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LIST OF ABBREVIATIONS

BT:

C:
cal/val:
CC:
FM:
FXX:
GHz:
GMF:
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H:

K:
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-
LIMA:
LR:
MIKE:
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OMBFMX:
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\'E

brightness temperature

degrees Celsius

calibration/validation

correlation coefficient

forward model, the same as GMF

SSM/I instrument number XX

10° cycles/second

geophysical model function, the same as empirical FM
Goodberlet, Swift and Wilkerson (1989) - see References
horizontal polarization

degrees Kelvin
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European oceanic weather ship
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European oceanic weather ship
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National Data Buoy Center
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Naval Research Laboratory

Numerical Weather Prediction

Ocean Modeling Branch Neural Network (version) X - SSM/I NN retrieval
algorithms, version X

Ocean Modeling Branch Forward Model (version) X - SSM/I NN forward model,
version X

oceanic weather ship

physically-based

Petty and Katsaros (1992, 1994) - see References
Stogryn, Butler and Bartolac (1994) - see References
standard deviation

Special Sensor Microwave / Imager

sea surface temperature

tropical atmosphere ocean

tropical ocean global atmosphere

vertical polarization

columnar water vapor






ABSTRACT

In this report, two different types of NN applications in the satellite remote sensing are
described: NN solutions for the empirical forward problem and the empirical inverse (or retrieval)
problem. These two solutions correspond to two different approaches in satellite retrievals: the
former deals with variational retrievals (retrievals through the direct assimilation of sensor
measurements) and the later with standard retrievals. Variational and standard retrievals are
discussed and compared. It is shown that both the forward model and the retrieval problem can
be considered as nonlinear mappings. Mathematical tools for solving these problems are
discussed. The NN technique is introduced as a generic technique to perform the nonlinear
mapping. It is compared with regression approach. Examples of a NN SSM/I forward model
(OMBFM1) and a NN SSM/I retrieval algorithm (OMBNN3) ére used to illustrate advantages of
using neural networks for developing both retrieval algorithms and forward models, and for
minimizing the retrieval errors. The procedure of the estimating errors in retrieved geophysical
parameters is discussed. Some other applications of NNs in the satellite remote sensing are briefly

discussed.






1. INTRODUCTION: DERIVING GEOPHYSICAL PARAMETERS FROM
SATELLITE MEASUREMENTS

Satellite remote sensing data are used by a wide spectrum of users. Numerical weather
prediction (NWP), field forecasting, fisheries communities as well as the Coast Guard, the oil
industry, and the Navy are only a few examples. Satellite sensors generate measurements in
terms of radiances, sigma naughts, brightness temperatures, etc., but the users work with
geophysical parameters such as pressure, temperature, wind speed and direction, water vapor, etc.
Satellite retrieval algorithms which transform satellite measurements into geophysical parameters
play the role of mediators between satellite measurements and users. There exists an entire
spectrum of different approaches in satellite retrievals. On one end of this spectrum satellite only
approaches are located; we will call them standard or traditional retrievals. They use one sensor
only measurements, sometimes from different channels (frequencies, polarizations, etc.), to
retrieve geophysical parameters. On another end of the spectrum variational retrievals are
located. They use an entire data assimilation system, including NWP model and analysis (e.g.,
Prigent, et al., 1997) which, in its turn, includes all kind of meteorological measurements (buoys,
radiosondes, ships, aircrafts, etc.) as well as data from different satellite sensors. Many
approaches have been developed which lie in the intermediate part of this spectrum. These
approaches use measurements from several satellite sensors, combine satellite measurements with
other kinds of measurements, or use background fields or profiles from NWP models for
regularization of the inverse problem or for ambiguity removal.

In Section 2 of this report we discuss and compare standard and variational retrievals.
Section 3 discusses the forward and inverse problem in satellite remote sensing; it shows that both
forward model and retrieval problem can be considered as nonlinear mappings. In Section 4 we
show how to estimate errors in retrieved geophysical parameters. Section 5 considers
mathematical tools for solving forward and retrieval problems, introduces the NN technique, and
compares it with regression approach. In Section 6 we use an example of an SSM/I forward
model and SSM/I retrieval algorithm to show that neural networks can be used to optimize both
retrieval algorithms and forward models, and to minimize retrieval errors. In Section 7 we
summarize our results and briefly discuss some other applications of NN in satellite remote
sensing.
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2. STANDARD RETRIEVALS AND VARIATIONAL RETRIEVALS THROUGH
DIRECT ASSIMILATION

Fig.1 shows satellite data flow from instrument to users. Conventional methods for using
satellite data (standard retrievals) involve solving an inverse (or retrieval) problem and deriving a
transfer function (TF), f, which relates a geophysical parameter of interest, g (e.g., surface wind
speed over the ocean), to a satellite measurement, s (e.g., SSM/I brightness temperatures),

g=f(s (1)

where both g and s may be vectors. The TF, f, may be derived explicitly or assumed implicitly
(see Section 3.2 for details). Standard retrievals have the same spatial resolution as the sensor
measurements and produce instantaneous values of geophysical parameters over the areas where
the measurements are available. Geophysical parameters derived using standard retrievals can be
used for many applications, for example, in NWP data assimilation systems. In this case, a
contribution to the analysis cost function ¥, from a particular retrieval, g°, is:

2
X, =(g-8°)"(0 + E)(g-8°) @
g 2
where g° = f (s°) is retrieved geophysical parameter (s° - a sensor measurement), g - value of this
geophysical parameter in analysis, O - expected error covariance of the observations and E -
expected error covariance of the retrieval algorithm. Because standard retrievals are based on
solution of inverse problem which is usually mathematically ill-posed (Parker, 1994), it has some
rather subtle properties and error characteristics (Eyre, 1987), which cause additional errors and
problems in retrievals (e.g., amplification of errors, ambiguities, etc.). As a result, high-quality
sensor measurements are converted into lower-quality geophysical parameters. This type of error
can be avoided or reduced by using variational retrievals (or inversion) through direct assimilation
of satellite measurements (Lorenc, 1986; Parrish and Derber, 1992; Phalippou, 1996; Prigent et
al., 1997).

Variational retrievals offer another way of deriving geophysical parameters from the
satellite measurements (Fig.1). In this case, due to direct assimilation of sensor measurements,
the entire data assimilation system is used for inversion (as a retrieval algorithm). In this case, a
contribution to the analysis cost function %, from a particular sensor measurement, s°, is:

x5 =5(s=5°)7(0 + E)"(s-5°) R

where
s=F(g) “4)

F is a forward model (FM)or geophysiéal model function (GMF) which relates an analysis state
vector g (or vector of geophysical parameters in analysis) to a vector of simulated sensor



measurements, s, O - expected error covariance of the observations, and E - expected error
covariance of the forward model. The retrieval in this case is an entire field (global in the case of
the global data assimilation system) for the geophysical parameter g (retrievals are non-local)
which has the same resolution as the numerical model used in the data assimilation system. This
resolution may be lower than the resolution of standard retrievals. The variational retrievals are
also not instantaneous but averaged in time over the analysis cycle; however, the field is
continuous and coherent (e.g., it should not have problems such as a directional ambiguity).
Sparse standard retrievals can be also converted into continuous field, using regular data
assimilation procedure (1).

It is important to emphasis one very significant difference between using the TF for
standard retrievals and the FM in variational retrievals. In standard retrievals the TF (1) is applied
one time per sensor observation to produce a geophysical retrieval. In variational retrievals the
FM and its partial derivatives (the number of derivatives is equal to m x n, where m and n are the
dimensions of the vectors g and s respectively) have to be estimated for each of & iterations
performed during minimization of the cost function (3), that is (m x n +1)x k times (e.g., about
3000 times for SSM/I). Taking into account that an FM is often much more complicated than a
TF, the requirements for simplicity of the FM used in the variational retrievals are very restrictive,
and variational retrievals may require some special, simplified versions of FMs.

It is clear from discussion above, that standard retrievals of geophysical parameters and
their variational retrieval through direct assimilation of sensor measurements are not exclusive but
complementary approaches, they have different spatial and temporal resolutions, error properties,
etc.; therefore, they are oriented to different users and applications.



