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LIST OF ABBREVIATIONS

BT:
C:
CC:
FM:
FXX:
GHz:
GMF:

LIMA:
MIKE:
NCEP:
NDBC:
NN:
NRL:

OMBNN3:

OWS:
PB:
P&K
SD:
SSM/T:
SST:
TAO:
TOGA:
V:

Wi

brightness temperature

degrees Celsius

correlation coefficient

forward model, the same as GMF

SSM/I instrument number XX

10° cycles/second

geophysical model function, the same as FM
horizontal polarization

degrees Kelvin

columnar liquid water

European oceanic weather ship

European oceanic weather ship

National Centers for Environmental Prediction
National Data Buoy Center

neural network

Naval Research Laboratory

Ocean Modeling Branch Neural Network number 3 - SSM/I retrieval algorithm
oceanic weather ship

physically-based

Petty and Katsaros (1992, 1994) - see References
standard deviation

Special Sensor Microwave / Imager

sea surface temperature

tropical atmosphere ocean

tropical ocean global atmosphere

vertical polarization

columnar water vapor



p 1 INTRODUCTION

This report contains a description of a new neural network (NN) SSM/I forward model
(FM) or geophysical model function (GMF) which generates SSM/I brightness temperatures
(BTs) at five frequencies, 19GHz(V and H), 22GHz (V), and 37GHz(V and H) given the wind
speed (W in m/s), columnar water vapor (V in mm), columnar liquid water (L in mm), and SS7 (in
°C). This OMBFM1 (Ocean Modeling Branch Forward Model number 1) has been developed to
be used for direct assimilation of SSM/I BTs into NCEP atmospheric forecast models.

There are two different approaches to developing GMF, a physically-based (PB) approach
and an empirical approach. PB approaches use radiative transfer equations and various physical
models to describe the air/sea interface and to derive the relationship between satellite ETS and
atmospheric and oceanic parameters such as columnar liquid water, columnar water vapor,
surface wind speed, and SST. Empirical FM derives relations between BTs and atmospheric and
oceanic parameters from empirical data (e.g., collocation of satellite and buoy and/or radiosonde
observations). Because PB approaches usually rely heavily on empirical parametrizations, using
data similar to those used in the empirical approaches, the difference between PB and empirical
approaches is not so great. For example, a SSM/I FM developed by Petty (1990) and Petty and
Katsaros (1992, 1994) (P&K FM) uses only for the parametrization of atmospheric effects over
16,000 radiosonde/SSM/I matchups. As a result, PB FMs contain many empirical parameters.
OMBFM1 which is a completely empiriéal FM contains approxirhatcly the same number of
parameters (which correspond to the NN weights and biases). Several physically based GMFs for
SSM/I BT have been developed. Among them are P&K FM and Wentz (1992) FM. At the best
of our knowledge, OMBFM1 is the first empirical FM for the SSM/I.

The purpose of this technical note is to document the development and validation of
OMBFM1. In the Section 2, the architecture of the new GMF OMBFM1 is described. Section 3
describes the data sets which are used and the preprocessing of these data. Section 4 describes
the training process. In Section 5 we perform detailed validation of the OMBFM1 using various

criteria and matchups from different SSM/I instruments. Section 6 presents a sensitivity and error



analysis, Section 7 summarizes our conclusions, and in the Appendix the FORTRAN program

which implements OMBFM1 is presented?.

2, THE ARCHITECTURE
The SSM/I FM orGMEF represents the relationship between a vector of geophysical
parameters X and a vector of satellite BTs T'
T=F(X) )

where T = {T19V, TI9H, T22V, T37V, T37H}, X = {W, V, L, ST}, and F is GMF or FM. The
85 GHz channel is not included in the output vector T in this first version of our empirical FM to
simplify matters. For input vector X, four geophysical parameters were included (wind speed, W,
columnar water vapor, V, columnar liquid water L, and SS7 ) which are the main parameters,
determining satellite BT's, and which are used as inputs in the physically based FMs of P&K and
Wentz.

The NN, OMBFM1, which implements eq. (1) has 4 inputs, {W, V, L, SST}, 5 standard
BT outputs {119V, T19H, T22V, T37V, T37H}, and 20 auxiliary outputs which produce
derivatives of the outputs with respect to the inputs, or JI;/ &X ;. These derivatives constitute
the Jacobian matrix K[X] = {JT;/ X, } which emerges in the process of direct assimilation of the
SSM/I BTs when the gradient of the SSM/I contribution to the cost function P, is calculated.
The cost function ¥, can be written as (Parrish and Derber, 1992; Phalippou, 1996),

W

ssat 1= 5 FOO-TOY (0 + By (FX) - 1°) ®

where T is an observed SSM/I BT vector, X = {W, V, L, SST} is a state vector formed by the

atmospheric and surface variables, O is the expected error covariance of the observations, E is the

The corresponding FORTRAN file is available upon request from Viadimir Krasnopolsky, e-mail address:
wd21kv(@sgi78.wwb.noaa.gov or general@dec0l.wwb.noaa.gov, tel. 301-763-8133.

4



expected error covariance of the FM, and the superscript T denotes matrix transpose. The cost

function gradient can be expressed as,

V%o = KIXT' (0 + E)™ (F(X) -T?) 3)

Fig. 1 shows the OMBFM1 architecture. If auxiliary outputs are not taken into account,
the architecture of OMBFM1 is mirror symmetric to the architecture of the NN retrieval
algorithm OMBNN3 (Krasnopolsky et al., 1996) which, in some sense, may be considered as the
inverse of OMBFM1.

The standard n-th output of a NN can be expressed as,
k
T, =b, +a, tanh( Y, z; +,) ()
i=1

where the w,; are the weights and /£, is the bias in the output layer, a, and b, are positive scaling

factors, k is the number of hidden nodes, and z; is the output of the j-th hidden node, which can be

expressed as

i=1

where £J; are the weights and B; are the biases in the hidden layer, and X; are inputs to the NN.
The elements of the Jacobian matrix, i.e. the derivatives JI;/ :ZX}, which are used in the direct
assimilation of BT, are here calculated analytically given NN weights and biases without

sacrificing accuracy as is the case in numerical differentiation,

3T, 1, 24 % 2 6
m=7(3n +(I;: _bn) )E(I_Zj)ﬂpjmjn ©)
n j=1

39X,

OMBFM1, therefore, provides not only the FM, F, but also the Jacobian matrix K for direct

assimilation (2 - 3).



