data assimilation inio the operational global wave model. For this purpose,

“the original data are averaged along the satellite track for 10¢ iniervals

(corresponding to a 65km data separation) and quality controlled. These
averaged data are used in the present study (3.1 x 10° obs.), and will be
denoted as the ALT data.

Additional wind speed estimates are obiained {rom the ERS1 scatierom-
eter. These data are archived routinely at NCEP at their native resolutiorn,
and are obtained through the National Environmental Satellite Daia
Information Service (NESDIS). The fast delivery wind speeds (see Ofiller,
1994) are used without further averaging. These data will be denoted as the
SCAT data (8.9 x 1060bs.). Like the ALT wind speeds, the SCAT wind
speeds are inferred from high-frequency wave energy, and therefore have a
similar potential dependency on the stage of developrment of the wave field.
Due to a different look angle, the SCAT data are expected to be less
sensitive to swell than the ALT data. The SCAT wind speed is expecied to
saturate at high wind speeds, but the saturation level is not well
documented.
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3. ANALYSIS TECHNIQUES

Winds speed errors will be assessed in this study using (amongst others),

linear regression techniques and the analysis of model results for narrow
bins of observed wind speeds (bin-averaged or BA analyses). The first type
of analysis provides a simple and robust way to assess overall model
behavior. The latter analysis is more detailed, and is mostly used Lo assess
nonlinear model behavior and model behavior for high wind speeds.

In a linear regression analysis, the model wind speed u,, is approximated
as a linear function of the observed wind speed u,

U = a+ bu,, (1)

where b is the regression coefficient and « is the intercept. Regression lines
obtained with different techniques generally have the point (i,,u,) in
common, where the overbar denotes the average of all observations. In a
conventional regression analysis, the rms difference between (1) and the
model wind speed u,, is minimized. If the observations are free of errors, this
technique gives an accurate estimate of the model behavior, and (1) can be
used to estimate the model bias. In most studies, however, the observation
includes a noticeable random error due to instrument errors, data
truncation, collocation, scale differences between model and observations,
ete. In such conditions, a conventional regression analysis systematically
underestimates the regression coefficient b (e.g., Lindley, 1947; Ricker, 1973;
Draper and Smith, 1981; Section 2.14), which in turn introduces systematic
analysis errors if (1) is used to estimate the model bias. If the observation
error can be estimated, such analysis errors can be largely corrected
(Tolman, 1998). The corresponding regression coefficient is estimated as

B OB 2)

ot

’500

where s,, = u_g — u—g is the variance of the observations, s,,; = Wotly, — Hpllm,
is the covariance of the data, and &, is a standard deviation of the random
observation error, representative for the entire data set.

in a BA analysis the mean model wind speed %, (u,) and the random
model error o,,(u,) are determined for a number of small wind speed
intervals (‘bins’) éu,. The finite bine size éu, induces an overestimation of the
random model error, and a random observation error o,(u,) induces (i) a
systematic underestimation of extreme wind speeds, (ii) spurious nonlinear-
ity in the analysis, and (iii) an overestimation of the random model error
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(Tolman, 1998). If o,(u,)} can be estimated, the errors of a BA analysis can
be estimated by (iteratively) conveluiing the data with the observation error.
The error-corrected BA analysis is implemented here as described in Section
4 of Tolman (1858).

Below, the error-correcied regression (2) and BA. analysis will be denoted
simply as regression and BA analyses.

4. VALIDATION WITH BUOQY DATA

First, the GDAS and AVIN wind fields will be validaied wiih buoy data. The
above analysis technigues require an estimate of the random observation
error. This estimate is discussed in the appendix.

Figure 2 shows results of the validation of the GIDAS winds with all buoy
data. In the BA analysis a bin width of 1 ms™' and 2 minimum number of
observations of 20 and 40 have been used for the bias § = u,, — 1, and the
random error, o, respectively. The GDAS moderately overestimates small
wind speeds (o in panel 2, u < 10ms™"), and underestimates higher wind
speeds. This bias is a nearly linear function of the observed wind speed w,
and closely follows the regression line {compare o and dashed line in panel
a). Although the uncertainty in the BA analysis due to the uncertainty in the
estimate of the observation error is appreciable (shaded area), it does not
influence results qualitatively. The GDAS wind fields indeed incorporaie
less exireme wind speeds than the corresponding buoy data, as is illusirated
in Table II. The estimated random error (o in panel b) is approximately
1.3ms™", for wind speeds up to 15ms™", and increases somewhat for higher
wind speeds. Note that good validation statistics againsi buoy data might be
expected, as some of the buoy data are used in the GDDAS analysis.