3. FORWARD AND INVERSE PROBLEMS IN REMOTE SENSING

3.1  Forward Models

The above consideration shows that both standard and variational retrievals require some
kind of conversion procedure either a TF (retrieval algorithm) or a FM to relate geophysical
parameters to satellite measurements. The FM and TF are solutions of a remote sensing forward
or inverse problem respectively. A generic remote sensing forward problem is symbolically
represented by eq. (4) where s € #£” is a vector of satellite measurements (vector of BTs in the
case of SSM/I) and g € ™ is a vector of geophysical (atmospheric and surface) parameters
which influence the measurement. For example, a radiative transfer FM for SSM/I BTs (s = T,,,)
may be written as (Petty, 1990; Schluessel and Luthardt, 1991, Petty and Katsaros, 1992, 1994),

T,,.=¢€ Tr+UTaﬁd+(1e)rp$Tai’dp
- v,,,hiapp v,,rvbfap : (5)

where

T s - BT measured at satellite attitude

v - frequency

m - polarization (H or V)

€y - surface emissivity

T, - atmospheric transmittance

% - total atmospheric transmittance

T - SST

P - surface pressure

After some simplification and extensive empirical parametrization radiative transfer FM may be
reduced to a closed algebraic version (e.g., Wentz, 1997),

1,.=€,t0. 5+ +(I-¢,)1,(2,.T) +7,Ty) (6)

wr

where all terms in equation (6) are empirical functions of wind speed, W, columnar water vapor,
V, columnar liquid water, L, and sea surface temperature, 7, , that is,

Ev,:r =8v,x (TS!W )

Ty=Fy(V ;L)

Q,,.=Q,,.(W,V,L) -surface roughness

FPoe =8.7% K - cosmic background radiation temperature

Ty =Ty (V.Ts) -upwelling atmospheric BT
Ty=T,(V,T,) -downwelling atmospheric BT



Such physically-based or radiative transfer-based forward models use many empirical data for
parametrization. For example, Wentz (1997) used 35,650 buoy-SSM/I matchups and 35,108
radiosonde-SSM/I matchups to fit more than 100 empirical parameters contained in different
terms of eq. (6). Finally, this SSM/I FM (6) may be formally written as a system of algebraic
equations,

T, =F,.(X), whereX={W,V,L, I} (7

An alternative empirical approach can be applied to develop empirical forward models (or
geophysical model function) based on empirical data. If a set of collocated in space and time
satellite s and ground g observation - matchup data set {s, g} - are collected or simulated, then an
empirical FM can be developed based on this data set. Recently an empirical model has been
developed for five lower SSM/I frequencies by Krasnopolsky (1997) based on matchup data set
{T, X} which matches vectors of BTs, T, with a collocated vector of geophysical parameter, X,
where

T = {T19v, TI9h, T22v, T37v, T37h} and
X={W, VL SST} 8

This model can be formally described by eq. (7); however, the function F, in this case, is different.
It is important to note that such an empirical model requires much less empirical data for
development (about 3,500 matchups) than the physically-based FM (6) it is more accurate and
much simpler than the latter.

3.2  Retrieval Algorithms

A retrieval algorithm is a particular representation for a TF (1) and is also a solution of the
inverse problem. A PB retrieval algorithm is an inversion of a physically-based forward model;
therefore, it requires a physically-based FM as a necessary prerequisite, and, as a consequence, a
large amount of empirical data for development (e.g., Wentz , 1997). An empirical algorithm
does not require a FM to be developed; but a representative matchup data set is a prerequisite in
this case. If we consider again the SSM/I as an example, most of SSM/I empirical wind speed
algorithms (including the latest NN algorithm) have been developed using data sets of about
3,500 matchups (an order of magnitude less than for the PB algorithm by Wentz, 1997). For
these empirical algorithms the resulting accuracies of retrievals are comparable or even better (for
NN algorithm) than accuracies for the PB algorithm (see Tables 6 - 7 below).

The inversion technique which is usually applied in physically-based retrieval algorithms to
invert FM can be illustrated using Wentz (1997) SSM/I retrieval algorithm. For simplicity we will
consider only the isotropic case here. Let as assume that for a given vector of BTs T = {7, } we
approximately know a corresponding vector of geophysical parameters X° = {W’, V°, L° } (SST -
T,, Wentz considers as known parameter which has to be supplied from outside), so that the
difference vector

AT, X, T)=T,,-F,.X°T) 9

10



is small and there exist a vector X in close proximity of X’ (| A X |=|X - X"|is small) where
AT,,.(X) =0. Expanding F, , (X) in a Taylor series and keeping only linear terms in A X, we can
get a system of linear equations to calculate three components of vector A X = {W- W, V-V’ L
. LU}’
3 0F X, T
25 v,.n.'( ? s)l 0AX.=TK—F”(X05T) (10.0)
£ BX X=X i v, Y, 5

After A X is calculated, next iteration of (10.0) with X° = X?+ A X is performed. The process is
expected to converge quickly to the vector of retrievals {W, V, L}. In this case, the TF, f, (1) is
not determined explicitly, it is only determined implicitly for each BT vector {7} by the solution
of (10.1). Symbolically it can be written as

X=ALT) (10.1)

It is important to emphasize that the algorithm (10.0-10.1), by definition, is a multi-parameter
algorithm, since it retrieves a vector X of several geophysical parameters (W, V, and L )
simultaneously. In addition to BTs, T, this algorithm requires a SST value 7 as an input to
produce retrievals.

Empirical algorithms are based on an approach which, from the beginning, assumes the
existence of an explicit analytical representation for a TF, f. Some mathematical model, f,,,, is
usually chosen (usually some kind of regression) which contains a vector of empirical parameters

a={a;a,..},
8= Jrnoa (T, @) (11)

where these parameters are determined from an empirical matchup data set {g;, T }. The
subscript 7 in g; stresses the fact that most of empirical retrieval algorithms are single-parameter
algorithms; they retrieve only wind speed (Goodberlet, 1989), or water vapor (Alishouse, 1990),
or cloud liquid water (Weng and Grody, 1994), etc. Single-parameter algorithms have certain
problems which are discussed below.

11



4. ERRORS IN RETRIEVED GEOPHYSICAL PARAMETERS

Errors in geophysical parameters derived from the satellite measurements are due to three
main reasons (see Fig. 2): sensor errors, observation errors, and algorithm errors. Sensor errors
are predetermined by the sensor design and will not be discussed here. Observation errors are
the errors in the satellite/ground truth matchup data sets used for the algorithm and/or FM
development and validation. Algerithmic errors are due to three main reasons: internal
algorithmic problems, atmospheric uncertainties, and surface uncertainties.

Total Error
ing
Sensor Errors
Algorithm Observation
Errors Errors
Intermal . .
; Atmospheric Instrument Mismatch
Allg:;trlslm Uncertainties Errors Errors
Surface Sampling
Uncertainties Errors

Fig. 2. Error budget in satellite derived geophysical parameter g.

4.1 Observation errors
Observation errors have three constituents:

el =el+el+ €2 (12)

obs

where & are instrument errors (predetermined by instrument design), &, - sampling errors due to
different spatial and temporal sampling of satellite and ground truth observation, and &, -
mismatch errors due to distance and time interval between satellite and ground truth
measurements. For example, for buoy-SSM/I matchups, & include any problems associated with
the buoy observations themselves. According to Gilhousen (1986), wind speed accuracy
(instrument error) for the anemometers deployed on National Data Buoy Center (NDBC) buoys is

12



+0.5 m/s for winds less than 10 m/sec and +5% of the wind speed for winds greater than 10
my/sec.

Sampling errors are due to the fact that each matchups consist of two inherently different
types of observations, (i), buoy wind speeds acquired from anemometers which are point
measurements at a fixed elevation above the ocean surface averaged over intervals of 7 (8.5)
minutes, and (ii), instantaneous satellite observations that cover an approximate » km footprint on
the ocean surface. Thus, the inherent variability of wind speed within the satellite footprint over
a T minutes period causes the sampling error:

2 2 2
Es = gs,r + 85,‘8’ (13)

where ¢, _ is the buoy wind speed sampling error due to averaging over a ¢ minute period, and &, ,
is the wind speed sampling error due to averaging over the footprint size. For the SSM/I wind
speed, for example, Wentz (1997) estimated &,, = 0.76 m/s.