Fig. 1 NN SSM/Iforward model OMBFM1.



Since these auxiliary outputs are not independent, we did not include them in the error function
during training, hence, only the standard outputs T are involved in the training process. Including
these additional outputs in the NN architecture simplifies the use of our NN GMF for direct

assimilation.

3 THE DATA
For FM development and validation several data sources were used:

a. A raw SSMI/buoy matchup database, created by NRL. This database contains 12,013
F10/buoy matchups for the period 9/91 to 6/93 and 10,195 F11/buoy matchups for the
period 12/91 to 6/93. NDBC buoys and TOGA-TAO buoys have been used in creating
these matchups. We carefully quality-controlled these matchups extracted from the NRL
database. More than 30 different criteria have been applied to both the buoy and the
SSM/I data for quality control, including the removal of missing and noisy data. Daily
locations for TOGA-TAO buoys have been corrected using information from the TAO
Web Home page. As a result, subsets of 11,705 F10/buoy matchups and 9,948 F11/buoy
matchups were extracted. As a second step, we selected matchups where the satellite data
were collocated with the buoy data in space for R, < 15 km and in time for R, < 15 min.
7495 matchups were then selected for F10, and 6129 matchups for F11.

b. The F11/OWS matchups were collected by high latitude ocean weather ships (OWS)
LIMA (430 matchups) and MIKE (639 matchups) and provided to us by D. Kilham
(Bristol University). After quality control and applying a 15 km x 15 min collocation
filter, 547 (243 MIKE + 304 LIMA) matchaps have been selected.

For all data, wind speeds have been adjusted to a height of 20 m. Some characteristics of
the data are shown in Table 1. Clear and cloudy conditions are defined below and correspond to

the retrieval flags given by Stogryn et al. (1994):

T37V-T37H>50 K for clear conditions

and



T37V-T37H < 50K (7)

T19V < T37V
T19H < 185K for cloudy conditions
T37H < 210K
Table 1. Statistics for data sets used for development and validation.
Number of matchups | Mean W | o, |MaxW | MaxW | MaxW
m/s m/s m/s (Clear + | (Clear)
Total | Clear | Cloudy Cloudy) m/s
m/s
F10/Buoy | 7495 | 5953 926 73 3.2 25.0 21.6 20.5
F11/Buoy | 6633 | 5274 855 1.5 3.5 26.4 25.0 20.1
F11/LIMA | 304 253 51 104 | 49 26.4 26.4 23.9
F11/MIKE | 243 215 27 9.8 4.9 24.2 24.2 21.1

As can be seen from Table 1, most of the high wind speeds coincide with higher levels of
moisture and cloudiness. Matchup data for F10 do not have buoy wind speeds higher than 21.6
m/s even under clear + cloudy conditions. Several high wind speed events in these data contain
levels of liquid water which are so high that the atmosphere becomes opaque to microwave
radiation. Only the F11 data contain high wind speed events under clear + cloudy conditions (up
to 25 m/s). Thus, the F11 data provide the only choice for FM development. To further improve
the coverage for high wind speeds, F11/buoy data have been supplemented with F11/LIMA and
F11/MIKE data. These data have wind speeds up to 26.4 m/s and represent high latitudes (LIMA |
was located at ~ 57°N and MIKE at ~ 65°N). The resulting blended F11 matchup database has
subsequently been separated into two statistically equivalent sets: one for training and a second
for testing. The same training database has also been used for developing a new NN SSM/I
retrieval algorithm OMBNN3 (Krasnopolsky et al., 1996).




4. TRAINING

As shown by Stogryn et al. (1994) and Krasnopolsky et al. (1994, 1995), NN retrieval
algorithms can successfully operate under clear + cloudy, i.e., moist atmospheric conditions.
Therefore, for training our NN FM we used all available matchups which corresponded to clear +
cloudy conditions, according to Stogryn’s retrieval flags (7). Statistics for clear conditions were
then calculated by applying the trained NN to the clear portion of the matchup data.

Five SSM/I BTs {T19V, T19H, T22V, T37V, T37H} constitute the NN outputs. The input
vector is composed of wind speed, W, and SST taken from the buoy portion of the F11 matchup
database used for training, columnar water vapor, V, produced by the algorithm of Alishouse et al.
(1990), and columnar liquid water, L, from the WG (Weng and Grody, 1994) algorithm. Back
propagation was used to train the NN. After training, the algorithm was applied to the F11 test
data. Table 2 shows wind speed statistics for clear +cloudy conditions and Table 3 - for clear
conditions, for both training and test sets. In these tables each cell contains two numbers. The
first number corresponds to the SSM/I observed BT and the second number to the FM generated
BT.

Under both clear and clear + cloudy conditions, the OMBFM1 generated BTs compared
with the SSM/I BT's have small biases, acceptable standard deviations for differences (SD), and
high correlations (CC). Fig. 2 shows the observed and FM generated BT for all five channels.
The FM also accurately reproduces not only the mean SSM/I BT for each channel but also its
standard deviation, o, and the range of variability (min and max BTs); therefore, the FM-
generated BT distributions are properly centered and have proper widths (see Fig. 3). The
horizontally polarized channels, 19H and 37H, have the highest SDs, ~2.5°K, under clear, and
~3°K under clear + cloudy conditions. For the vertically polarized channels, SDs are lower,
~1°K under clear, and ~1.5°K under clear + cloudy conditions. The differences in the statistics
for training and test sets are not significant which shows that the NN was not overtrained. The

difference between clear and clear + cloudy case is not large but significant.
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Table 2. Training and test statistics for BTs under clear + cloudy conditions. Columns 3 -
6 show statistics for the BT per se (o denotes standard deviation), and columns 7 - 9 for the
difference between SSM/I and OMBFM1-generated BTs. SD denotes standard deviation, and

CC denotes correlation coefficient.

