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Abstract

A method for numerical investigation of nonlinear wave dynamics based on direct
hydrodynamical modeling of 1-D potential periodic surface waves is presented. By a
nonstationary conformal mapping, the principal equations are rewritten in a surface-
following coordinate system and reduced to two simple evolutionary equations for the
elevation and the velocity potential of the surface. For stationary equations, the pro-
posed approach coincides with the conventional complex variable method. For this
case, numerical algorithms for solution of gravity (Stokes) and gravity-capillary wave
equations are proposed, and examples of numerical solutions are given. The results
imply that gravity-capillary waves do not approach Stokes waves as the capillarity co-
efficient decreases. Both stationary and nonstationary schemes use Fourier series rep-
resentation for spatial approximation and the Fourier transform method to calculate
nonlinearities. The nonstationary model was validated by simulation of propagating
waves with initial conditions obtained as numerical (for gravity and gravity-capillary
waves) or analytical (for pure capillary, or Crapper’s waves) solutions of the station-
ary problem. The simulated progressive waves did not change their shape during
long-term time integration, which indicates high accuracy of the scheme. Another
criterion used for model validation was conservation of integral invariants of simu-
lated multi-mode wave fields. A number of long-term model simulations of gravity,
gravity-capillary, and pure capillary waves, with various initial conditions, were per-
formed; for the simulated wave fields, distributions of energy and phase speed over
spectra were analyzed. It was found that the wavenumber-frequency spectra are well
separated into patterns lying along regularly located curves, with most of the energy
concentrated along the curves corresponding to free and bound waves. This set of
curves can be described by the equation D(w/n,k/n) =0 (n=1,2,3,...), where
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D(w,k) = 0 is approximated by the linear dispersion relation but does not coincide
with it, especially for large k where there is a tendency for the indicated equation to
approximate a straight line. Some other properties of simulated wave fields were also
analyzed; these included temporal evolution of the spectra and spatial distribution of
the energy of perturbations. The method developed may be applied to a broad range
of problems where the assumption of one-dimensionality is acceptable.

1. Introduction

Computational techniques for numerical solution of the Navier-Stokes
equations have brought new developments to geophysical fluid dynam-
ics. Using modern numerical models, the long-term evolution of several
complicated dynamical phenomena in different fluids, including the at-
mosphere, can be successfully simulated. However, the long-term simu-
lation of a nonlinear multi-mode wave field is difficult to perform, since
most numerical schemes for the Euler equations fail to provide sufficient
accuracy for treating nonlinearities in wave motion. The main source of
error is primarily due to the finite difference representation of the vertical
structure of the flow when waves with different wave numbers are present.
Thus, theoretical and numerical investigations of surface gravity waves
are usually based on the equations for potential flow with a free surface.
In this case the flow is fully determined by the form of the surface and the
velocity potential on the surface and in its vicinity. The potential mo-
tion assumption, of course, idealizes the phenomenon, since actual wave
motion is both rotational and turbulent. Fortunately, potential theory
gives many results which agree well with observations. For example, it is
well-known that even linear theory yields phase velocity estimates with
an accuracy of the order of 1% . A much more sophisticated theory,
dealing with nonlinear wave-wave interactions (Hasselman,1962) which
is also based on the potential motion assumption, gives results which are
confirmed by experimental data. '

The main advantage of the potential motion approximation is that
the system of Euler dynamical equations is reduced to Laplace equation.
However, the solution to the problem of surface wave motion is compli-
cated by the requirement of having to apply the kinematic and dynamic
boundary conditions (both nonlinear) on the free surface, the location of
which is unknown at any given moment. Some attempts have been made



previously to reproduce the evolution of waves in a Cartesian coordinate
system (e.g. Prosperetti and Jacobs, 1983), but such techniques are not
applicable to long-term integrations. A more feasible approach is based
on a formulation of the governing equations in a surface-following co-
ordinate system; the simplest technique uses the difference between the
Cartesian vertical coordinate and the surface height as the new vertical
coordinate, along with Cartesian coordinates in the horizontal. However,
this does not eliminate all of the problems, since the Laplace equation
is transformed into a general elliptic equation, and an integral equation
must be solved at each time step (Chalikov and Liberman, 1991) to cal-
culate the vertical derivative of the velocity potential. Another approach
is based on expanding the velocity potential in power series in the vicinity
of the surface. Such a method, developed by Watson and West (1975),
was applied to the solution of the two-dimensional potential wave equa-
tions (West et al., 1987). Even though this model gave excellent results
for a relatively small number of modes, the method is not universal since
the convergence of the power series is slow for the case of multi-mode
wave field with typical spectral energy distribution.