Mismatch errors arise because perfect matchups occur infrequently and, as a result, the
time interval ¢ and the distance R between the buoy and satellite measurements must be expanded
in order to obtain statistically-meaningful sample sizes. The mismatch errors can be estimated as
(Wentz, 1997):

£2 =

m

g* (R +v*1%) (14)

b | M~

where g (for wind speed, 0.022 m s km™) is the gradient of advection, and v - advection speed (8
m/s). If the data set is large enough, the mismatch errors can be reduced by rejecting matchups
with large ¢and R. Table 1 shows observation errors (12) and its constituents (13 - 14) for the
case of SSM/I wind speed retrievals, taking for mismatch parameters mean values R = 15 km and
¢ = 15 min which we use for developing our NN retrieval algorithm and forward model.

Table 1. Observation error and it’s constituents for SSM/I wind speed retrievals
8:' gs (m,/s) gm 8abs
(m/s) (m/s) (m/s)
8s,r gs,r
0.5 <0.1 0.76 0.26 0.95

Table 1 shows that the largest component of the observational errors is due to spatial sampling
error which is due to a large size of SSM/I footprint.

4.2  Algorithm errors
Algorithm errors also have three constituents (see Fig. 2):

82, =062+62+67 (15)

alg

13




where &, is an internal algorithm error, &, is an error due to uncertainty in description of
atmospheric, and &, - surface conditions. Both retrieval algorithms and forward models have
these errors. Let us illustrate these algorithm error constituents, using as an example a standard
empirical retrieval algorithm represented by (11).

An internal algorithm error emerges when we select a model f,,,, to represent a TF f. For
example, if we choose a linear regression (linear model function) to represent nonlinear TF in a
broad range of variability of arguments, such an approximation will introduce an error in retrieval
g; and this error is an internal algorithmic error. In the case of linear regression (LR) we can
always find an optimal set of parameters a (coefficients of LR) in (11); however, if we use a
nonlinear regression (NR) which, in principle, is better suited for representation of a nonlinear TF,
we may not be able to find optimal values for a (coefficients of NR in this case). Therefore, in the
case of a nonlinear model for our TF, we may not be able to find the optimal approximation. This
is another source of internal algorithm error.

Errors due to uncertainties in atmospheric and/or surface conditions can also be illustrated
using a standard empirical retrieval algorithm represented by (11). This algorithm retrieves a
single geophysical parameter g;(e.g., surface wind speed), using only satellite measurements T
(e.g., SSM/I BTs); it does not know anything about other geophysical parameters which are
related and correlated with g, So, we can imagine a set of events where the surface wind speed is
the same, but columnar liquid water, water vapor (atmospheric conditions), and SST (surface
conditions) are all different. Vectors of SSM/I BTs, corresponding to these events, are also
different. The wind speeds retrieved with the algorithm (11) will be different because this
algorithm is based only on BT's and is assumed to be a solution of inverse problem for unknown
but single-valued FM (e.g., BT as a function of the wind speed is assumed to be single-valued,
monotonically increasing function). This kind of error can be minimized by retrieving
simultaneously the entire vector of related geophysical parameters as in (1), by including other
geophysical parameters as additional arguments of TF, or by combining these two approaches as

in (10.1).

14



5. MATHEMATICAL TOOLS FOR DEVELOPING EMPIRICAL FORWARD
MODELS AND RETRIEVAL ALGORITHMS

The above considerations show that both empirical forward models (4 and 7) and retrieval
algorithms (1, 10.1, and 11) can be considered as mappings which map a vector of sensor
measurements, s (or T) € &7, to a vector of geophysical parameters, g (or X) € &™ (TFs, f) or
vice versa (FMs, F). These mappings are built, using discrete sets of collocated vectors s and g
(matchup data sets {s;, g;}). Single-parameter algorithms (11) may be considered as degenerate
mappings where a vector is mapped onto a scalar (or a vector space onto a line).

5.1 Standard tools: linear and nonlinear regressions. Advantages and problems

The linear regression (LR) is the most attractive tool for developing empirical algorithms.
It is simple; it has a well developed theoretical basis which enables a user to perform various
statistical estimates. In the case of the LR, a linear model is built for FM or TF. For example for

(11) we have:

g = LRT,a) = EajTj

]

here LR means linear regression and a is a vector of unknown parameters (regression
coefficients). The problem with the LR is that it works with high accuracy in a broad range of the
variability of arguments only if the problem, the function which it represents (FM or TF), is linear.
If the problem is nonlinear, the LR can give only local approximation, or, if it is applied globally,
this approximation has poor accuracy.

Because, in general, forward models and TFs are nonlinear functions of their arguments,
nonlinear regressions (NRs) are better suited for modeling forward models and TFs. NR may be
applied in many different ways. For example, f,,,, in (11) can be chosen as a complicated NR
function:

g = far (T, a) (16.0)

on the other hand, f,,,, can be introduced as an expansion in a set of nonlinear function {¢, }:

g = a;9,(T) (16.1)

7

These two types of NR are different in one very important respect. The NR (16.0) is nonlinear
both with respect to its argument, 7', and the vector of regression coefficients, a. This means that
we need to solve a nonlinear problem to find unknown parameters a. The regression (16.1) is
nonlinear with respect to its argument 7 but linear with respect to parameters a. In this case, we
do not need to solve a nonlinear problem to find a; however, in either case, if we use NR (16.0)
or (16.1), we need to specify in advance a particular type of nonlinear function fyg, or ¢, which
we use. In other words, we need to introduce in advance a particular kind of nonlinearity, which
we use to approximate the FM or TF under consideration. This may not always be possible,
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because we may not know in advance what kind of nonlinear behavior a particular FM or TF
demonstrates, or this nonlinear behavior may be different in different regions of the FM’s or TF’s
domain. If an improper NR is chosen (by chance), it may represent a nonlinear FM or TF less
accurate than a LR (see next section for an example).

5.2  Neural networks as a generic tool for nonlinear mapping.

In the situation described above, where we do know that the TF or FM is nonlinear but do
not know what kind of nonlinearity to expect, we need a flexible, self-adjustable approach that
can accommodate various types of nonlinear behavior and represent a broad class of nonlinear
mappings. Neural networks (NNs) are well suited for a very broad class of nonlinear
approximations and mappings (Funahashi, 1989).

Neural networks are a complicated combination of uniform processing elements, nodes,
units, or neurons. A typical processing element is shown in Fig.3. Each processing element has
usually several inputs (components of vector X) and one output, z;. The neuron usually consists
of two parts, a linear part and a nonlinear part. The linear part calculates the inner product of the
input vector X and a weight vector Q;(which is a column of the weight matrix Q; ), and adds a

bias, B;.

Linear part |Nonlinear part
QjT x+ B=y, _>| ¢ (y;) = z;

Fig. 3. Processing element (neuron) number j.
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Different activation functions
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Fig. 4. Three different activation functions: sigmoid - solid line, hyperbolic tangent - dashed line,
and step function - dash-dotted line.

The result of this linear transformation of the input vector X goes into the nonlinear part of the
neuron as the argument of an activation function ¢. The neuron output, z;, can be wriiten as,

o (N Qr 17
zj_¢( jSxi+Bj) ( )
QeER™; BER"
For the activation (squashing, transition) function @, it is sufficient to be a Tauber-Wiener
(nonpolynomial, continuous, bounded) function (Chen and Chen, 1995). Three popular activation

functions: sigmoid, hyperbolic tangent, and step function are shown in Fig. 4. The sigmoid
function can be expressed as:

6(x) = XE(~»,2), $E(0,1) (18)

1+exp(-x)~

x E(—w,0), ¢ E(-1,1) for other activation functions,
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Output Layer

i Hidden Layer
Input Layer

Fig. 5. Multilayer perceptron - feed forward, fully connected topology.