Data | Chan MinT Max T Mean T O Bias SD | CC
set nel (°K) (°K) (°K) (°K) °K) | °K)
Trai | T19V | 175.0/178.0 | 230.8/227.6 | 200.6/200.6 | 12.3/122 | 0.0 1.4 10.99
ning T19H | 959/99.8 | 184.9/181.4 | 136.8/136.8 | 19.0/18.8 | 0.0 25 [0.99
2§5=0 T22V | 182.5/187.4 | 265.8/264.9 | 228.6/228.6 | 20.8/20.7 0.0 1.2 | 1.00
T37V | 199.7/201.5 | 244.5/242.3 | 216.6/216.6 8.8/8.7 0.0 1.4 |0.99
T37H | 125.5/129.1 | 209.3/207.0 | 159.4/159.4 | 159/155 | 0.0 3.1 |0.98
Test | T19V | 175.7/177.8 | 230.3/227.7 | 200.4/2004 | 12.3/122 0.0 1.4 1099
N= | TI9H | 96.7/99.7 | 184.8/181.2 | 136.6/136.6 | 18.9/188 | 0.0 2.5 |0.99
2972 | T22v | 183.7/187.2 | 266.3/264.6 | 228.3/228.3 | 20.9/208 | 00 | 1.0 | 1.00
T37V | 199.4/201.4 | 243.3 /2423 | 216.5/216.5 8.8/8.7 0.0 1.4 |0.99
T37H | 126.6/129.2 | 209.8/207.1 | 159.1/159.1 | 15.9/15.5 0.0 3.1 098
Table 3. Training and test statistics for BT's under clear conditions. Columns 3 - 6 show

statistics for the BTs per se (o denotes standard deviation), and columns 7 - 9 for the difference
between SSM/I and OMBFM1-generated BTs. SD denotes standard deviation, and CC denotes

correlation coefficient.

Data | Chan Min T Max T Mean T Oy Bias SD | CC
set nel (°K) (°K) (°K) (°K) °K) | (°K)
Trai | T19V | 175.0/178.0 | 227.4/222.8 | 198.4/198.5 | 11.3/113 | -01 | 1.2 |0.99
M0g [rom | 95.9/99.8 | 178471694 | 132.8/1331 | 168/168 | 02 | 21 |0.99
211925 T22V | 182.5/187.4 | 264.5/261.9 | 225.6/225.6 | 20.0/19.9 | 00 | 09 |1.00
T37V | 199.7 /2015 | 237.3/235.9 | 214.5/2145 | 73/72 | -01 | 1.3 |0.99
T37H | 125.5/129.1 | 183.3/200.0 | 154.9/155.1 | 15.9/155 | -03 | 26 |0.98
Test | T1OV | 175.7/177.8 | 224.5/222.9 | 198.2/1983 | 11.3/11.2 | -01 | 1.2 |0.99
_ | TI9H | 96.7/99.7 |173.1/1703 | 132.6/132.8 | 16.8/16.8 | -02 | 2.0 |0.99
2515 | 9oy | 183.7/187.2 | 263.9/261.9 | 2253/2253 | 20.0/199 | -0.1 | 09 | 1.00
T37V | 199.4/201.4 | 232.9/233.9 | 2143/2143 | 7.3/72 | 01 | 12 |0.99
T37H | 126.6 /1292 | 182.6/194.8 | 154.6/154.8 | 12.0/11.9 | -03 | 2.6 |0.98
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5. VALIDATION

Here we use a newly-created database described in Section 3 for validation of OMBFM1
for F10 SSM/I instrument and for comparison with a PB FM. For comparison with the new
OMBFM1 we have used a PB FM by P&K.

Table 4 shows total statistics for clear + cloudy case and Table 5 for clear conditions.
Each table contains statistics for five BTs (T19V, T19H, T22V, T37V, and T37H) for F10
SSM/I, including minimum value, maximum value, mean value and standard deviation (),
together with these statistics for BTs generated by OMBFM1 and PB FM. These tables also
show some statistics (bias, standard deviation (SD), and correlation coefficient (CC)) for the
differences between SSM/I and FM-generated BTs. Fig. 4 shows the observed and OMBFM1-
generated BT for all five channels. Fig. 5 compares the OMBFM1-generated BT distributions
with the observed BT distributions.

We now summarize the information contained in Tables 4 and 5:

Here, as in the case for the F11 instrument, for OMBFM1, horizontally-polarized
channels, 19H and 37H, have the highest SDs: ~2.5°K under clear, and ~3.°K under clear +
cloudy conditions. For the vertically polarized channels, SDs are lower: <1.5°K under clear, and
<1.7°K under clear + cloudy conditions. The same trend can be observed for the PB FM,
however, the absolute values of SDs for the PB FM are systematically higher for all weather
conditions and for all channels considered.

Biases for OMBFML1 are also higher for horizontally-polarized channels (especially for
37H). For horizontally-polarized channels, OMBFM]1 has a larger bias than the PB FM. These
nonzero biases can be explained (at least partly) by the fact that OMBFM1 has been developed,
using data from different satellite (F11). The wind direction signal may also contribute to this
bias. Nonzero biases which OMBFM1 produces when applied to F10 data may be also due to

slight calibrational errors and/or due to ellipticity of the F10 satellite orbit.
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Table 4. Statistics for BTs under clear + cloudy conditions. Columns 3 - 6 show statistics
for the BT per se (o denotes standard deviation), and columns 7 - 9 for the difference between
F10 SSM/I and FM-generated BTs. SD denotes standard deviation for the difference, and CC

denotes correlation coefficient.

Channel FM Min T Max T Mean T Or Bias | SD CC
T19V F10 SSM/I 173.5 232.0 ©200.6 125 | N/A | N/A | N/A
PBFM 176.3 225.8 199.8 11.9 0.8 2.1 0.99

OMBFM1 177.6 2273 199.9 12.1 0.7 1.7 | 0.99

T19H F10 SSM/T 95.4 184.9 137.7 19.0 | NJ/A | N/A | N/A
PB FM 98.7 182.0 137.4 18.1 0.4 3.8 | 0.98

OMBFM1 98.7 181.4 135.6 18.5 21 2.6 0.99

T22V F10 SSM/1 178.8 264.9 297.6 20.9 N/A | N/A | NA
PB FM 183.9 260.1 227.2 20.2 0.4 2.1 0.99

OMBFM1 186.1 264.2 227.2 20.7 0.4 1.2 1.00

T37V F10 SSM/1 1944 251.6 2171 9.0 N/A | N/A | N/A
PB FM 199.4 238.5 216.0 8.3 1.1 2.2 0.97

OMBFM1 201.1 244.6 216:1 8.6 1.0 1.6 0.98

T37H F10 SSM/I 124.9 209.4 160.0 158 | N/A | NJA | N/A
PB FM 129.6 204.9 159.5 14.4 0.5 4.8 0.95

OMBFM1 128.7 211.3 158.4 5.2 1.5 3.1 0.98
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Table 5. Statistics for BTs under clear conditions. Columns 3 - 6 show statistics for the
BTs per se (o denotes standard deviation), and columns 7 - 9 for the difference between F10
SSM/I and FM-generated BTs. SD denotes standard deviation for the difference, and CC denotes

correlation coefficient.