In this study we consider only 1-D nonlinear waves. Such waves
were simulated numerically with a quasi-Lagrangian technique (Longuet-
Higgins and Cokelet, 1976), and with a Cauchy-type integral algorithm
(Dold, 1991). The performance of neither scheme was limited by wave
steepness, and both were capable of simulating the initial phase of wave
breaking (a phenomenon whose later stages are rotational and remain
extremely difficult to simulate directly). A method based on a Taylor
expansion of the Dirichlet-Neumann operator was developed by Craig
and Sulem (1993). The method was illustrated by computing evolution
of modulated wave packets and a low order approximation of the Stokes
wave for relatively short periods. However, the applicability of these
methods to simulating longer time scales is uncertain.

Our goal is to construct a numerical scheme for direct modeling of
1-D potential waves so that the effects of nonlinear interactions on time
scales much longer than the wave period may be analyzed. The approach
is based on a nonstationary conformal mapping which allows us to rewrite
the equations of potential waves (which take into account the effect of
capillarity and finite depth) in a surface-following coordinate system,
where the Laplace equation retains its form, so that the original sys-



tem can be represented by two relatively simple evolutionary equations
(section 2). These equations may be solved by using Fourier transform
method with high accuracy and computational efficiency. Section 3 deals
with stationary solutions of the system; a numerical method to obtain
stationary gravity (Stokes) and gravity-capillary waves is presented and
results of the computations are discussed. The numerical scheme for the
nonstationary equations is described in section 4. The results of section
3, as well as mass, momentum and energy conservation criteria, are used
for validation of the nonstationary model (section 5). In section 6, results
of long-term model simulations are discussed, and spectral properties of
the obtained wave fields are analyzed.

2. Equations

Consider the principal 2-D equations for potential waves written in Carte-
slan coordinates, i.e. the Laplace equation for the velocity potential ®

@xz+@zz20 5 (1)
and the two boundary conditions at the free surface z = h(z,t): the
kinematic condition

ht+h$®xmq>z:0 ) (2)
and the Lagrange integral
i
Qo+ (B4 4htp—oha(1 4R =0,  (3)

where p is the external surface pressure. 2

The equations are to be solved in the domain

—mLedon, ~H €2 < i) . (4)

The variables @ and h are considered to be periodic with respect to @
the period being 27, and a zero normal velocity condition at the bottom
1s assumed;

2Subscripts of independent variables denote partial differentiation with respect to
this variable.



¢ (zz=—H1 =10 (5)

Equations (1)-(3) are written in non-dimensional form, with the fol-
lowing scales: length L, where 2rL is the (dimensional) period in the
horizontal, time 7 = LY?g~1/2 and the velocity potential L3/?g!/? (g
- acceleration of gravity). The last term in (3) describes the effect of
surface tension, and

%
U:g_L_Q’ (6)

is a nondimensional parameter. ( ' ~ 8- 107°m3s7? is the kinematic
coefficient of surface tension for water).

System (1)-(3) is solved as an initial value problem for the unknown
functions ® and & with given initial conditions ®(z,z = h(z,t = 0),t =
0) and h(z,t = 0). However, straightforward numerical integration of this
system 1s known to be computationally inefficient and, for time periods
much greater than the time scale 7', virtually impracticable. To make a
numerical solution feasible, we introduce a surface-following coordinate
system which conformally maps the original domain (4) onto the strip

—co<é<oo, —HL(L0, (7)
with a periodicity condition given as
2(6,¢,7) = a(E+2m,(,7)+2m -
2(£,(,7) = z({+2m,(,7)

where 7 is the new time coordinate, 7 = t. (Note that the mapping is
time-dependent, since it involves the surface height h).