The neuron is a nonlinear element because its output z; is a nonlinear function of its inputs X.
Neurons can be connected in many different ways into networks with complicated architectures
(or topologies). The most common topology is the multilayer perceptron which is shown in Fig.
S. In a multilayer perceptron, neurons are situated into layers. A multilayer perceptron always has
one input layer which receives inputs and distributes them to the neurons in the hidden layer. The
neurons in the input layer are linear; they are simple distributors of inputs. The number of input
neurons in the input layer is equal to the number of inputs (dimension of input vector X ). A
multilayer perceptron always has one output layer. The neurons in the output layer may be linear
and/or nonlinear, depending on the problem to be solved.

The number of output neurons in the output layer is equal to the number of outputs
(dimension of output vector ¥'). A multilayer perceptron always has at least one hidden layer.
The neurons in the hidden layer(s) are usually nonlinear. The number of hidden layers, the
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number of neurons in each hidden layer, and the type of connections between neurons and layers
depend on the complexity of the problem to be solved. The topology of the multilayer perceptron
shown in Fig. 5 is called feed-forward (there are no feedbacks; the data flow moves only forward)
and fully-connected (each neuron in a previous layer is connected to each neuron in the following
one). We will consider here only this topology because it is sufficient for solving mapping
problems.

From the discussion above it is clear that the NN generally performs a nonlinear mapping
of an input vector X € #” (n is dimension of the input vector or the number of inputs) onto an
output vector ¥ € £ (m is dimension of the output vector or the number of outputs).
Symbolically this mapping can be written as,

Y=fw&X) (19)

where fy denotes this neural network mapping. If we assume for the NN the topology shown in
Fig.5, then, using (17), for the NN with & neurons in one hidden layer and activation function,
¢(x) = tanh(x), the symbolic expression (19) can be written down explicitly as,

yq=bq+aq¢(2 ©gz;+B,)
cbyrag9(3 0,0(3 @ 5 + B+ B, @

k n
=b,+a ,tanh{ Ewm[tanh( EQj,-xi+Bj)]+ﬁq}
j=1 i=1

where the matrix €, and the vector B; represent weights and biases in the neurons of the hidden
layer; w,; and the f, represent weights and biases in the neurons of the output layer; and a, and b,
are scaling parameters. For some applications (e.g., for direct assimilation) we need to know the
Jacobian matrix, whose elements are partial derivatives ¢y, / cx;. From (20) these derivatives can
be calculated analytically,

ﬁyq
c?xp

1 k
= a (a;+(yq_bq)2)21 (1"2?)991'0)1{; (21)
q =

It can be clearly seen from (20) that any component (y,) of the NN’s output vector Y is a
complicated nonlinear function of all components of the NN’s input vector X. It has been shown
by many authors (e.g., Chen and Chen, 1995; Hornik, 1991; IFunahashi, 1989; Gybenko, 1989)
that a NN with one hidden layer, like NN (20), can approximate any continuous mapping defined
on compact sets in J#£”. It means that any problem which can be mathematically reduced to a
nonlinear mapping like (1), (4), (7), (11), etc. can be solved using the NN represented by (20).
What is the difference between NN solutions given by (20) for different problems? These NNs
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can have different number of inputs, #, and outputs, m. They can have different numbers of
neurons, k, in the hidden layer. They will also have different weights and biases in the hidden and
output layers. The next and crucial problem is how to determine all these parameters.

For each particular problem, »n and m are determined by the dimensions of the input and
output vectors X and Y. The number of hidden neurons, k, in each particular case should be
determined taking into account the complexity of the problem. The more complicated the
mapping, the more hidden neurons are required. Unfortunately, there is no universal
recommendation to be given here. Usually & is determined by experience and experiment. After
these topological parameters are defined, the weights and biases can be found, using a procedure
which is called NN training. To explain the training procedure, let us assume that we have a
matchup database which matches two sets of vectors Cr. = {X,, ¥, },_; » where

X, ={x,,x,,.. %X, ER",and V¥, ={y ,¢,,...., ¥, ER"
and

.....

training is completed. We also assume that these two sets of vectors are related by an unknown
continuous mapping F,

¥Y,=FX,), p=1.,N (22)
and we want to find a NN
Yp szN (Xp)’ (23)
Y, ={y,:9,20Ym} ER"
which gives the best (in the sense of some criterion or metric) approximation for mapping F.

This criterion may be defined as the minimum (with respect to weights, Q and «, and biases, B
and £) of an error or cost function E,

E(Q,w,B,B) = ZHY‘" — C = Z m Voo =V )5 (24)
Yp = fNN(Xp); (Xp’ lpp) ECT

Thus, optimal values for weights and biases can be obtained by minimizing the error function (24).
Therefore, the training of the NN (23) can be reduced to a minimization problem,; this problem,
however, is a nonlinear minimization problem, which is not an easy problem to solve. A number
of methods have been developed for solving this problem (e.g.,Beale and Jeckson, 1990). Here
we consider a simplified version of the steepest (or gradient) descent method known as the back-
propagation training algorithm.
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The back-propagation training algorithm is based on the simple idea that searching for a
minimum of the error function (24) can be performed step by step, and that on each step we
should increment or decrement weights and biases in such a way to decrease the error function.
This can be done using, for example, a simple gradient descent rule as follows:

GE
AW = - JE @)
T ow

where 7 is a so-called learning constant and W is one of the weights, Q and w, or biases, B and £.
Using (24) and (20), derivative in (25) can be expressed through the derivative of the activation
function ¢'. For example, if W is a weight «, ;. in the output layer:

JE ad 26
I U o'z (26)
o, Z(ym Y )92,

For activation function ¢(x) = tanh(x), we have ¢’ = (1 - ¢?) and from the first line of (20),

$= Vpor= b)) 1 @y

so, finally, the adjustment for a weight @, ;. can be written as:
2

N Yo —b,
Aw , = —2112 Yy =W 0 ) - (7—) )z, (27)

q

Adjustments for other weights and biases can be calculated similarly, following the same
procedure.

All values on the right-hand side of (27) can be calculated using (20) and the values for
weights and biases from the previous step of the training. Therefore, after r iterations, the
simplest rule for calculating new weights and biases is
Wr+1=Wr+AWr (28)
here we returned to notations used in (25), and AW " is given by (27) or similar expression.
When r = 0, the initialization problem familiar to people who use various kinds of iteration
schema arises: how can we calculate the right-hand side in (28) and (27) at the first step when we
do not have weights and biases from a previous step of training. Many publications have been
devoted to this problem (e.g., Nguyen and Widrow, 1990; Wessels and Bernard, 1992). One or
another kind of random initialization is usually used.

The simple version of the back-propagation training algorithm described here may be
modified and improved in many different ways (Beale and Jeckson, 1990; Chen, 1996); however,
the above discussion introduces the main ideas of this method. Usually the training process is
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terminated after some maximum number of adjustment steps, which is a given parameter of the
training procedure, or after the error function becomes less than some value, which is also a given
parameter of the training procedure. Also, it is mentioned above that only the simplest and most
common topology -- multilayer perceptrone was considered here. Many other types of NNs have
been developed, for example, radial basis function NN, Kohonen NN, Hopfield NN, ART
(adaptive resonance theory) NN, etc. (see, e.g., Beale and Jackson, 1990) and used in different
applications, including remote sensing. Other types of NNs have different topologies and training
methods; however, most of them are built from the same building blocks -- nonlinear neurons
(17). These NNs also have to be trained and tested, and they usually perform some generalized
nonlinear mapping of input parameters onto output parameters. Some of these applications are
briefly discussed in Section 6.

Here, in the conclusion of this section, several main properties of NNs are presented which
make them a very suitable generic tool for nonlinear mapping (and, therefore, for algorithm
development). Some of these properties have been illustrated above, others are described in the
literature.

> NNs are able to model complicated nonlinear input/output relationships (any continuous
nonlinear mapping).

> NNs are robust with respect to random noise and sensitive to systematic, regular signals
(e.g., Kerlirzin and Réfrégier, 1995).

> NNs are fault-tolerant. An output value is created using all weights and biases so that an
error in one of them usually causes only a minor change in the output value(Cheng, 1996).