Figure 3 shows the corresponding resulis for the AVN winds. As
expected, biases () and random errors (o) are larger than for the GDAS,
but are qualitatively simnilar for the bulk of the data (5 <u < 15 ms~"). For
wind speeds over 20ms ™!, which represent only 0.7% of all data, the AVIN
shows a strongly nonlinear negative bias (o in Fig. 3a). In contrast, the
exireme wind speed distribution of the AVIN follows observations even
tetter than the GDAS (Tab. II). Thus, the strongly negative bias for
1> 20ms™" does not identify a systematic underestimation of extreme
events, but has to be attributed to random errors in the location and
strength of such events.

The large number of buoy data makes it possible to assess the quality of
the winds fields for separate regions. Regions considered are (A) the Gulf of
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FIGURE 2 Bias 3 (panel a) and standard deviation of random error o (panel b) as a function
of the observed wind speed u for the GDAS winds relative to buoy observations. »: BA analysis
with 1 m/s bin width and a minimum of 20 observations for J and 40 observations for 7. a = 0.7
and o = 0.13 in Egs. (A2) and (A3). Light shading: results for 0.6 < a < 0.8 and -y, varying as
in Table Al. Dark shading: variation of 7, only. Dashed line: linear regression.

TABLE II  Distribution of extreme wind speeds in the collocation of GDAS and AVN winds
with buoy data. Total number of data 42,171. ‘cor.” denotes GDAS wind speeds corrected

according to Eq. (4)

u> Number of occurrences

(ms™") Buoy GDAS Cor. AVN
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FIGURE 3 Like Figure 2 for the AVN winds.

Alaska, (B) Hawaii, (C) the ‘tropics’, (D) the east coast of the North
America, and (E) the British Isles (see Tab. I). Biases 3 per region are
presented in Figure 4. To highlight systematic behavior, the biases are
represented by third-order polynomial fits to the BA results.

Figure 4a shows biases in each region for the GDAS winds. The separate
regions (dashed lines) show a random behavior relative to the composite
data set (solid line). The biases are practically linear functions of the
observed wind speed for all regions. Figure 4b shows biases in each region
for the AVN. All regions show a similar nonlinear increase of a positive bias
for low wind speeds (dashed lines). Regions A and E are solely responsible
for the nonlinear negative biases at high wind speeds in Figure 3. These
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FIGURE 4 Biases 3 per region relative to buoy observations. Regions as in Figure 1 and
Table I. Third-order polynomials fit to BA results. Solid line represents all data. (a) GDAS. (b)
AVN.

regions are downstream of data—sparse areas, so that larger random
forecast errors might be expected. In contrast, high wind speeds in area D
are well predicted. This area is downstream of a data-rich area. Apparently,
random forecast errors are much smaller here.

5. VALIDATION WITH SATELLITE DATA

Unfortunately, the buoy data used in the previous section cover only
selected regions. A global assessment of the quality of the wind fields can

only
qual
ranc
such
repr

2. Q

T
colle
arer
parti
signi
expli
here
Bu
the ¢
speec
show
relati
limit
do n«
prese
consi
lines.
wind
with
the ci
Th
data
mighi
prese:

TABL:
making
conside

Data

ALT
SCAT




(@)

20 25
(m/s)

gions as in Figure 1 and
ts all data. (a) GDAS. (b)

that larger random
nd speeds in area D
ch area. Apparently,

. section cover only
f the wind fields can

i
B
B
1
|
|
2

i
i
|
r
1
|

- A o

AR s i

NCEP WINDS FOR WAVE MODEL 253

only be obtained from satellite data. Before such satellite data are used, their
quality should be assessed; biases should be removed and estimates of
random errors are required for the regression and BA analyses. Note that
such a bias correction automatically accounts for incompatibilities
representative observation heights.

a. Quality of Data

To assess the quality of satellite wind speed retrievals, they have been
collocated with buoy data. The collocation radii as presented in Table III
are mostly dictated by the need for a reasonable number of collocations. In
particular for the altimeter, the fairly large radius R might result in a
significant random collocation error. Note that this random error is
explicitly estimated and accounted for in the new statistical techniques used
here (see Section 3 and Tolman, 1998).