It can readily be shown that a required conformal mapping exists

and, due to periodicity condition (8), can be represented through Fourier
series:

_\cosh k(¢ + H)

T = f + 30(7—) + _Mng'k#o ﬁ—k( ) Sl kf{ T9»‘:(6) 3 (9)
e=Ctm()+ Y =L Hs o o

—M<k<M,k#0 sinh kH
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where 7, are the coefficients of Fourier expansion of the free surface (¢, 7)
with respect to the new horizontal coordinate ¢:

n(&7)=hlz(€.(=0,7)t=7)= 3 m(r)Ix(E) ; (11)

—M<k<M
¥, denotes the function
| coské E>0
de(l) = { simkf k<9 L12)
(note that (Jx)e = kd_k, and T (Axdk)e = — 2 kA_xd.); M is the

truncation number to be used in numerical integration (so far M = oo
is assumed); zo(7) can be chosen arbitrarily, though it is convenient to

assume

zalr) =0 - (13)

The lower boundary ¢ = —H cannot be chosen arbitrarily, since the
relation

2(&,(=—-H,7)=—-H (14)

must hold, which, after substituting (10), yields:

H=H+no(r) . (15)

Since no is determined by the Fourier expansion given by (11), and, gen-
erally, is an unknown function of time, H also depends on time.

Due to the conformity of the mapping, Laplace equation (1) retains

its form in (£,() coordinates. Standard derivations show that system
(1)-(3) can be written in the new coordinates as follows:

(I)Ef + @cc = 0 (16)
— %%y + Tezy = By (17)

il
o, — J Yaez, + ze2,)Pe + §J"1(®§ - @g)

+2z +p = O_J—3/2(_$§€Z§ + 2§§$§) =l (18)
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where (17) and (18) are written for the surface ( = 0 (so that z = 7 as
represented by (11)), and

J=zi+2z=2{+7 (19)

is the Jacobian of the transformation.
Boundary condition (5) readily yields:

O(¢,(=—H,7)=0 . (20)

The Laplace equation (16) with boundary condition (20) is solved via
Fourier expansion (which reduces system {16)-(18) to a 1-D problem):

G= Y gu(r) R LH)
—M<R<M cosh kH

k(&) ) (21)

where ¢, are Fourier coefficients of the surface potential ®(¢,¢ = 0,7).
Thus, (17) and (18) constitute a closed system of prognostic equations
for the surface functions 2(¢,¢ = 0,7) = n({,7) and ®(£,¢ = 0,7). In
principle, it can be written as a system of ordinary differential equations
for the Fourier coefficients g, ¢ using (11) and the following formulae
which are easily obtained from (9), (10), (12), (13), (15), (21):

D C=0,7)= D S(r)0(&) (22)
—M<k<M
(6, (=0,7)=~ D ko x(7)0k(¢) (23)
—M<k<M
Qc(€,¢=0,7)= Y kgu(r)tanh (kH)9.(¢) (24)
—M<k<M
ze(6,(=0,7) =14+ Y kp(r)coth (kH)d(6)  (25)
—~M<k< M, k#0
(6, =0,7)=— > En_p(m)9:(€) (26)
~M<k<M
ze(6,¢=0,7) == Y Kn_s(r)coth (kE)0k(E)  (27)
—M<k<M,k#0
2(6,C=0,7) == > En(r)du(€) (28)
—M<k<M
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B C=0a)= 3. ()9 (£) (29)

~M<k<M

o e k(i)
%@¢=mq—4ﬁgwﬂ@4m mMH>—;E@§r}m@
(30)

(& (=07 = Y d(r)9(6) (31)
~M<k<M

System (17), (18) is not resolved with respect to the time derivative of
the surface elevation n(£, 7). During numerical integration of the initial
value problem, the values of the time derivative can be obtained with a
simple 1terative algoritm making use of (17) and Cauchy-Riemann rela-
tlons Tr¢ = 2zr¢, Tr¢ = —2z-¢. However, a more efficient approach may
be applied (V. Zakharov, private communication; see also Kuznetsov
et al., 1994). Introducing complex variables p = ¢ + i( and denoting
r{p,7) = z(¢,(,7)+12(§,(, ), we can rewrite the left-hand side of equa-
tion (17) as follows