> NNs are well-suited for parallel processing and hardware implementations (Cheng, 1996)
(all neurons in the same layer are completely independent and can be evaluated
simultaneously).

> While training the NN is sometimes time consuming, its application is not. After the

training is finished (it is usually performed only once), each application of the trained NN
is an estimation of (20) with known weights and biases which is practically instantaneous
(several tens of floating point additions and multiplications -- microseconds on modern
computers).
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6. NEURAL NETWORKS FOR SSM/I DATA.

In previous sections we discussed theoretical possibilities and premises for using NNs for
modeling TFs and FMs. In this section we illustrate these theoretical considerations using
applications of the NN approach to the SSM/I forward and retrieval problems. SSM/I is a well
established instrument; many different retrieval algorithms and several forward models have been
developed for this sensor; and several different databases are available for the algorithm
development and validation. Many different techniques have been applied for the algorithm
development here. Therefore, for this instrument, we can present a broad comparison of different
methods and approaches. In this work a raw buoy-SSM/I matchup database created by Navy was
used for the algorithm development, validation, and comparison. For the F11 instrument,
matchup databases collected by high latitude European ocean weather ships MIKE and LIMA
were added to the Navy database. Many filters have been applied to remove errors and noisy data
(for a detailed discussion see Krasnopolsky et al., 1996, and Krasnopolsky, 1997)

6.1 NN empirical forward model for SSM/L.

The empirical SSM/I FM or GMF (7 - 8) represents the relationship between a vector of
geophysical parameters X and a vector of satellite BT's 7, where T' = {T19V, T19H, T22V, T37V,
T37H}, X = {W, V, L, T, (or S5T)}. Four geophysical parameters were included in X (wind
speed, W, columnar water vapor, V, columnar liquid water, L, and SST ) which are the main
parameters determining satellite BT's, and which are used as inputs in the physically based FMs of
P&K and Wentz (1997) (see Table 4). The NN, OMBFM1, which implements this FM has 4
inputs, {W, V, L, S5T}, one hidden layer with 12 neurons, 5 standard BT outputs {719V, T19H,
122V, T37V, T37H}, and 20 auxiliary outputs which produce derivatives of the outputs with
respect to the inputs, or oI;/ ck;. These derivatives, which are calculated using (21), constitute
the Jacobian matrix K[X] = {JT;/ c; } which emerges in the process of direct assimilation of the
SSM/IBTs when the gradient of the SSM/I contribution to the cost function (3), z., is calculated.
The cost function gradient can be written as (Parrish and Derber, 1992; Phalippou, 1996):

(29)

Vxs=K[X]"(0+E)'(F(X)-T?)

Fig. 6 shows the OMBFM1 architecture. Since these auxiliary outputs (Jacobian matrix K) are
not independent, we did not include them in the error function during the training, hence, only the
standard outputs T are involved in the training process. Including these additional outputs in the
NN architecture simplifies the use of our NN GMF for direct assimilation because, as we showed
in Section 2, in the process of variational retrievals (direct assimilation), the FM (20) and its
derivatives (21) have to be estimated about 3,000 times per satellite measurement. Both egs. (20)
and (21) are much simpler (only several tens of floating point additions and multiplications) than
radiative transfer forward models developed elsewhere.
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o1, JdT, Jd1, JI, Ti19V T19H T22V T37V T37H
oW oV L JSST

Fig. 6. NN forward model OMBFM1

The matchup database for the F11 SSM/I has been used for training (about 3,500
matchups) and testing (about 3,500 matchups) our forward model. Only matchups with R < 15
km and 7 < 15 min (see (14)) have been selected. The FM was trained on all matchups which
correspond to clear + cloudy conditions in accordance with the retrieval flags introduced by
Stogryn et al. (1994):

T37V-T37H>50K for clear conditions
and
T37V-T37H < 50K (30)
TIOV <« TATY
TI9H < 185 K for cloudy conditions

T37H < 210K

Then more than 6,000 matchups for the F10 instrument have been used for validation and
comparison of the NN FM with PB forward models by P&K and Wentz (1997)>.

*The author coded both Wentz’s FM and retrieval algorithm based on the detailed
description published by Wentz (1997).
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Table 2 shows total validation statistics for the clear + cloudy case and Table 3 for clear
conditions only. Each table contains statistics for five BTs (T19V, T19H, T22V, T37V, and
T37H) for the F10 SSM/I including: the minimum value, the maximum value, the mean value and
the standard deviation (o;), together with these statistics for BTs generated by OMBFM1 and PB
FMs. These tables also show some statistics (bias, standard deviation (SD)) for the differences
between SSM/I and FM-generated BT and correlation coefficient (CC) between them.

Summarizing the information contained in Tables 2 and 3:

° The absolute values of SDs for OMBFM1 are systematically better than those for the
P&K and Wentz FMs for all weather conditions and for all channels considered. For
OMBFM1, the horizontally-polarized channels, 19H and 37H, have the highest SDs:
~2.5°K under clear, and ~3.°K under clear + cloudy conditions. For the vertically
polarized channels, SDs are lower: <1.5°K under clear, and <1.7°K under clear + cloudy
conditions. The same trend can be observed for the P&K and Wentz FMs.

° With the exception of 19H and 22V channels the Wentz FM has higher biases than both
OMBFEM1 and P&K FM. For the horizontally-polarized channels, OMBFM1 has a larger
bias than the P&K FM. These nonzero biases can be explained (at least partly) by the fact
that all considered FMs have been developed, using data from different satellites (F8 for
Wentz and P&K, and F11 for our NN). The wind direction signal may also contribute to
this bias (only the isotropic part of Wentz’s FM have been used). The nonzero biases
which these FMs produce when applied to F10 data may be also due to slight calibration
errors and/or due to ellipticity of the F10 satellite orbit.

Table 4 presents total statistics (RMS errors) for three FMs discussed here. RMS errors are

averaged over different frequencies for the vertical and horizontal polarization separately.

In this section we have demonstrated that the NN FM gives results which are better (in
terms of standard deviations and RMS errors) or comparable (in terms of biases) with results
obtained with more sophisticated physically-based models. The NN FM simultaneously calculates
the BTs and Jacobian matrix. It is much simpler than physically-based FMs, and does not have
many sophistications which physically-based FMs have. The NN FM is not as general as some
radiative transfer models; it was developed to be used in the data assimilation system for
variational retrieval and direct assimilation of SSM/I BTs of particular frequencies from a
particular instrument. However, for this particular application it has significant advantages,
especially in an operational environment.
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Table 2. Statistics for BT's under clear + cloudy conditions. Columns 3 - 6 show statistics
for the BTs per se (o denotes standard deviation), and columns 7 - 9 for the difference between
F10 SSM/I and FM-generated BTs. SD denotes standard deviation for the difference, and CC
denotes correlation coefficient.

Channel FM Min T Max T Mean T Oy Bias | SD CC
T19V F10 SSM/I 1735 232.0 200.6 125 | N/A | N/A | N/A
Wentz FM 175.6 224.7 199.6 12.2 1.2 24 | 098

P&K FM 176.3 2258 199.8 11.9 0.8 21 | 0.99

OMBFM1 177.6 227.3 199.9 12.1 0.7 1.7 { 699

T19H F10 SSM/1 95.4 184.9 137.7 19.0 | N/A | N/A | N/A
Wentz FM 98.6 178.6 137.1 18.3 13 39 | 0.98

P&K FM 98.7 182.0 137.4 18.1 0.4 3.8 | 0.98

OMBFM1 98.7 181.4 135.6 18.5 2.1 2.6 0.99

T22V F10 SSM/I 178.8 264.9 227.6 209 | NJA | N/A | NA
Wentz FM 184.9 261.6 227.9 20.9 0.2 23 | 099

P&K FM 183.9 260.1 2272 20.2 0.4 21 | 089

OMBFM1 186.1 264.2 227.2 207 | 04 1.2 | 100

T37V F10 SSM/I 194.4 3516 2171 9.0 N/A | N/A | N/A
Wentz FM 198.8 236.3 2149 8.2 2.3 2.4 0.96

P&K FM 199.4 238.5 216.0 8.3 1.1 22 | 097

OMBFM1 201.1 244.6 216.1 8.6 1.0 1.6 0.98

T37H F10 SSM/I 124.9 209.4 160.0 158 | N/A | N/A | N/A
Wentz FM 1255 196.4 156.4 13.9 3.8 48 | 0.96

P&K FM 129.6 204.9 159.5 14.4 0.5 48 | 095

OMBFM1 128.7 211.3 158.4 152 | 1.5 3.1 | 598
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Table 3. Statistics for BTs under clear conditions. Columns 3 - 6 show statistics for the
BTs per se (o, denotes standard deviation), and columns 7 - 9 for the difference between F10
SSM/I and FM-generated BTs. SD denotes standard deviation for the difference, and CC denotes
correlation coefficient.