Channel FM Min T Max T Mean T Oy Bias | SD cC
T19V F10 SSM/1 173.5 228.6 198.4 11.5 | N/A | NJA | N/A
PB FM 176.3 221.9 197.9 11.2 0.5 1.8 0.98

OMBFM1 177.3 221.1 1979 11.1 | 05 15 | 099

T19H F10 SSM/1 95.4 177.5 1338 169 | N/A | NJA | N/A
PB FM 98.7 171.7 134.1 16.8 -0.3 2.9 0.99

OMBFM1 98.7 169.8 131.9 16.5 1.9 23 0.99

T22V F10 SSM/I 178.8 261.7 224.6 20.0 N/A | N/JA | N/A
PB FM 183.9 258.6 224.5 19.6 0.0 1.8 0.99

OMBFM1 186.1 260.3 224.3 19.8 0.3 1.2 1.00

T37V F10 SSM/I 1944 251.6 2149 i N/A | N/A | N/A
PB FM 199.4 2359 214.2 73 0.8 1.9 0.97

OMBFM1 201.1 244.6 214.1 Tl 0.9 1:5 0.98

T37H F10 SSM/I 124.9 201.4 155.6 121 | N/A | NJA | N/A
PB FM 129.6 204.9 156.0 12.3 0.4 3.7 0.95

OMBFM1 128.7 210.5 154.4 11.9 1.2 2.8 0.97
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6. SENSITIVITY AND ERROR ANALYSIS

Next, we estimate the Jacobian matrix K[X] = {JT;/ 2X;}. The elements of this matrix
reflect the sensitivity of the different BTs, T}, to the different geophysical parameters X;. To
make possible a comparison between matrix elements corresponding to the different parameters
X, new, unitless parameters x; = X,/ (max(X;) - min(X;)) were introduced, and the normalized
Jacobian matrix K[x]| = {JI}/ d; } was calculated, using both of our matchup data sets (F10 and
F11). The results are presented in Fig. 6 (for F11) and Fig. 7 (for F10). Each figure has four
panels which represent four rows of the normalized Jacobian matrix K[x]. Each panel shows five
curves for one particular unitless geophysical parameter, x;, and for all five BT channels, T; .
These curves represent maximum (solid line) and minimum (dotted line) values of the matrix
elements, mean (dashed line) value of the matrix elements and an envelope of + one standard
deviation (dashed-dotted lines).

The figures show that, among the five considered channels, two channels, 19h and 37h,
have the highest sensitivity to wind speed and columnar liquid water, and the 22v channel is
primarily sensitive the columnar water vapor. All channels have a relatively low sensitivity to
SST.

Ertors in OMBFM1 are estimated as the difference between FM-generated and collocated
SSM/I BTs in Sections 4 and 5. These errors, in addition to the errors of the FM per se, include
other components such as collocation errors, radiometer noise, wind direction noise, etc. As
mentioned above, there is a close connection between the FM OMBFM1 and the retrieval
algorithm OMBNN3 which allows us to estimate true model errors for OMBFM1 and OMBNNS3.
OMBFMI1 and OMBNN3 have a mirror symmetric architecture (the outputs of OMBNN3 are the
inputs of OMBFM1 and vice versa), and they have been developed, using the same matchup data
set; therefore, they may be considered as inverse to each other. Fig. 8 presents two different
layouts which allow us to estimate true model errors for the OMBFM1+OMBNN3 in tandem,
both in terms of (a) geophysical parameters and (b) BTs. In layout (2), the input vector X =
{W,V,L,S5T} and the output vector X’ = {W’,V’,L°,S5T’} are equal (X’ - X = 0) if both models

18
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Fig. 8. Two different layouts (a) and (b) for evaluating internal model errors.
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are perfect. The same is true about the layout (b) where X = {T19V, T19H, T22V, T37V, T37H}
and X’ = {T19V’, TI9H’, T22V’, T37V°, T37H’}. The departure of the difference D = X - X’
from zero gives an estimate for the true model errors for OMBFM1 and OMBNN3. Tables 6
presents an estimate of true model errors in terms of the various geophysical parameters (Fig.
8(a)). 5,923 vectors of geophysical parameters X = {W,V,L,SS7} from the F11 matchup data
were used as inputs X for this estimate. Tables 7 presents an estimate of true model errors in
terms of BTs (Fig. 8(b)). 5,923 F11 SSM/I BT vectors from out F11 matchup data set were
used as inputs X to obtain this estimate. These estimated true model errors are important for
comparing standard and direct assimilation of the SSM/I data into atmospheric models because

the true model errors determine a lower bound for significant differences between the methods.

Table 6. True model errors in terms of geophysical parameters, columns 5 - 6 show mean
error (bias) and standard deviation (SD), column 7 - correlation coefficient between X and X’
(CC). Columns 2 - 4 show statistics for the geophysical parameters per se (X / X”) and o,
denotes standard deviation.

Parameter Max X Mean X Oy Bias SD CC
W (m/s) 24.0/23.5 11413 33/28 -0.2 1.0 0.96
V (mm) 64.4/58.6 31.1/308 15.6/16.1 03 1.2 1.0
L (mm) 0.38/0.34 | 0.034/0.034 | 0.058/0.056 | 0.00 | 0.01 0.99
SST (°C) 31.4/30.1 19.5/20.5 92779 -1.0 4.5 0.87
Table 7. True model errors in terms of BTs, columns 7 - 8 show mean error (bias) and

standard deviation (SD), column 8 - correlation coefficient between X and X* (CC). Columns 3 -
6 show statistics for the BT's per se (X / X’) and o, denotes standard deviation.