Im (-:—) z(J—ltpc)C:Q (32)
p/ ¢=0

Note that due to conformity of the transformation, r(p, 7} is an ana-
lytic function of p, and so are 7, = z, +1iz,, 7, = z¢ + 1z¢, and their ratio
in the left-hand side of (32). Therefore, if we denote

= P, ¢ 1) +iG(,CT) (33)

Tp

functions £ and G are bound by the Cauchy-Riemann relations:

Fe=G ; F=~Gg, (34)
Considering that G is a harmonic function of ¢ and (, and that it
becomes zero at the lower boundary { = —H (because at that boundary

ze=—H, 2, = z; = 0), so that

we can write the following expansion:



Grdd= T g

M <k M E£0 sinh £ H

9k(£) (36)

and (34) yield:

FECT=hr) 4 3 gnln)

~M<k<M,k#0 Sinh kH

ge(§) . (37)

Function fo(7) can be found using assumption (13), which together
with (33) yields (for any ¢ and 7):

27 2
0:/0 ng:/g (Fze — Gze)de

substituting (36), (37), (9), (10), and integrating the products of the
Fourier series, we obtain:

1 .
fo== > kn_rgesinh™*(kH) . (38)
2 _M<h<M o
Then if
9(§,7) =G C=0,7)= > glr)0(¢) (39)
—~M<k<M k20
is known,

fl&,m)=FE,(=0,7)=folr)+ 3 gi(r)coth (kH)Ou(¢)

— M<k<M E#0
(40)

is also known: f is a generalization of the Hilbert transform of ¢, which,
for k # 0, may be defined in Fourier space as

fr = g_rcoth (kH) , g = —f_ptanh(kf) | (41)

whereas go = 0 and fj is defined by (38). Thus, we can replace equation
(17) by explicit expressions for the time derivatives z, and z, which follow
from (33). Finally, (17) and (18) can be rewritten as a system which is
resolved with respect to the time derivatives (here ¢ = 0):

2, = Teg + ze f (42)

9



1 -
@, =[O — 5 (BF— Q) —z—ptal P —zgeze + 2geme) 5 (43)
where according to (32),

(44)

1

g= (/)

f is obtained from g according to (38) - (40), and the derivatives can
be expressed through Fourier series (22)-(29), (31) (eq. (30) is no longer
needed, since z, has been eliminated from the system).

¢=0

Thus, the original system of equations is transformed into two evo-
lutionary equations (42), (43) which can be effectively solved using the
Fourier transform method (see section 4).

For deep water (H = oo), the expressions in (24), (25), (27), {30),
(38), (40), (41) become simpler, since tanh(kH) and coth(kH) are re-
placed by sign(k), and the terms with sinh™2(kH) vanish. In particular,
operator (41) becomes a conventional Hilbert transform, and (38) is re-
duced to fo = 0.

To include the case of pure capillary waves, it is convenient to use a
different scaling: L3212 for time and L/2I'Y/2 for velocity potential.
With the new nondimensional variables, equations (43), (42) acquire the
following form .

zr = 2eg + 2 f (45)

) 1 5
‘I’T=f‘1’e—§Jﬁl(¢’§—‘1’§)—az—PJrJ_B/‘(—IssZg-FZ&%) . (46)

where a = o1,

3. Stationary solutions
For the stationary problem, the method of conformal mapping is a well-
known approach based on using the velocity potential ® and the stream

function U as the independent variables (e.g. Crapper, 1984). It is easy
to show that in this case

10



(I):—Cf-i-{I)o, \IJ:CC+‘I;D, (47)

where —c is the velocity of the mean flow, ®, = —¥, and ®, = U, are the
horizontal and the vertical Cartesian velocity components respectively,
and ®, and ¥y are constants.

For the stationary version of system (1) - (3) (or (16) - (18)) to de-
scribe progressive waves, the periodicity condition on ®, which implies
a zero mean flow velocity, must be replaced by the weaker condition of
periodicity of the velocity components, i.e. of the spatial derivatives of
®. In a coordinate system moving with the wave’s phase velocity ¢, the
mean flow velocity is equal to —c, and the velocity potential ® is given
by (47) where @, must be allowed to depend on time (since stationar-
ity is assumed for the velocity field rather than the velocity potential).
Consequently, with the external pressure p = 0 , system (16) - (18) is
reduced to one equation written for the surface ¢ = 0:

1

562.]_1 + z — UJ-S/z(—L"&ng + ZEE‘TE) = & (48)
where a = —2%  and since the left-hand side of (48) does not depend on
time, a is a constant (so that the dependence of ®; on 7 may only be
linear).