Channel FM Min T Max T Mean T Gy Bias SD CC
T19V F10 SSM/I 1735 228.6 198.4 11.5 | NJ/A | N/A | N/A
Wentz FM 175.6 221.4 197.9 11.6 0.8 20 | 098

P&K FM 176.3 2218 197.9 11.2 | 0.5 1.8 | 0.98

OMBFM1 1773 221.1 197.9 141 0.5 1.5 | 0.99

T19H F10 SSM/1 95.4 177.5 133.8 169 | N/A | NJ/A | N/A
Wentz FM 98.6 170.8 134.0 17.1 0.2 2.7 0.99

P&K FM 98.7 171.7 134.1 16.8 | 0.3 29 | 0.99

OMBFM1 98.7 169.8 1319 16.5 1.9 23 | 0.99

T22V F10 SSM/T 178.8 2617 224.6 200 | NJ/A | NJA | N/A
Wentz FM 184.9 259.7 2253 203 | -0.2 21 | 099

P&K FM 183.9 258.6 224.5 19.6 | 0.0 1.8 | 0.99

OMBFM1 186.1 260.3 2243 19.8 0.3 1.2 | 1.00

T37V F10 SSM/I 194.4 251.6 214.9 7D N/A | N/A | N/A
Wentz FM 198.8 230.4 2133 7.5 1.8 13 | 0697

P&K FM 199.4 235.9 214.2 7.3 0.8 1.9 0.97

OMBFM1 201.1 244.6 214.1 | 0.9 15 }| 098

TI7TH F10 SSM/I 124.9 201.4 155.6 12.1 N/A | NJ/A | N/A
Wentz FM 125.5 180.3 153.1 121 2.6 3.3 | 098

P&K FM 129.6 204.9 156.0 123 | -04 37 | 095

OMBFM1 128.7 210.5 154.4 1.9 | 1.2 2.8 {097
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Table 4. Comparison of physically based radiative transfer and empirical NN forward
models for clear and clear+cloudy (in parentheses) cases.

Author Type Inputs BT RMS Error (°K)
Vertical Horizontal
Petty & Katsaros PB W, V, L, SST, Theta', P(?, 1.9 (2.3) 3.3 (4.3)
HWV, ZCLD*, Ta’, G°
Wentz (1997) PB W, V, L, SST, Theta' 2.3(2.8) 3.4(5.1)
Krasnopolsky NN, emp. W, V, L, SST 1.5(1.7) 3.03.4)
'Theta - incidence angle * P0 - surface presure > HWV - vapor scale height

*ZCLD - cloud height  ° Ta - effective surface temperature ® G - lapse rate

6.2 NN empirical SSM/I retrieval algorithms

The SSM/I wind speed retrieval problem is a perfect example to illustrate general
statements formulated in previous sections. The problems encountered in the case of SSM/I wind
speed retrievals and methods used to solve them can be easily generalized for other geophysical
parameters and sensors. Five SSM/I sensors (F8, F10, F11, F13 and F14) were successfully
lunched since 1987, and a significant amount of data have been collected and matched to the buoy
data. About ten different SSM/I wind speed retrieval algorithms, both empirical and physically-
based, have been developed using a large variety of approaches and methods. Here we perform a
comparison of these algorithms in order to illustrate some properties of the different approaches
mentioned in previous sections and some advantages of the NN approach.

The first global SSM/I wind speed retrieval algorithm was developed by Goodberlet et al.
(1989). This algorithm is a single-parameter algorithm (it retrieves only wind speed), and it is
linear with respect to BT's (a multiple LR was used):

Weaw=Co+ C,T19V + C,T22V+ C,T37V + C, T37H (31)

Statistics for this algorithm are shown in tables 5-7 under abbreviation GSW. This algorithm
present a linear approximation of a nonlinear (especially under cloudy conditions) SSM/I TF, f
(11). Under clear conditions (Table 5), it retrieves the wind speed with an acceptable accuracy
(the standard deviation is less than 2 m/s and the bias is low); however, under cloudy conditions
where the amount of the water vapor and/or cloud liquid water in the atmosphere increases,
errors in the retrieved wind speed increase significantly (see Table 6) because the TF, f,
becomes significantly nonlinear. Even for clear conditions, when the amount of the integrated
water vapor in the atmosphere is significant (e.g., in tropics), the TF becomes nonlinear and the
accuracy of GSW retrievals deteriorates significantly (Stogryn, et al., 1994).

Goodberlet and Swift (1992) tried to improve the performance of GSW algorithm under
cloudy conditions, using the NR with a nonlinearity of rational type:
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where Wy is given by (31). Since the nature of the nonlinearity of the SSM/I TF under cloudy
condition is not known precisely, an application of this NR, as we mentioned in Section 5.1, may
not improve results. This is exactly what happens with the algorithm (32), which we refer to as
GS. The rational NR (32) does not improve retrievals, as compared with the linear GSW
algorithm, even under clear conditions (Table 5). Moreover, it has a pole at & = 1 or at [T37V -
T37H| = 30.7. Under cloudy conditions, some BTs fall in a close vicinity of this pole. Insuch
cases the GS algorithm generates false very high wind speeds (Table 6). These high wind speeds
are generated for events where real wind speeds are less than 15 m/s (compare Tables 6 and 7).
A nonlinear algorithm (GSWP) introduced by Petty (1993) presents the opposite case
where a nonlinearity introduced in NR represents the nonlinear behavior of TF much better:

Woswe = Wesw +ag+a,V+a,V?

where (33)
V=b,+b/In(300.-T19V ) +

+b, In(300 .- T22V )+ b, In(300 .-T37V)

Here again, Wy is given by (31), a, is a bias correction and @, V + a, V? is a nonlinear
correction which corrects the linear TF (31) when the amount of water vapor in the atmosphere is
nonzero. Tables 5 and 6 show that GSWP algorithm improves the accuracy of retrievals as
compared with the linear GSW algorithm both under clear and cloudy conditions. However, it
does not improve performance of GSW algorithm at high wind speeds (see Table 7) because most
of high wind speed events occur at mid- and high-latitudes where the amount of the water vapor
in the atmosphere is not significant. Here the cloud liquid water is the main source of the
nonlinear behavior of the TF, and it has to be taken into account.

NN algorithms have been introduced as an alternative to the NR because the NN can
model a nonlinear behavior of the TF better than the NR. The first NN algorithm for SSM/I has
been developed by Stogryn et al. (1994) for retrieving the wind speed from the SSM/I BTs. This
algorithm consists of two NN, one of them performs retrievals under clear and another one under
cloudy conditions (30). Krasnopolsky et al. (1994, 1995)) showed that a single NN (OMBNN1)
with the same architecture can generate retrievals with the same accuracy as the two NNs
developed by Stogryn et al. under both clear and cloudy conditions. This algorithm can be
represented as:

W = fiun(T) (34)
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where W is the wind speed, and T = {T19V, 122V, 137V, T37H}. Application of the OMBNN1
algorithm led to a significant improvement in wind speed retrieval accuracy for clear conditions.
For higher moisture/cloudy conditions, the improvement was even far greater (25-30%) compared
to the GSW algorithm. The increase in the areal coverage due to improvements in accuracy was
about 15% on average and higher in areas with higher meteorological activity.