Channel Min X Max X Mean X Oy Bias SD CC
(°K) (°K) (°K) (°K) (°K) | (°K)

T19V 175.0/177.9 | 230.8/227.7 | 200.5/200.3 | 12.3/12.6 0.2 1.3 1.0

T19H 95.9/99.9 184.9/181.5 | 136.7/136.6 | 19.0/19.3 0.2 2.0 1.0

T22V 182.5/187.1 | 266.3/264.0 | 228.4/227.9 | 20.8/21.6 0.5 1.8 1.0

T37V | 199.4/201.6 | 244.5/242.1 | 216.6/216.4 | 88/88 .| 0.1 12 0.99

T37H | 125.5/129.8 | 209.8/207.4 | 159.3/1593 | 158/156 | 0.0 2.0 0.99
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% CONCLUSIONS

We have presented a new NN-based empirical SSM/I forward model called OMBFM1
which given the wind speed, columnar water vapor, columnar liquid water, and SS7, generates
five SSM/I BTs (T19V, T19H, T22V, T37V, and T37H) with an acceptable accuracy.
Comparison with a PB FM (P&K FM), for all weather conditions permitted, shows that
OMBFM1 is better than, or comparable with, PB FMs.

The OMBNN3 retrieval algorithm (Krasnopolsky et al., 1996) and OMBFM1 have mirror
symmetry (outputs of OMBFM1 are inputs of OMBNN3 and vice versa). Also, they have been
developed using the same matchup data; therefore, OMBNN3 may be considered as the inverse of
OMBFMI1. These two NNs, one which (OMBFM1) solves the SSM/I forward problem and
another one (OMBNN3), which solves the SSM/I inverse problem, can be used to accurately
compare direct and standard (i.e., inverse, via retrievals) assimilation of SSM/I BTs. True model
errors which are important for this comparison are also estimated.

OMBFM1 generates the isotropic part of SSM/I BT's which does not depend on wind
direction. The wind direction signal which is of order 2 - 3°K (Wentz, 1992) serves as a source
of noise in this case. By including the wind directional component in our model, it may be

possible to separate the wind directional signal and thus reduce bias and SD of the FM.
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APPENDIX

C******************************************************************************

C Name: OMBFM1

(3
C Language: FORTRAN77 Type - SUBROUTINE
c i
C Version: 1.0 Date: 09-17-96 Author: V. Krasnopolsky
C
B e
&
SUBROUTINE OMBFM1(X,Y,DYDX)
G
€ sacmessrennrorn e o
c
C Description: This is NN forward model or geophysical model function for SSM/I.
C e This NN was trained on blended F11 data set (SSMI/buoy matchups +

& SSMI/OWS matchups 15km x 15 min) under Clear + Cloudy conditions

& (Stogryn's retrieval flag) which approximatelly correspond to

C L<0.4-0.5 mm. Itis not recommended to apply OMBFM1 at

& higher L.

¢ OMBFM1 has been developed in EMC of NCEP, NOAA.

(& OMBFM1 means Ocean Modeling Branch (EMC, NCEP)Neural Network
G Forward Model #1. It generates SSM/I brightness temperatures (BT):

C BT19V, BT19H, BT22V, BT37V and BT37H given the wind speed (W in m/s)
C at the height 20. m, columnar water vapor (V in mm), columnar liquid

C water (L.in mm) and SST (in deg. C). OMBFM1 also calculates

C derivatives of BTs over W, V, L and SST.

8 The NN was trained using back-propagation algorithm.

C OMBFM1 is described in OMB Technical Note No. 140 "A NEURAL NETWORK
C FORWARD MODEL FOR SSM/I" by V. Krasnopolsky,

C

C

C

C

C

C

C

(&

C

C

%

e-mail: wd21kv(@sgi78.wwb.noaa.gov (V. Krasnopolsky)
Tel: 301-763-8133

Fax: 301-763-8545

address:

Environmental Modeling Center,

W/INMC21, Room 207,

5200 Auth Rd.

Camp Spring, MD 20746

Description of training and test data set:

G

C  The training set consist of 3460 matchups which were received from

C two sources:

C 1. 3187 F11/SSMI/buoy matchups were filtered out from a preliminary
c version of the new NRL database which was kindly provided by

C G. Poe (NRL). Maximum available wind speed is 24 m/s.

C 2. 273 F11/SSMI/OWS matchups were filtered out from two datasets

C collected by high latitude OWS LIMA and MIKE. These data sets were
C kindly provided by D. Kilham (University of Bristol).Maximum
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available wind speed is 26.4 m/s.
Satellite data are collocated with both buoy and OWS data in space
within 15 km and in time within 15 min.

The test data set has the same structure, the same number of matchups
and maximum buoy wind speed.

QOO0 e

C SOME COMPARISON STATISTICS FOR F11 TEST SET:
C

C BTs statistics on test sets (CLEAR + CLOUDY conditions)
C D = BTsatell - BTmodel, SD - stand. dev.; CC - correlation coeff.:

(S S S e
C Min BT Max BT Mean BT SDBT Bias SDD CC (BTsat, BTmod)
C degK degK degK degK degK degK

(it e S e o B L B A
C BT 19V

O ot S S A S e S e
C SSM/T 1757 2303 2004 12.3

C -0.006 1.42  0.993

C OMBFM1 177.8 2277 2004 1262

T LN — -
c BT 19H

1 S — U
C SSM/I 96.7 184.8 136.6 18.9

& 0.02 249 0991

C OMBFM1 99.7 181.2 136.6 18.8

st 5 o e S5 S S S
G BT 22V

e S e e S S B e
CSSM/I 183.7 2663 2283 20.9

C -0.02 1.01  0.999

C OMBFM1 1872 2646 2284 20.8

Chmismasmessppns SRRLES S s L
c BT 37V

s e )
CSSM/I 199.4 2433 2165 8.8

C 0.01 141 0.987

C OMBFM1 2014 2423 2165 8.7

(T ———— e s

C BT 37H

T S S i e S S g
C SSM/I 126.6. 209.8 1592 15.9

c 0.04 3.06 0.981

C OMBFM1 1292 207.1 1591 15.5

Cosmnmassnamnnasr s e e
C

C*******************************************************************#i****

C
C CALLING FROM A FORTRAN PROGRAM:
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REAL X(4),Y(5),DYDX(5,4)
Input X '
CALL OMBFM1(X,Y,DYDX)

e 3k ok sk ok s sk ok sk ok e e e sk sk ok s sk sk sl ok sk sk sk st sk s sl sk ok ol ke ok ok sl sl Sk ok s ok ol ok sk ok ok sk sk sk ok sk sk sl sk sk ke sk i sl ofe e e ke sl e sl e sk s ke sk R RO R R

aQoaaaaan

INTEGER HID,0UT
PARAMETER (IN =4, HID =12, OUT = 5)
&
C Arguments:
INPUT:
X(1) =W - wind speed in m/s at the height 20 m
X(2) = V - columnar water vapor in mm
X(3) = L - columnar liquid water in mm
X(4)=SSTindecC