In this work, eq. (48) is solved numerically using Fourier expansions
(9), (10) for z and z, and (25)-(28) for the derivatives in (48), (19). The
nonlinearities are evaluated at gridpoints 1) = 27(;—1)/N, N being the
total number of gridpoints. This approach, developed by Orszag (1970)
and Elliassen (1970) is known as transform method and is discussed in
more detail in section 4.

Note that because o is a factor in a term having the highest differ-
ential order, we may face effects of singularity for small o. Indeed, we
had to develop two different schemes for the cases of pure gravity and
gravity-capillary waves, and it will be seen that in the latter case the
numerical solution does not approach a Stokes wave as ¢ decreases.

Below we consider only the case of deep water (H = oo); however,
generalization of the algorithms described in the following subsections is

11



straightforward for the case of a finite depth.

3.1 Pure gravity waves.

With o = 0, the solutions of equation {48) are Stokes waves. A method
based on expansion of the Fourier coeflicients of the surface height in
power series of the wave amplitude was initially proposed by Stokes
(1847, 1880) who in his latter work obtained a fifth-order approxima-
tion. In recent studies, the method has been further developed into a
computer-oriented recursive scheme which produces consecutive power
-expansion coefficients; Drennan et al. (1992) carried out the power series
calculations up to 170 terms.

Here, the solutions in the form of Fourier expansion coefficients for the
surface height were sought numerically with an iterative algorithm. The
conformal mapping with surface boundary condition (48) is determined
by the coefficients 7, through the relationships

2(6,0) =6+ D0 n_rexp(k()0i(€) (49)
—M<k<M k%0
260 =C+ D mrexp(k()9e(€) (50)
_M<k<M

which are the stationary deep-water versions of (9), (10). With ¢ = 0,
(49) and (50) may serve as a parametric representation of the surface.

For pure gravity waves, equation (48) can be rewritten in the form

log(%cz) —log J = log(a—z) . (51)

Denoting w = %fi with 7, p defined as in (32), it is can be seen that

log J = 2Re(w), z, = Im(expw) . (52)

Thus, if the Fourier expansion for log J is known, Im(w) (also in the
Fourier space) can be found via the Hilbert transform as in the second of
the equalities (41), after which w and then exp w can be calculated at the
gridpoints. This yields z;, and after finding the corresponding Fourier
coeflicients by direct Fourier transform, z can be obtained by integration
in Fourier space. Thus, z can be easily found if log J is known. This
allows us to reduce the differential relationship (51) to an equation with

12



an integral operator, which may be solved by a simple iterative procedure.

Assuming that z is an even function of ¢ , it is convenient to choose

s = 70108 J(¢ = 0, = 0) ~ log J(¢ = 7,{ = 0)) (53)

as the parameter determining the amplitude of the wave (in linear ap-
proximation, s is equal to the amplitude). With xim denoting the value
of any variable x on n-th iteration, the scheme can be written as follows:

Gl. Assume n = 0, log J® = 2s e cos¢ (this is the solution of the
linearized problem).

G2. For given log JI™, use Hilbert transform (41), complex exponent cal-
culation, and integration in Fourier space to find z[ as described above.
If the maximum surface gridpoint value of | 2™ — z"=1 | is less than
the prescribed accuracy e, the iterations are completed, and z® is an
approximate solution within the accuracy given.

G3. Let
myy _ €22(¢ = 0) — (g = m)
e |
This will ensure relation (53) for the next iteration. Calculate sufrace
gridpoint values of |

a=4a

log Ji+1 = — log(al*] — 21") 4 (log(al™*!) — 2))y  (54)

where ()o denotes mean over £ , i.e. 0-th Fourier coefficient.

G4. Find the Fourier expansion of log JI**! by a Fourier transform; let
n = n + 1 and return to step G2.

The last term in (54) allows us to find the phase velocity on (n+1)-st
iteration: in accordance with (51), this term is equal to log (%(c[““])?).
Equality (54) is based on the fact that the mean value of log J over ¢

is zero, which follows from the first of relations (52), as w — 0 when
( — —oo.