Buoy observation errors with respect to the satellite data are discussed in
the appendix. Biases § and random errors o for the satellite based wind
speeds are presented in Figures 5 and 6. Both satellite derived wind speeds
show significant biases. Unfortunately, the number of collocated data are
relatively small. This results in a significant sampling variability, and a
limited range of wind speeds for which errors are estimated. Both drawbacks
do not justify a detailed bias removal. Therefore, simple linear corrections as
presented in Table IV are applied to each data set. To retain a maximum
consistency for mean biases, the corrections correspond to the regression
lines. To eliminate the possibility of linear corrections resulting in negative
wind speeds, they are replaced by a quadratic form for low wind speeds,
with no correction for u = 0 and constant functional and first derivative at
the connection point. The transition occurs for u = 2.5 ms~ .

The ALT data show significantly larger random errors ¢ than the SCAT
data (compare Figs. 5b and 6b), particularly for lower wind speeds. This
might well be due to the potentially larger sensitivity of the ALT data to the
presence of swell. To investigate such dependencies, the collocated ALT and

TABLE III  Satellite-buoy collocation information. Collocations within a 30 min time frame,
making average time separation 15min. Only the closest collocation per satellite pass is
considered. R (r) is maximum (average) collocation distance

Datq R ¥ Number
; (km) (k) of col.

ALT 100 48 270

SCAT 50 16 454
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TABLE IV  Satellite bias correction and observation errors relative to GDAS and AVN wind
fields

Data Corrected speed Observation error
ALT ’ —0.6lms™' +1.01u max(1.35 ms™, 0.1 Uy)
SCAT —0.76ms™" + 1.14u max(0.90ms ™", 0.1 u,)

SCAT data are stratified with the nondimensional wave height A
H =3.33gHu™?, (3)

where H is the wave height. H~ 1 for fully developed seas, H < 1 for
developing wind seas, and H > 1 for overdeveloped wind seas and swells.
Results of this data stratification are presented in Figure 7. The ALT data
(Fig. 7a) show a distinct dependency of the regression lines on the selected
range of H, indicating that the ALT data are indeed sensitive to the presence
of swell. Because swell climates vary regionally, this suggests that the ALT
data might include significant regional biases. The SCAT data, however, do
not show a distinct dependency on H, and are therefore expected to have a
consistent global validity.

b. Validation

As the satellite data are mainly of interest for their global coverage, global
mean biases will be assessed first. Such biases are obtained by collocating
GDAS and satellite data on a global 1° x 1.25° latitude-longitude grid for
the entire three month period considered here (Fig. 8). The ALT data and to
a lesser extend the SCAT data are provided in narrow tracks. The
consistency of the data is therefore much larger in latitudinal direction
(along the tracks), than in longitudinal direction (across the track), and clear
signatures of tracks can be found in the resulting average wind speeds and
biases. To reduce longitudinal noise related to track signatures, some
longitudinal smoothing has been applied to the average wind speeds and
biases, with a filter width of approximately 7° and 5°, for ALT and SCAT
collocations, respectively. Comparisons of the AVN wind speeds with the
satellite retrievals proved similar, and are therefore not presented here.
Figure 8a shows the mean GDAS wind speeds for the collocations with
the ALT data. The highest wind speeds occur at high latitudes in the
northern hemisphere, corresponding to winter storms. Higher wind speeds
furthermore occur in the ITCZ (0—15°N), and at high latitudes in the
southern hemisphere. Mean GDAS wind speeds from collocation with
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sample the synoptic wind fields in a similar way (figures not presented here). Figu
Figures 8b and 8c show GDAS mean biases as estimated from the two wind s
satellite data sets. Both satellite data sets suggest that the GDAS wind corresg
speeds incorporate a moderate but systematic positive bias. In particular for in the
the scatterometer the buoys appear to be in areas with small biases, and in suspect
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()

(b)