DIMENSION X(IN)

OUTPUT: BTs
Y(1) = T19V
Y(2) = T19H
Y(3) = T22V
Y(4) = T37V
Y(5) = T37H

DYDX(i,j) = dY(I)dX(j); I = 1,..,0UT; j = 1,..,IN
derivatives of outputs (BTSs) over inputs (W,V,L, and SST)

DIMENSION Y(OUT),DYDX(OUT,IN)

aa aoooaoQaoQan gaoaooon

Yo T0% %o %o %o Yo To Yo o Yo To Yo Yo To Yo %o To %o Yo % Yo To Fo Yo Yo To Yo Yo o To T Fo To Yo To To Fo Yo Yo To T Yo To To To T To To To T To o To T T T
%% % %%

C

C Internal variables:

IN - NUMBER OF NN INPUTS

HID - NUMBER OF HIDDEN NODES
OUT - NUMBER OF OUTPUTS

W1 - INPUT WEIGHTS

W2 - HIDDEN WEIGHTS

B1 - HIDDEN BIASES

OOoOO00aaanaonctaectg
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B2 - OUTPUT BIAS
DIMENSION W1(IN,HID),W2(HID,0UT),B1(HID),B2(OUT)

C
C
C
C A(OUT), B(OUT) - OUTPUT TRANSFORMATION COEFFICIENTS
C

CHEH R R R R AR R R R R R R R R R
2
DIMENSION O1(IN),X2(HID),02(HID),X3(0UT),03(0UT),A(OUT),B(OUT)
C
DATA (WL(L)),J = L,HID),I = 1,IN)
& /-0.0196909,0.000469835,-0.0355833,-0.0127482,-0.0452790,
&-0.0552762,0.00711142,-0.0119401,0.0724249,-0.114600,0.0765579,
&0.0462186,-0.0194260,0.0294191,0.0731808,0.0570750,0.0318723,
&-0.0205220,0.0541103,0.0166078,0.0217549,0.0258847,-0.0109038,
&0.0141959,1.65944,4.09372,-6.88147,2.56645,2.58955,0.344977,
&0.168493,-2.63533,-0.149611,-4.18283,-2.86900,12.3661,0.0768516,
&0.00399621,-0.0293703,-0.0148143,-0.0422821,-0.0180330,0.0101799,
&0.00586564,-0.000881997,-0.00652825,-0.0279206,0.00598652/
DATA ((W2(L,1),J = 1,0UT),l = 1,HID)
& /0.252935,0.0220921,0.0400708,0.131144,-0.0605750,0.356676,
&0.484277,0.423199,0.504382,0.625677,0.137876,0.176632,-0.00785619,
&0.215313,0.207205,0.389668,0.340875,0.839181,0.302863,0.132646,
&0.420907,0.272828,0.380563,0.278892,0.137530,-0.236016,-0.439557,
&-0.589991,0.118722,-0.205443,-0.245245,-0.265252,-0.512171,
&0.0142726,0.0782267,0.523659,0.254154,0.859174,-0.111038,
&-0.540984,0.378676,0.400412,0.395952,0.260658,0.267763,-0.241717,
&-0.194556,-0.0865185,-0.311284,-0.197566,-0.0814274,-0.155645,
&-0.221689,-0.217461,-0.192726,0.423372,0.559186,0.184526,
&0.723609,0.771179/
DATA (B1(I), I=1,HID)
& /-1.10602,-2.46613,-0.316599,-0.133491,-0.572517,0.609209,
&-1.39783,-0.0307912,-2.05501,1.61258,0.149796,0.134640/
DATA (B2(D), I=1,0UT)
& /-0.0687464,-0.229735,-0.330258,-0.134227,-0.121645/
DATA (A(D), I=1,0UT)
& /30.9911,49.4339,46.3106,24.9094,46.5617/
DATA (B(I), I=1,0UT)
& /202.919,140.435,224.174,222.080,167.402/
&
C
DOI=1,IN
01(I) = X(D
END DO
C
C - START NEURAL NETWORK
C
C - INITIALIZE X3
&
DOK=1,0UT
X3(K)=0.
C
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C - INITIALIZE X2
C
DOI =1, HID
X2(I) = 0.
DOJ=1,IN
X2(D) = X2(I) + 01()) * W1(J,D)
END DO
X2(I) = X2(T) + B1(D)
02(I) = TANH(X2(I))
X3(K) = X3(K) + W2(LK)*02(I)
END DO

X3(K) = X3(K) + B2(K)

--- CALCULATE 03

e op i N

03(K) = TANH(X3(K))
Y(K) = A(K) * 03(K) + B(K)

C--- CALCULATE DO/DI
e
XY = A(K) * (1. - 03(K) * 03(K))
&
DOJ=1,IN
DUM = 0.
DOT = 1,HID
DUM = DUM + (1. - 02(I) * 02(1)) * W1(J,[) * W2(LK)
ENDDO
DYDX(K,J) = DUM * XY
ENDDO

ENDDO
RETURN

END

0N O O o

CH R A R T T T T A

C----- Table of results for different input values ----------==-=------——---

C
C*****************************************************************************
C

G W vV L SST T19V TI19H T22V T37V T37H

G m/s mm mm degC

(B s s s e s " " _— _—

CX=1.00 .00 .00 30.00 Y=178.61 97.66184.60200.58 126.64

Cay/dX(J) =

C 2.37309E-01 3.85254E-01 5.13367E+01 1.17725E-01
C 4.54153E-01 4.25065E-01 7.70307E+01 1.13801E-01
C 1.49061E-01 6.92852E-01 2.27107E+01 1.23185E-01
C 1.02201E-01 1.43323E-01 5.91959E+01 1.92349E-02

29



C 4.62823E-01 1.99935E-01 1.11496E+02 4.33219E-02
CX= 200 3.00 .0229.00 Y =181.14101.32 187.75 202.53 130.45
C dY/dX(L]) =