Both NN algorithms (SBB and OMBNN1) give very similar results because they have
been developed using the same matchup database. This database, however, does not contain
matchups with the wind speed higher than about 20 m/s and contains very few matchups with
wind speeds higher than 15 m/s. These algorithms also are single-parameter algorithms, i.e. they
retrieve only one parameter - wind speed, therefore they can not account for the variability of all
related atmospheric (e.g., water vapor and liquid water) and surface (e.g., SST) parameters
(especially important at higher wind speeds). This is why these NN algorithms demonstrate the
same problem; they can not generate acceptable wind speeds at ranges higher then 18 - 19 m/s.
The high wind speed performance has been improved in the OMBNN2 algorithm (Krasnopolsky
et al., 1995b) by introducing new methods of NN training which enhance the learning at high wind
speeds and by using a bias correction. The OMBNN2 algorithm performs better than OMBNN1
for wind speeds higher than 15 m/s; however, it still can not generate wind speeds higher than 19
- 20 m/s without a bias correction because the same training set was used. It is also a single-
parameter algorithm and is sensitive to the the variability of related atmospheric and surface
parameters at higher wind speeds.

The next generation NN algorithm - a multi-parameter NN algorithm developed in NCEP
(OMBNN3; Krasnopolsky et al., 1996) solved the high wind speed problem through three main
advances. First, a new buoy/SSM/I matchup database containing an extensive matchup data set
for F8, F10, and F11 sensors provided by NRL and augmented with additional data for high
latitude, high wind speed events (up to 26 m/s) from European OWS MIKE and LIMA, was used
for the development of this algorithm. Second, the method of NN training which enhances
learning the high wind speed behavior was used. Third, the variability of the primary related
atmospheric and surface parameters was taken into account: wind speed, columnar water vapor,
columnar liquid water, and SST are retrieved simultancously. In this case, the relation (34) is
modified:

X = fun(T) (35)

where X = {W, V, L, §5T} is now a vector, and W is the wind speed, V - columnar water vapor, L
- columnar liquid water, and SST - sea surface temperature. The OMBNN3 algorithm uses five
SSM/I channels: 19 GHz and 37 GHz (horizontal and vertical polarization) and 22 GHz
(vertical polarization). It does not use any additional inputs. SST is an output here rather than
additional input as in Wentz algorithms.

Fig. 7 illustrates the evolution of our NN algorithms from OMBNN1 to OMBNN3.
Tables 5-7 show a comparison of the performance for all above mentioned empirical algorithms
for three different SSM/I instruments FO8, F10, and F11. The SBB algorithm is not shown
because statistics for it are practically identical to those for OMBNN1. Retrievals obtained from
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footnote #3 on page 31) are presented in Tables 5-7 for completeness. In Tables 5-7, the number
in parentheses in the rows corresponding to Wentz (1997) algorithm shows the percent of
matchups where the Wentz algorithm converges. Statistics for Weniz algorithm are calculated
only over the latter matchups, and for all other algorithms, statistics are calculated over all
matchups.

Statistics presented in Table 5-7 show the maximum and the mean wind speed measured
by buoy or SSM/I, the standard deviation of the wind speed measured by buoy or SSM/I (g,), the
mean difference between buoy and SSM/I wind speeds (bias), the standard deviation of this
difference (SD), and the correlation coefficient between buoy and SSM/I wind speeds (CC). The
NN algorithms obviously outperform all other algorithms in terms of standard deviations.
OMBNNT1 has large bias mainly because of its inability to generate high wind speeds. Both
problems are corrected for OMBNN3. All algorithms, except the NN algorithms, show a
tendency to overestimate high wind speeds. It happens because high wind speed events are
usually accompanied by a significant amount of the cloud liquid water in the atmosphere. Under
such circumstances, the transfer function, f, becomes a complicated nonlinear function and simple
one-parametric regression algorithms can not provide an adequate representation for this function
and confuses a high concentration of cloud liquid water with very high wind speeds. OMBNN3
shows the best total performance (taking into account bias, SD, CC and high wind speed
performance).

As was mentioned above, one of the significant advantages of OMBNN3 algorithms is its
ability to retrieve simultaneously not only the wind speed but also three other atmospheric and
ocean surface parameters: columnar water vapor V, columnar liquid water L, and SST.
Krasnopolsky et al. (1996) showed that the accuracies of retrieval for V and L are very good and
close to those for Alishouse et al. (1990) and Weng and Grody (1994) algorithms respectively.
However, the simultaneous and accurate retrievals of V and L is not the only advantage of
OMBNNG3. Figs. 8 (for F10 SSM/I) and 9 (for F11 SSM/I) show the errors in wind speed
retrievals (bias and SD) as functions of V, L, and SS7 for GSW, Wentz, and OMBNN3
algorithms. The errors of OMBNN3 algorithm demonstrate weaker dependencies on related
atmospheric and surface (SST) parameters than errors of other algorithms that have been
considered. The retrieved SST in this case is not accurate (RMS error of about 4°C; see
Krasnopolsky et al., 1996); however, including SST into the vector of retrieved parameters
decreases the errors in other retrievals correlated with the SS7.

31



T19V T22V T37V T37H T19V T22V T37V T37H T85V

Bias Correction

\

w
OMBNN2

OMBNN1

T19V T19H T22V T37V T37

w \'4 L SST
OMBNN3

Fig.7 Evolution of the NN architecture from OMBNN1 to OMBNN3.
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Table 5 Total statistics for GSW, GS, GSWP, Wentz, OMBNN1, OMBNN2 and OMBNN3
algorithms for clear conditions and for four different SSM/I instruments. Columns 3 - 5 show statistics for
the wind speeds per se (o,, denotes standard deviation), and columns 6 - 8 for the difference between buoy
and algorithm-generated wind speeds. SD denotes standard deviation, and CC denotes correlation
coefficient.

Satellite Max W | Mean W o Bias SD CC
Buoy 19.2 7.06 3.01 N/A N/A N/A

FO8 GSW 21.4 7.08 3.18 -0.02 1.77 0.84
1437 GS 21.8 6.15 3.32 0.91 1.80 0.84
m-ups GSWP 20.7 7.01 3.18 0.05 1.60 0.86
Wentz(99% ) 19.9 6.43 3.47. 0.63 1.83 0.85

OMBNN1 151 6.13 2.38 0.93 1.49 0.87

OMBNN2 16.8 6.56 2.68 0.50 1.48 0.88

OMBNN3 20.1 7.07 3.01 -0.01 1.43 0.88

Buoy 20.5 6.98 295 N/A N/A N/A

. GSW 208 | 720 | 322 | 02 1.86 0.82
5953 GS 21.1 6.28 3.34 0.70 1.89 0.83
m-ups GSWP 20.0 7.21 3.19 -0.23 1.74 0.84
Wentz(97%) 19.8 6.36 3.63 0.63 2.05 0.83

OMBNN1 14.7 6.23 2.46 0.75 1.63 0.84

OMBNN2 171 6.13 2.61 0.84 1.60 0.84

OMBNN3 20.2 7.21 2.97 -0.23 1.68 0.84

Buoy+OWS B39 7.13 3.29 N/A N/A N/A

Fl1 GSW 209 7.34 3.36 -0.21 1.72 0.87
5274' GS 211 6.45 3.51 0.68 175 0.87
m-ups GSWP 19.6 7.30 3.36 -0.16 1.62 0.88
Wentz(91 %) 20.7 6.88 351 0.25 1.92 0.84

OMBNN1 16.9 6.47 2.55 0.66 1.55 0.89

OMBNN2 17.9 6.32 2.72 0.81 1.56 © 088

OMBNN3 20.2 7.17 3.03 -0.04 1.43 0.90
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Table 6 Total statistics for GSW, GS, GSWP, Wentz, OMBNN1, OMBNN2 and OMBNN3

algorithms for clear + cloudy conditions and for four different SSM/I instruments. Columns 3 - 5 show
statistics for the wind speeds per se (o,, denotes standard deviation), and columns 6 - 8 for the difference
between buoy and algorithm-generated wind speeds. SD denotes standard deviation, and CC denotes
correlation coefficient.