-3.48 B 20 1.8 3.8

FIGURE 8 Collocated GDAS and satellite wind speeds on a 1° x 1.25° latitude—longitude
grid. (a) mean GDAS wind speed for ALT collocations (ms™', legend under panel a). (b) GDAS
bias relative to SCAT data (GDAS-SCAT in ms™', minimum of 50 observations per grid box,
legend under panel ¢). (c) Idem, ALT data (7 observations or more). Black grid boxes denote
insufficient data. Grid lines at 15° intervals. Satellite data bias—corrected as in Table IV. (See
Color Plate I).

rare areas where the GDAS wind speeds appear to be biased low (i.e., the
east coast of the USA, Figs. 1 and 8b). A validation with buoy data can
therefore not be completely representative for the global wind fields.
Figure 9 shows biases and random errors as a function of the observed
wind speed for four latitude bands. These results are less reliable than the
corresponding biases estimated from the buoy data because of uncertainties
in the bias corrections of the satellite data, and because of the generally
suspect nature of satellite retrievals of extreme wind speeds. For instance,
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FIGURE 9 GDAS and AVN biases # and random errors (in ms™') as a function of the
observed wind speed u as estimated from ALT and SCAT data for four latitude bands. Biases
and random errors represented by third-order polynomials. Note that o is definite positive,
whereas § has negative values in all except two lines in the upper left panel.

the reduced negative bias for the highest wind speeds at northern high
latitudes (solid lines for J in all panels), is an artifact of the saturation of the
corresponding algorithms for high wind speeds. Again, several details of the
results stand out: (i) Biases [ are somewhat larger than biases estimated
from the buoy observations, and (ii) Show a stronger dependency on the
wind speed, particularly in the tropics. (iii) Biases increase mildly during the
forecast. (iv) Random errors o are fairly similar for all latitudes in GDAS.
(v) In the AVN, random errors grow significantly at high latitudes, but
remain relatively unchanged in the tropics.

The dependence of the biases on the wind speeds can be caused by both
systematic and random forecast errors (as discussed for Fig. 3). Due to the
suspect nature of satellite retrievals at high wind speeds, systematic and
random errors cannot be separated by intercomparing distributions of
extreme wind .speeds. Alternatively, systematic errors can be isolated by
determining mean biases as a function of mean wind speeds for selected
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regions. In such mean parameters random errors cancel, the satellite bias
correction becomes statistically more stable, and effects of retrieval errors
for extreme wind speeds become small, as extreme wind speeds represent a
minor fraction of the data. Because (average) wind conditions mostlj' vary
with latitude, averaging over latitude bands will be performed. Mean biases
for nine latitude ranges are presented in Figure 10. The right most symbols
correspond to the high mean wind speeds in the most northerly latitude
band (60— 75°N). Following the dotted lines, results for consecutive latitude

(@)
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g |
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1_
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FIGURE 10 Mean biases as a function of mean wind speeds for nine consecutive latitude
bands of 15 from 60°S to 75°N as obtained from ALT and SCAT data. The label ‘tropics’
{dentlﬁes the area for 15°N to 15°S. Dotted lines connect results for consecutive bands for same
instrument. Solid line: Eq. (4). Dashed lines: Eq. (5). (a) GDAS. (b) AVN.
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bands are found. Mean wind speeds reduce up to the tropics, and increase
again in the southern hemisphere. '

The satellite data sets show consistent results with differences well within
uncertainties of the bias removal (particularly if the potential effect of wave
climate on altimeter observations is considered). The GDAS biases (panel a)
show systematic differences between the northern and southern hemisphere,
with larger biases in the southern hemisphere. These biases are furthermore
similar to the biases in the southern hemisphere. These biases are
furthermore similar to the biases obtained from the BA analyses (Fig. 9
left panels), suggesting that the latter biases mostly represent systematic
errors. In the AVN forecast (panel b), the biases at mid latitudes remain
similar, but biases in the tropics and at high northern latitudes are
significantly reduced (compare panels a and b). Because such systematic
errors are generally reduced, the increase of biases in the AVN according to
the BA analysis (Fig. 9, compare right panels to left panels), is likely due to
random model errors instead.

6. DISCUSSION

In the present study, the quality of the GDAS and AVN near-surface wind
field is assessed using buoy and satellite observations as part of a systematic
validation study of the new NCEP wave prediction system.