C 2.36866E-01 5.24410E-01 5.17766E+01 1.39355E-01

C 5.62532E-01 6.41944E-01 8.75325E+01 1.28987E-01

C 1.41522E-01 1.06147E+00 2.96765E+01 1.22633E-01

C 8.50025E-02 2.24985E-01 7.06831E+01 1.55608E-02

C 6.01967E-01 3.14649E-01 1.39219E+02 3.55185E-02

CX= 300 600 .04 28.00 Y =183.94105.75192.25204.81 135.04
C dY/dX(L]) =

C 2.05300E-01 6.43850E-01 4.43325E+01 1.58234E-01

C 6.13504E-01 8.54149E-01 8.19592E+01 1.21440E-01

C 1.02980E-01 1.49795E+00 3.53503E+01 1.06249E-01

C 3.08847E-02 3.07352E-01 7.07926E+01 6.87313E-03

C 6.63168E-01 4.31464E-01 1.42717E+02 2.95098E-03

CX= 400 9.00 .06 27.00 Y =186.81110.59 198.05 207.20 139.97
C dY/dX(L,]) =

C 1.75850E-01 7.11125E-01 3.50755E+01 1.81901E-01

C 6.39864E-01 1.00808E+00 6.85713E+01 9.84067E-02

C 5.00972E-02 1.85926E+00 3.82021E+01 8.45822E-02

C-2.02004E-02 3.74042E-01 6.54828E+01 2.00984E-03

C 6.89770E-01 5.41648E-01 1.33196E+02-4.50487E-02

CX= 500 12.00 .08 26.00 Y =189.55 115.54 204.58 209.61 145.09
CdY/dX(L]) =

C 1.69819E-01 7.12018E-01 2.75895E+01 2.14498E-01

C 6.76820B-01 1.07312E+00 5.52238E+01 7.08256E-02

C 9.34339E-03 1.97875E+00 3.58797E+01 7.52251E-02

C-3.80606E-02 4.15299E-01 6.04903E+01 7.16400E-03

C 7.32072E-01 6.42954B-01 1.23736E+02-9.80330E-02

CX=6.00 1500 .10 25.00 Y =192.07120.41210.92 212.03 150.48
C dY/dX(1,]) =

C 1.90149E-01 6.63909E-01 2.30210E+01 2.52212E-01

C 7.37039E-01 1.06436E+00 4.56503E+01 4.28093E-02

C-4.37277E-03 1.82852E+00 2.89088E+01 8.38383E-02

C-1.59821E-02 4.34304E-01 5.81120E+01 2.14253E-02

C 8.06888E-01 7.37724E-01 1.19804E+02-1.52013E-01

CX=7.00 1800 .12 24.00 Y =194.35125.16 216.40 214.49 156.27
CdY/dX(L]) =

C 2.29700E-01 6.06464E-01 2.16886E+01 2.86045E-01

C 8.16657E-01 1.03458E+00 4.12716E+01 1.15279E-02

C 3.82158B-03 1.54579E+00 2.13608E+01 9.87339E-02

C 3.80338E-02 4.45466E-01 5.87354E+01 3.86537E-02

C 9.05191E-01 8.31695E-01 1.21773E+02-2.06748E-01

CX= 800 21.00 .14 23.00 Y =196.52129.96 220.93 217.08 162.59
C dY/dX(1,]) =

C 2.79800E-01 5.78233E-01 2.35827E+01 3.06962E-01

C 9.06246E-01 1.04065E+00 4.24591E+01-2.72687E-02

C 2.16445E-02 1.29498E+00 1.73767E+01 1.05065E-01

C 1.10926E-01 4.64831E-01 6.20322E+01 5.15346E-02

C 1.00504E+00 9.27578E-01 1.27906E+02-2.60561E-01

CX= 9.00 24.00 .16 22.00 Y =198.79 135.08 224.86 219.91 169.48
C dY/dX(L,]) =
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C3.33710E-01 6.00636E-01 2.82856E+01 3.08695E-01