Satellite Max W | Mean W o, Bias SD CC
Buoy 21.5 7.31 3.17 N/A N/A N/A
FO8 GSW 25.9 7.65 3.54 -0.34 2.13 0.80
GS 35.9 6.60 3.63 0.71 2.21 0.80

1637
m-ups GSWP 25.6 7.48 3.50 -0.17 1.88 0.84
Wentz(99% ) 25.5 6.98 3.84 0.35 2.28 0.80
OMBNN1 171 6.32 2.45 0.99 1.62 0.86
OMBNN2 18.4 6.80 292 081 1.60 0.87
OMBNN3 20.6 7.41 3.09 -0.10 1.59 0.87
Buoy 21.6 7.26 3.18 N/A N/A N/A
F10 GSW 26.0 7.81 3.59 -0.55 2.15 0.80
GS 52.9 6.72 3.70 0.54 2.29 0.79

6879
m-ups GSWP 26.8 7.68 3.51 -0.42 1.94 0.84
Wentz(99%) 31.1 6.93 4.04 0.33 2.45 0.80
OMBNN1 16.4 6.42 2.53 0.85 1.74 0.84
OMBNN2 19.5 6.32 2.77 0.95 1.72 0.84
OMBNN3 22.5 7.57 3.18 -0.31 1.79 0.84
Buoy+OWS 26.4 7.47 331 N/A N/A N/A
F11 GSW 30.3 7.99 3.77 -0.53 2.09 0.84
GS 618.9 7.06 8.87 0.41 8.19 0.39

6129
m-ups GSwWP 3.2 7.83 3.74 -0.36 1.92 0.86
Wentz(93 %) 354 7.46 392 0.1 2.33 0.80
OMBNN1 19.4 6.70 2.65 0.76 1.70 0.88
OMBNN2 20.7 6.56 2.90 0.91 1.70 0.88
OMBNN3 22.8 1.57 3.27 -0.11 1.61 0.89

34



Table 7 High winds (W > 15 m/s) statistics for algorithms presented in Table 5, for
clear+cloudy conditions and for four different SSM/I instruments. Columns 3 - 5 show statistics
for the wind speeds per se (o, denotes standard deviation), and columns 6 - 7 for the difference
between buoy and algorithm-generated wind speeds. SD denotes standard deviation.

Satellite Max W Mean W a, Bias SDh
Buoy 213 16.8 135 N/A N/A

FO8 GSW 21.4 16.9 2.97 -0.10 152
33 GS 21.8 16.3 2.65 0.44 2.30
m-ups GSwp 20.7 - 16.5 1.83 0.25 152
Wentz(88% ) 19.9 16.1 2.02 0.72 1.76

- OMBNN3 20.6 16.4 1.76 0.42 1.40

_ Buoy 21.6 16.8 1.51 N/A N/A
F10 GSW 26.0 17.1 2195 -0.3 2.61
155 GS 277 16.3 4.12 0.53 3.88
m-ups GSWP 26.8 16.9 2.94 -0.05 2.61
Wentz(89% ) 31.1 16.2 3.31 0.60 2.88

OMBNN3 22.5 16.4 2.62 0.40 2.16
Buoy+OWS 26.4 17.5 2.34 N/A N/A

F11 GSW 30.3 17.0 2.98 0.46 2.68
i GS 117.5 172 8.69 0.35 8.38
m-ups GSwWP 31,2 16.8 3.02 0.70 2.68
Wentz(54% ) 354 170 3.50 0.41 3.16

OMBNN3 22.8 16.3 2.50 1.17 275

In Tables 5-7, the number in parentheses in the rows corresponding to Wentz (1997) algorithm
shows the percent of matchups where the Wentz algorithm converges. Statistics for Wentz
algorithm are calculated only over the latter matchups, and for all other algorithms, statistics are
calculated over all matchups.
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Table 8 shows a condensed comparison of the GSW, Wentz, and OMBNN3 algorithms.
An error analysis (see Section 4 and Table 1) was performed; sensor and observation errors were
removed (for simplicity we assume that observation and sensor errors in the wind speed do not
depend on the algorithm used for retrieval); and the algorithm errors were separated.

Table 8. Error budget (in m/s) for different SSM/I wind speed algorithms for clear and
clear+cloudy (in parentheses) cases.
Algorithm Observation Algorithm Sensor Errors | Total RMS
Errors Errors Error
Linear Regression’ 1.0 1.4 (1.7) 0.6 LB
Physically-Based® 1.0 1.61(2.1) 0.6 2.0(2.4)
OMBNN3* 1.0 0.9 (1.2) 0.6 1L.501.D

'Goodberlet et al., 1989 *Wentz, 1997 *Krasnopolsky et al., 1996
After the removing the sensor and observation error, the advantage of the OMBNN3 algorithm
becomes even more obvious.

In this section we demonstrated the advantages of the NN approach for developing
empirical algorithms for SSM/I retrievals and SSM/I FM. Because this problem is rather generic,
we can conclude that the NN approach is a generic tool for the development of empirical retrieval
algorithms and FMs. We also refer interested readers to studies that have already used NNs as an
advanced statistical technique for developing empirical retrieval algorithms and forward models
and for improving the accuracy of retrievals and the areal coverage for many derived geophysical
parameters (Thiria et al., 1991; Stogryn et al., 1994; Krasnopolsky et al., 1995; Thiria and Crepon,
1996; Krasnopolsky, 1997; Neural Networks in Remote Sensing, 1997).
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7 CONCLUSIONS

In this work we discussed differences between standard and variational (based on direct
assimilation of satellite measurements) retrievals. We showed that they have different spatial and
temporal resolutions, error properties, etc.; therefore, they are oriented to different users and
applications. It means that standard retrievals of geophysical parameters and their variational
retrievals through direct assimilation of sensor measurements are not exclusive but complementary
approaches.

Both standard and variational retrievals require a data convertor to convert satellite
measurements into geophysical parameters or vice versa. Standard retrievals use a TF (solution of
the inverse problem) and variational retrievals use 2 FM (solution of the forward problem) for this
purpose. In many cases the TF and the FM can be represented as a nonlinear mapping. Because
the NN technique is a generic technique for nonlinear mapping, it can be used beneficially for
modeling TFs and FMs.

To illustrate benefits which one can get from applying the NN approach to the FM and TF
development, we have presented a new NN-based empirical SSM/I FM called OMBFM1 and a
new NN-based OMBNNG3 transfer function (i.e., retrieval algorithm) for SSM/I retrievals. The
forward model OMBFM1, given the wind speed, columnar water vapor, columnar liquid water,
and SST, generates five SSM/I BTs (T19V, T19H, T22V, T37V, and T37H) with acceptable
accuracy. Comparison with PB FMs (P&K and Wents, 1997), for all weather conditions
permitted, shows that OMBFM1 is better than or comparable with PB FMs in terms of accuracy.
It is also significantly simpler than the PB FMs which is very important for variational retrievals
where the FM is estimated several thousand times per satellite measurement.

The NN-based OMBNN3 transfer function (i.e., retrieval algorithm) for SSM/I retrieves
the wind speed, the columnar water vapor, the columnar liquid water, and the SST, It
demonstrates high retrieval accuracy overall, together with the ability to generate high wind speeds
with acceptable accuracy. The results demonstrate that OMBNN3 systematically outperforms all
algorithms considered for all SSM/I instruments, under all weather conditions where retrievals are
possible, and for all wind speeds.

In this work we discussed only two particular NN remote sensing application examples:
SSM/I FM and SSM/I TF. The NN technique has been successfully used in other satellite remote
sensing applications: for developing a scatterometer TF (Thiria et al., 1991) and a scatterometer
FM (Thiria and Crepon, 1996), for retrieving atmospheric humidity profiles (C.R. Cabrera-
Mercader and D.H. Staelin, 1995), for retrieving values of soil moisture, surface air temperature,
and vegetation moisture (D. Davice et al., 1995), for retrieving rainfall from SSM/I data (D.
Tsintikadis, et al., 1997), etc. Other possible applications of the NNs in satellite remote sensing
are change detection (Coté and Tatnall, 1995; Gopal and Woodcock, 1996) and many different
classification problem (e.g., see in Neural Networks in Remote Sensing, 1997).
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