The most reliable validation results are obtained from the buoy data,
although such a validation is expected to be somewhat tainted for the
GDAS winds, because this data has been used in the GDAS analysis.
However, the buoy data represent only a small fraction of all data, and are
therefore expected to have a limited impact in GDAS. The BA analysis in
Figure 2 shows that the GDAS systematically overestimates low wind
speeds and underestimates high wind speeds. An underestimation of extreme
wind speeds is also observed in the wind speed distributions (Tab. II). This
suggests that the GDAS biases are systematic, and can be corrected
statistically. Considering the results presented in Figure 2a, a linear error
correction appears sufficient. Estimating the bias correction from the
regression line, the bias-corrected wind speed based on buoy data (ugerp)
becomes

Uoor,p = —1.26ms™" + 1.12u. (4)

This error correction improves the extreme wind speed distribution of
GDAS without overestimating the extreme events (Tab. II).
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Compared to the buoy data, the AVN winds show significantly larger
biases than GDAS (Fig. 3). However, the low bias for high wind speeds is
related to random forecast errors, as the distribution of extreme wind speeds
from the buoy data and the AVN are nearly identical (Tab. IT). The AVN
bias can therefore not be corrected statistically. Instead, it is more realistic
to retain the GDAS bias correction of Eq. (4), or even reduce this
correction.

Satellite wind data are less reliable than buoy data. The limited accuracy
of the bias corrections and the limited capability of algorithms to retrieve
extreme wind speeds reduce the accuracy of the wind speed distributions,
and hence ‘make it difficult to separate random and systematic errors.
Systematic GDAS and AVN errors can nevertheless be estimated from the
mean biases of Figures 8 and 10 (see previous section). The satellite derived
wind speed biases are generally larger than the biases estimated from buoy
observations, and indicate bias changes in the AVN winds in regions not
covered by buoys. Consequently, the buoy data cannot be considered
representative for a global validation.

Of the satellite data the SCAT data is most reliable and globally valid as is
discussed in conjunction with Figure 7. Furthermore, NCEP’s forecast
responsibilities make a bias reduction in the northern hemisphere most
important. Considering this, the following subjective bias correction based
on global satellite data is suggested:

Heor,s = —1.50ms™" + 1.10u. (5)

This correction corresponds to a bias as depicted by the dashed line in
Figure 10. This bias correction is somewhat larger than the bias correction
(4) (compare solid and dashed lines in Fig. 10).

The satellite based bias correction (5) might be considered somewhat
suspect for several reasons; it is based on a limited range of wind speeds (see
Fig. 10) and satellite data might still incorporate significant regional biases
(as discussed above). The first problem is unavoidable, as long as extreme
wind speeds from satellites cannot be trusted. Without a better global
coverage of ground truth data, the second point can only be addressed
qualitatively by considering potential deficiencies of algorithms. For the
ALT and SCAT data, these are mainly their potential dependency on wave
maturity. For the SCAT data, this dependency appears negligible (Fig. 7b).
Thus, the SCAT data are expected to have a consistent global validity,
lending credibility to Eq. (5).




262 : H. L. TOLMAN

Considering the above, Eq. (5) appears a reasonable bias correction for
the deep ocean. However, if this bias correction is used, validation results at
the conventional buoy locations might deteriorate, erroneously suggesting a
deterioration of the quality of the wind field. To avoid this, a linear
combination of the bias corrections (4) and (5) can be used

= Ueor = v4“«:or,b e (1 0 A)”cor..; ) (6}

where A =1 near buoys and A=0 in the data-sparse deep ocean.
Somewhat arbitrarily, A is set to 1 for points in the wind field closer than
150km to the coast or a buoy location, and to 0 for distances of over
300 km. A simple linear interpolation is used for intermediate distances. The
resulting biases of the corrected GDAS winds are presented in Figure 11. As
expected, the bias correction systematically reduces GDAS biases (compare
Figs. 8 and 11). The remaining biases against the SCAT data are fairly
evenly distributed, with slightly positive biases in the southern hemisphere as
might be expected. Note that negative biases against the ALT data are
concentrated in the tropics, where the wave field is often dominated by swell
penetrating from higher latitudes. This behavior is therefore likely related to
contamination of ALT data by swell.