Fig. 1illustrates some results of the described procedure for M = 384,
N =1728, e = 107! . The values of the parameter s for the given profiles

13



are 0.04, 0.08, 0.16, 0.32, 1.06. The number of iterations varied from
28 for s = 0.04 to 44 for s = 1.06. For s = 1.06, the amplitude

A=S(lE=0)—n(E =) = (hz=0)~hz=7)) (53)

is approximately 0.4374 which is close to that of Stokes wave with max-
imum steepness (about 0.443 according to Longuet-Higgins, 1975).

9.78 T T T T T T T T

g.60

.56

B.40

@.38

Z 9.20

8.19

g.6a8

-0.16

-7,20

-@.39

Figure 1: Profiles of Stokes waves: Curve 1 - A = 0.0399, 2 - 4 = 0.0793, 3 -
A=0.1547,4- A=0.2806,5- A =0.4374.

Theoretically, s can be arbitrarily large; s = co for the steepest Stokes
wave whose crest constitutes an angle of 120° and thus is a singularity
with J({ = 0, = 0) = oo . The algorithm does converge for values
of s much larger than those used in Fig. 1; however, when the profile
becomes close to that of the steepest wave, convergence of the Fourier

14



series slows down dramatically, and at the same time, due to strong non-
linearities, the accuracy of the transform method decreases sharply. As
a result, for large s the numerical solution contains spurious oscillations;
with the values of M, N indicated above, for s > 1.06 the maximum
slope of the numerically obtained profile exceeds 30° for s > 1.06, which
is a theoretical maximum.

When the iteration convergence criterium ¢ is small enough, the error
of the method is the truncation error, which can be evaluated by com-
parison of results obtained with different resolutions. Such a comparison
was carried out for three resolutions: M =384, N = 1728; M = 192,
N = 864; M = 96, N = 432. The results are illustrated in Table 1,
where Ay is the value of the amplitude A (as defined in (55)) obtained
with the truncation number M; M AX D, ar, is the maximum gridpoint
value for the distance

R = ((om — o) + (2 = 2)) (56)

where 7y = zp(€) , 2p = 2pm(€) is the numerical solution for z, z at
¢ = 0 obtained with the truncation number M;

2

—~ / ]- A% 4 AR 1/2 iy A
RM S Dy m, = \%/o (Rté)fd\zw)) (57)
is the root mean square difference over z coordinate.

Table 1 shows that for amplitudes A < 0.4 the truncation errors are
very small for all tested resolutions and decrease rapidly with increasing
M the convergence decelerates when the amplitude approaches that of
the steepest wave. For all examples, the maximum error was located near
the wave’s crest.

3.2 Gravity-capillary waves.

An iterative algorithm similar to that described above has been worked
out to obtain numerical solutions of (48) with ¢ > 0. Here, we again
assume that the surface height is an even function of z, and hence of £.

To describe the algorithm it is convenient to rewrite (48) in the form

re a 1 - ;
§C*J 1/2 + J1/2 (a+ 1Z L ar*) — p” + ]_J 1("".‘1‘5&25 + ZEE.’IE) — O (08)
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wherea = 1/0; a, = aaf(a+1) ;& =cfa/(a+1) =/(1+0). Note
that ¢, is the ratio of the actual phase velocity to the phase velocity of
the linearized problem

1 v2 o 1 E\M?
c = (};%"O"k) = (E-f'a) (59)

for wavenumber k£ = 1; the convenience of representing the results in
terms of this ratio is that it does not depend on the choice of the time
scale.

Table 1. Comparison of Stokes wave profiles calculated with different speciral reso-

lutions.