C 9.94695E-01 1.11465E+00 4.86946E+01-7.48324E-02

C 4.15015E-02 1.16549E+00 1.87673E+01 9.57660E-02

C 1.89045E-01 5.01207E-01 6.71587E+01 5.46058E-02

C 1.07823E+00 1.01783E+00 1.35287E+02-3.07053E-01

CX =10.00 27.00 .18 21.00 Y =201.38 140.82 228.73 223.06 176.82
C dY/dX(1,]) =

C 3.85857E-01 6.74346E-01 3.48632E+01 2.88200E-01

C 1.06697E+00 1.25187E+00 5.83557E+01-1.27636E-01

C 6.13221E-02 1.16578E+00 2.50375E+01 7.19200E-02

C 2.58712E-01 5.51801E-01 7.25977E+01 4.57281E-02

C 1.09546E+00 1.08156E+00 1.39972E+02-3.35448E-01

CX=11.00 30.00 .20 20.00 Y =204.46 147.32 232.95 226.54 184.29
C dY/dX(L]) =

C 4.29607E-01 7.80912E-01 4.17683E+01 2.46039E-01

C 1.10167E+00 1.41004E-+00 6.84495E+01-1.76926E-01

C 8.08197E-02 1.25178E+00 3.40647E+01 3.99228E-02

C 3.06249E-01 6.01402E-01 7.61142E+01 2.67979E-02

C 1.03576E+00 1.08930E+00 1.37705E+02-3.35173E-01

CX=12.00 33.00 .22 19.00 Y =208.09 154.47 237.70 230.21 191.42
C dY/dX(17) =

C 4.55998E-01 8.85745E-01 4.68632E+01 1.87592E-01

C 1.07478E+00 1.51938E+00 7.48415E+01-2.10212E-01

C 9.83175E-02 1.35295E+00 4.26565E+01 9.15767E-03

C 3.20537E-01 6.26240E-01 7.52548E+01 3.60592E-03

C 8.99058E-01 1.01813E+00 1.25770E+02-3.02962E-01

CX = 13.00 36.00 .24 18.00 Y =212.11 161.80 242.86 233.84 197.67
CdY/dX(L]) =

C 4.55414E-01 9.46607E-01 4.79327E+01 1.23557E-01

C 9.72793E-01 1.51220E+00 7.37913E+01-2.16775E-01

C 1.09604E-01 1.39710E+00 4.74051E+01-1.09774E-02

C 2.98350E-01 6.05348E-01 6.85840E+01-1.63041E-02

C 7.11833E-01 8.70586E-01 1.05039E+02-2.47078E-01

CX =14.00 39.00 .26 17.00 Y =216.22 168.65 248.06 237.12 202.68
C dY/dX(L]) =

C 4.22748E-01 9.32012E-01 4.38290E+01 6.69952E-02

C 8.07277E-01 1.36573E+00 6.44188E+01-1.95291E-01

C 1.09522E-01 1.33961E+00 4.61718B+01-1.53826E-02

C 2.47991E-01 5.35109E-01 5.69015E+01-2.75817E-02

C 5.15874E-01 6.79329E-01 8.00022E+01-1.83481E-01

CX=15.00 42.00 .28 16.00 Y =220.05174.43 252.85 239.82 206.37
C dY/dX(L]) =

C 3.62471E-01 8.40415E-01 3.54333E+01 2.71991E-02

C 6.13852E-01 1.12055E+00 4.96555E+01-1.55812E-01

C 9.56044E-02 1.18412E+00 3.93480E+01-6.03532E-03

C 1.85752E-01 4.33265E-01 4.30293E+01-2.97342E-02

C 3.46697E-01 4.88781E-01 5.61443E+01-1.26646E-01

CX=16.00 4500 .30 15.00 Y =223.28 178.87 256.86 241.87 208.89
C dY/dX(1,]) =

C 2.87739E-01 7.00637E-01 2.52295E+01 5.55979E-03

C 4.32062E-01 8.49738E-01 3.41394E+01-1.12665E-01

C 7.03860E-02 9.74109E-01 2.94876E+01 1.00884E-02
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C 1.27054E-01 3.26495E-01 3.00676E+01-2.59824E-02
C 2.20125E-01 3.30833E-01 3.70410E+01-8.35042E-02

CX=17.00 48.00 .32 1400 Y =225.81182.05 259.99 243.33 210.54
C dY/dX(L]) =

C 2.13325E-01 5.51118E-01 1.57287E+01-2.67440E-03

C 2.85766B-01 6.11464E-01 2.12532E+01-7.58852E-02

C 3.97897E-02 7.61004E-01 1.95089E+01 2.61070E-02

C 8.02388E-02 2.34564E-01 1.98261E+01-2.00991E-02

C 1.34482E-01 2.15783E-01 2.35454E+01-5.40659E-02

CX=18.00 51.00 .34 13.00 Y =227.68 184.21 262.28 244.32 211.59
C dY/dX(L]) =

C 1.49083E-01 4.19144E-01 8.29854E+00-3.62650E-03

C 1.79762B-01 4.29212E-01 1.20849B+01-4.87807E-02

C 9.51094E-03 5.78260E-01 1.12241E+01 3.84254E-02

C 4.66818E-02 1.64750E-01 1.26112E+01-1.44570E-02

C 8.00721E-02 1.38751E-01 1.47739E+01-3.51560E-02

CX =19.00 54.00 .36 1200 Y =229.01 185.65263.91 244.99 212.25
C dY/dX(L,]) =

C 9.84777E-02 3.15247E-01 3.13413E+00-1.70959E-03

C 1.07692E-01 3.00811E-01 6.18910E+00-3.03789E-02

C-1.71497E-02 4.36887E-01 5.13572E+00 4.65260E-02

C 2.41021E-02 1.15554E-01 7.88597E+00-9.94220E-03

C 4.66119E-02 8.95601E-02 9.34367E+00-2.32988E-02

CX=20.00 57.00 .38 11.00 Y =229.94 186.61 265.04 245.43 212.68
C dY/dX(1,]) =

C 6.07143E-02 2.38591E-01-1.82898E-01 8.06099E-04

C 6.02458E-02 2.14015E-01 2.63466E+00-1.83504E-02

C-3.92383E-02 3.33823E-01 9.74516E-01 5.13583E-02

C 9.39026E-03 8.21694E-02 4.91718E+00-6.60653E-03

C 2.62420E-02 5.87364E-02 6.05557E+00-1.58477E-02

CX=21.00 60.00 .40 10.00 Y =230.59 187.24 265.81 245.73 212.96
C dY/dX(L]) =

C 3.32953E-02 1.83792E-01-2.20123E+00 3.05640E-03

C 2.93254E-02 1.56123E-01 5.81004E-01-1.05436E-02

C-5.71486E-02 2.60912E-01-1.76412E+00 5.41119E-02

C-8.36665E-05 5.97763E-02 3.08942E+00-4.20977E-03

C 1.37859B-02 3.93901E-02 4.07207E+00-1.10722E-02

CX =2200 63.00 .42 9.00 Y =231.04187.68 266.34 245.93 213.14
C dY/dX(L]) =

C 1.35771E-02 1.44995E-01-3.37781E+00 4.84688E-03

C 9.09720E-03 1.17325E-01-5.64995E-01-5.40431E-03

C-7.17433E-02 2.09928E-01-3.54319E+00 5.57153E-02

C-6.18486E-03 4.46675E-02 1.97334E+00-2.48260E-03

C 6.07595E-03 2.70602E-02 2.86674E+00-7.91763E-03

CX=23.00 66.00 .44 8.00 Y =231.36187.97 266.69 246.08 213.27
C dY/dX(L,]) =

C-6.19673E-04 1.17412E-01-4.03181E+00 6.22683E-03

C-4.28990E-03 9.09087E-02-1.17699E+00-1.92271E-03

C-8.38825E-02 1.74321E-01-4.70400E+00 5.67661E-02

C-1.01334E-02 3.43008E-02 1.29458E+00-1.21079E-03

C 1.23446E-03 1.90134E-02 2.12486E+00-5.75846E-03

CX=24.00 69.00 .46 7.00 Y =231.59188.18 266.93 246.18 213.36
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C dY/dX(L]) =
C-1.09112E-02 9.75571E-02-4.36786E+00 7.30176E-03

C-1.32810E-02 7.25244E-02-1.47780E+00 5.27431E-04

C-9.42571E-02 1.49367E-01-5.47378E+00 5.76072E-02

C-1.27003E-02 2.70217E-02 8.84631E-01-2.43903E-04

(C-1.84422B-03 1.36122E-02 1.66173E+00-4.22465E-03

CX=25.00 72.00 .48 6.00 Y =231.74188.33 267.08 246.25 213.43

C dY/dX(I,]) =

C-1.84395E-02 8.30206B-02-4.51174E+00 8.16767E-03

C-1.94103E-02 5.94091E-02-1.59737E+00 2.32752E-03

C-1.03370E-01 1.31805E-01-5.99632E+00 5.84189E-02

C-1.43691E-02 2.17751E-02 6.41286E-01 5.17926E-04

C-3.81732E-03 9.87753E-03 1.36887E+00-3.09507E-03

C

C A S S A
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