The above wind speed corrections are moderate, and are expected to
have a noticeable impact within the wave forecast system. The GDAS and
AVN, however, are continuously being upgraded and improved. This
implies that the wind speeds have to be monitored continuously, and that
the bias corrections have to be upgraded periodically. In particular it
should be noted that the boundary layer treatment has been modified
significantly in the fall of 1995 (Chaplan et al., 1997), and that the change is
expected to make the surface winds more energetic. The results presented
here are therefore not necessarily representative for the present products of
NCEP.

In validating wave models, altimeter data are particularly interesting as
their collocated wind and wave observations potentially allow for a
separation of wave model errors from wind errors. This requires, however,
accurate and unbiased wind estimates. A well documented deficiency of the
ALT wind data is its saturation behavior for high wind speeds (see
introduction and discussion of Fig. 9)'. Such saturation behavior is
obviously detrimental for model validation in extreme conditions, but might

! Figure 9l suggests that the SCAT and ALT data have similar saturation behavior. This
behavior of SCAT data is not well documented.

FIG
(See

be ¢
of t
7a.

whe
con
way
the
altiy
howv
spex



i ection for
| results at
| ggesting a
., a linear

(6)

:p ocean.
loser than
s of over
ances. The
ure 11. As
(compare
are fairly
usphere as
" Jata are
:d by swell
related to

tpected to
rDAS and
wad. This
, and that
rlicular it
. modified
: change is
presented
roducts of

aresting as
ow for a
, however,
mcy of the
peeds (see
ghavior is
but might

shavior. This

NCEP WINDS FOR WAVE MODEL ’ 263

a0 3,53 : 782 . 14,33

)

© &

; R I ki S -
[T}

2 i
=3,88 -1.59 2.2 R

FIGURE 11 Like Figure 8 for GDAS wind fields after bias correction of Egs. (4) through (6).
(See Color Plate II).

be correctable (Young, 1993). More detrimental is the distinct dependence
of the ALT wind speed on the development stage of the wave field in Figure
7a. The latter figure suggests a retrieval algorithm of the form

e = US(H). (7)

where U is the wind speed estimate for a given altimeter signal and wave
condition, and where f{ H) is a correction to account for the actual stage of
wave development. If the nondimensional wave height H is estimated from
the buoy data, it is easy to derive’an algorithm that reduces the error of
altimeter winds by up to 40% (equations not reproduced here). This,
however, is not a true algorithm, as it implicitly depends on the true wind
speed through H.
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A true algorithm can be obtained if H is be estimated directly from the
altimeter data. Such a procedure has effectively been used by Monaldo and
Dobson (1989); Glazman and Greysukh (1993), and Lefevre et al., (1994).

These studies, however, show a small to negligible impact of including wave -

data in the algorithm. This suggests that the corresponding version of Eq.
(7) is mathematically ill-posed, and tends to amplify random observation
errors.

Alternatively, H can be estimated independently, for instance from a wave
model. This implies that an independent estimate of the wind speed is used
as an integral part of the algorithm. Such an algorithm could be considered
as a data assimilation scheme, where the altimeter observation is used to
correct the independent ‘first-guess’ wind field that is used to estimate H.
The final result of such a scheme by definition will be a blend of the first-
guess winds and winds that are obtained from altimeter information only.
The dependency of the wind speed estimates on the development stage of the
wave field might therefore be reduced, but will qualitatively remain similar.

Thus, altimeter wind speeds are bound to be contaminated by the
development stage of the wave field. Consequently, it does not appear
prudent to use this data in an attempt to separate input and model errors in
a wave model.

7. CONCLUSIONS

The quality of NCEP’s analyzed (GDAS) and forecasted (AVN) surface
wind fields is assessed using buoy and satellite data as a first part of the
validation of a new wave forecast system. Deep-ocean wind fields are shown
to incorporate moderate systematic errors, for which statistical corrections
are suggested. Conventional buoy data cannot be considered representative
for a global validation of marine wind fields, because the magnitude of
biases based on buoy data differs systematically from global satellite derived
biases, and because the buoy data do not cover several regions where the
satellite data suggest regional bias changes during the forecast.