8 Asgs  Age — Asss Arog — Azsa

G4 03273 42.10°% 1.6-10°%
0.6 03986 1.5-10"¢% 1.1-107°
0.8 04264 8.3-107% 3.2:10°8
1.0 04360 —14-10"% —1.2.10"¢
1.2 04384 =1.1-10F —1.3-109
1.8 04405 <5502 ~3.0-1077
2.0 04393 —-6.9-107% —-3.9-10°3

b} RMS D96,384 RMSD 192,384 MAX D96,384 MAX D192,384

04 1.3-10712 1.5+ 107 & - g 22«1

0.6 3.9-10°° ah- 10 1.7-107° 1.8-107#
0.8 4.8-107* 3.0-10°° 2310~ Teuil = A
1.0 80-1072 6.7- 10 1.1 =102 331070

1.2 6.8-107* 2.2-107° 2.1-1072 9.3-1073
1.B 21-~1ir* 7.6-1072 4.9-107? 261072
2.0 261072 9.7-107° 5.9-1072 3.1-1072

Considering the last term on the left-hand side of (58), it can be seen
that

I (e +en) = Im 52 = Imfug) = (Imw) (60)
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where w and p have the same meaning as in (52). Also, if we assume
that the mean of the surface height over x coordinate is zero, which is
equivalent to the following choice of the 0-th Fourier coefficient:

1
n=-5 >, kn, (61)
“1<k<M

then parameters a, and ¢, are bound by the relationship:
1

@ =50 (62)

For pure gravity waves, this property directly follows from results by
Longuet-Higgins (1975); for the general case of gravity-capillary waves,
relation (61) still holds, as it can be deduced from the observation that
the mean of the capillary term in (3) over z is zero.

Relations (60), (62) and (52) allow us to rewrite (58) as follows:

— 2(e + 1)a, sinh(Re w) + cexp(Re w)z = (Im w), . (63)

Choosing

1
as the parameter determining the wave amplitude (like s in (53), it is
equal to the amplitude for the linearized problem), we can now formu-
late the iteration scheme as follows

GCl. Assume n = 0, (Im w)g)] = —Sef cos¢ (this is the solution of the
linearized problem).

GC2. For given (Im w)%"] , find w™ in Fourier space by integration and
a Hilbert transform (as in the first of equalities (41)); find exp(w[™) at
each gridpoint, then find 2" by a Fourier transform and integration ac-
cording to the second relation (52), with the integration constant defined
by (61). If the maximum surface gridpoint value of | z[* — 2"~ | is less
than the prescribed accuracy e, the iterations are completed, and z[™ is
an approximate solution within the accuracy given.

GC3. Calculate surface values of (Im w)[E”H] as the right-hand side of
(63), by substituting w = wl* | z = 2/ into the left-hand side. Similarly
to step G3, a, = a"* must be chosen so that (64) holds for w = wi*t1l;
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e _ @ 17(0) exp(BI)(0)) — pll(r) exp(BP(r))

” 2(a+1) sinh(RM(0)) — sinh(R (1))

(65)

where
nM(¢) = 2M(g, ¢ =0), RIM(E) = Rewl(¢,¢=0) .

GC4. Find the Fourier expansion of (Im w)‘[EHH] by a Fourier transform;
let n =7+ 1 and return to step GC2.

Convergence of the algorithm and the dependence of wave amplitude
on the parameter S for different o are characterized by Table 2. Since
the wave profiles obtained for large o have two maxima, values of

A= % (Mazogjcnm(€ = €9) — Minogjenn(é = €9))  (66)

are indicated along with A in (55). The calculations were performed with
M =298, N =432, e = 10",

For A = 0.4 and A = 0.1, samples of calculated wave profiles with
different « are given in Figs. 2 and 3, respectively. These results were
obtained with a modification of the algorithm above, which, more con-
veniently, uses A instead of S as a wave parameter. An important ad-
vantage of the modified version is that its domain of convergence in the
(a, A) plane is notably larger than that of the original scheme GC1-GC4;
however, computationally it is less efficient than the latter, as it requires
nested calculations to numerically determine values of a, for each itera-
tion, while in step GC3 a, is readily yielded by (65).

From Table 2 and Figs. 2, 3, it can be seen that with increasing o
(i.e. with the capillarity coefficient ¢ decreasing), the wave profiles do
not approach those of pure gravity waves, but rather shift their energy to
smaller scales where capillarity effects are more pronounced. Beginning
with o = 2, two maxima emerge, so that 2 = 0 becomes a local minimum
(the absolute minimum being always at = = 7 ); at the same time the
speed of convergence decreases rapidly, especially for small amplitudes
and for those values of & which ensure equal linear phase velocities (59))
for two neighboring wavenumbers &, k -+ 1, namely @ = 2 (k = 1) and
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Table 2. Amplitudes and numbers of iterations N;: for gravity-capillary waves cal-
culated with different @ and S. Blank entries mean that the scheme failed to converge.