The altimeter wind data (ALT) as used here are also of interest for the
direct validation of wave models, as they are always collocated with wave
observations. As illustrated in other studies, the ALT data are not reliable
for high wind speeds, where the conventional algorithm shows saturation
behavior. Furthermore, these data are seriously contaminated by the
development stage of the wave field. These wind data should therefore
probably not be used to validate wave models.
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APPENDIX: OBSERVATION ERRORS

Observation errors for marine wind speeds have been investigated by, for
instance, Brown (1983); Pierson (1983); Gilhausen (1987) and Monaldo
(1988). Several types of errors can be distinguished, for instance, instrument
errors, round-off errors due to data transmission and archiving, and
mismatch errors in collocation and in representative scales (known as the
representativeness error in data assimilation; Lorenc, 1986). An honest
model validation considers observations which are representative for the
parameters predicted by the model. Mismatch errors thus should be
considered as a part of the observation error.

For the present buoy observations, the minimum observation error
(0bmin) consist of a 3% instrument error, and a round-off error
(¢, = 0.15ms™") due to the archiving (Tolman, 1998)

Thmin(Uo) = 1/ (0.03 u,)* + o2. (A1)

Representativeness errors arise due to collocation and scale mismatch
errors in space or time. Estimates for such errors can be obtained from
Pierson (1983); Gilhausen (1987) and Monaldo (1988) (henceforth denoted
as P83, G87, and M88B, respectively). A tally of error estimates for buoy
observations is presented in Table AI, and a brief explanation of the
estimates is given below.

The buoy wind speeds represent point observations averaged over
8.5min. The NCEP wind fields represent synoptic wind fields with inherent
scales of approximately 100km and 1hour. The ALT and SCAT
observations are nearly instantaneous, with a footprint of 6.5 x 65km?,
and a diameter of 50 km, respectively. As GDAS and AVN winds at buoy
locations are interpolated, collocation errors effectively become a part of the
scale error. Collocation errors of buoy and satellite data can be estimated
directly from spatial and temporal separation data in G87 and MS8S,
considering that the variability has to be divided over both locations. For
the GDAS and AVN wind fields, errors of time scale differences are
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TABLE Al  Estimates of mean buoy observation errors in
and SCAT wind speeds. The total relative error
8 m/s, and represents a low, best and high estimat

percent for GDAS, AVN, ALT,
7o is based on a global mean wind speed of

e, respectively. Instrument and round-off error
3.5%
Collocation Scales Total relative error
space time space time Yo (%)
GDAS, P83 6-9 10.1 13.0 15.4
AVN G87 0 B 5
M88 8-10 3
ALT P83 3-5 112 13.5 15.0
G87 12 6 3
M88 9-11 3 4-5 4
SCAT P83 ) 2-3 7.7 8.8 9.9
G87 6 4 2
M388 5-6 3 2-3 3

presented in all three papers, and errors for spatial scale differences can be
estimated from spatial separation data in G87 and M§8. According to M88,
the representative scales of the SCAT winds are fairly similar to those of the
buoy, whereas the ALT scales are smaller. Somewhat arbitrarily, the scale
errors have been taken as 1/2 or 1/3 of the corresponding error of the buoy
observations relative to the GDAS and AVN fields.

Table AI presents expected average observations errors Gpo (Or mean
error fractions ) for the buoy observations, but not the error distribution
over wind speeds required for the BA analyses. Scale errors generally
increase with wind speeds; approximately linear for time averaging (P83),
and somewhat stronger for space averaging (M88). Unfortunately,
collocation errors have not been assessed as a function of wind speed. It
appears natural to assume that the overall error increases approximately
linearly for higher wind speeds, and is finite for small wind speeds. This
suggests a shape of the observation error similar to Eq. (Al).

Tho(tt) =/ (00)? + (1u0)?, (A2)

where 0 < a < 1. Furtheremore requiring that 7o as presented in Table Al

is reproduced for the mean wind speed 7, the asymptotic error fraction
-~ becomes

¥="7V1-—a2 (A3)

Somewhat arbitrarily, o = 0.7 will assumed, corresponding to /vy, = 0.71.
To assess uncertainties in this assumption, a range of 0.6 < o < 0.8 (0.8 >
¥/ > 0.6) will be used in the calculations.
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The BA analyses in Section 5 require an estimate of the satellite
observation errors relative to the GDAS and AVN winds. The relatively
large random instrument errors (Figs. 5b and 6b) imply that these
observation errors are likely dominated by instrument errors. Furthermore
considering that biases cannot be removed accurately, simple estimates for
the observation error as gathered in Table IV have been adopted.