S 0.001 0.1 0.2 0.4 0.6 0.8 1
(8%
A 0.001000 0.1000 0.2000 0.4000 0.6000 0.8000 1.0000
0 A 0.001000 0.1000 0.2000 0.4000 0.6000 0.8000 1.0000
Ny 4 16 18 20 21 21 20
A 0.001000 0.0996 0.1969 0.3772 0.5315 0.6583 0.7606
05 A 0.001000 0.0996 0.1969 0.3772 0.5315 0.6583 0.7606
N, 22 41 41 39 39 43 43
A 0.001000 0.0971 0.1814 0.3109 0.4066 0.4815 0.5420
1 A 0.001000 0.0971 0.1814 0.3109 0.4066 0.4815 0.5420
N, 37 61 48 47 44 43 42
A 0.001000 0.0880 0.1497 0.2382 0.3050 0.3593 0.4049
15 A 0.001000 0.0880 0.1497 0.2382 0.3050 0.3593 0.4049
Ny 79 93 58 48 43 41 39
A 0.000991 0.0655 0.1090 0.1760 0.2291 0.2738
2 A 0.001114 00711 0.1165 0.1844 0.2375 0.2819
N, 7966 157 81 44 41 40
A 0.000264 0.0262 0.0512 0.0967 0.1361
3 A 0.074839 0.0895 0.1064 0.1417 0.1750
N 152 106 88 62 54
A 0.000162 0.0162 0.0323 0.0636
4 A 0.076547 0.0853 0.0955 0.1182
Ny 161 134 122 97
A 0.000124 0.0124 0.0247 0.0490
5 A 0.058195 0.0653 0.0742 0.0946

N, 212 178 157 138
A 0.000111 0.0109

6 A 0.000324 0.0247
Ny 2771779 2051

Neither the scheme GC1-GC4 nor its aforementioned modification
converged with o > 6; however, the modified scheme converged for A
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values considerably larger than those indicated in Table 2.

The dependence of the normalized phase velocity ¢, on ¢ = 1/q, as
illustrated by Fig. 4, is consistent with the behavior of the corresponding
profiles. When o decreases but remains positive, ¢, decreases and does
not approach its value at sigma=0. The latter is always greater than 1
and, except for a small interval in the vicinity of the maximum A, isan
increasing function of A, while for o # 0 the calculated ¢, is a decreasing
function of A and always less than 1. In fact, for small values of A, the
phase velocity corresponding to a given ¢ turns out to be close to the
minimum value of ¢; over k in (59).

@.49
@.39
9.29 V
2.18
@.09.
-3.18
-§ .29
-9 .39
-9.49
-3 .50
-@.69

-3.70

-2.80 - ‘ : ‘ .
5.6 9.6 1.3 1.9 2.5 3.1 3.8 4.4 58 5.7 6.3

»

Figure 2: Profiles of gravity-capillary waves, A=04 Curve l -a =10 (Crapper’s
wave), 2-a=1,3-0=2,4-a=3.

For most cases represented in Table 2, a comparison was performed
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with results obtained for a higher resolution (M = 384, N = 1728). The
maximum difference between surface profiles as defined in (56) never ex-
ceeded 1.2- 107", which means that the truncation errors are negligible.

3.3 Pure capillary waves.
For pure capillary waves, which are described by (58) if we formally set
a = 0, the solution is represented by a simple formula (Crapper, 1957).

g .14 T | T i T L :
2.1t =
¢ .a8
@.@5
8.92
Z  -8.41
-9 .84
-a.87
-3.19

-2.13

Figure 3: Profiles of gravity-capillary waves, A =0.1. Curve 1-a = 0 {Crapper’s
wave),2-a=1,3-a=2,4-¢=3,5-a=4,6-a=5T-a=286

In our notation, it can be written as

dgsiné
1 —2gcosé + g2’

z(§, () =&+ (67)
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N T dg(cosé — q) 72 £
z(£,¢) = (4  2ycosi 1 & 54 (63)

where

_ =4 e e

— v ,

and A , /1, S, b, ¢, a, are bound by the following relationships:

g=1bet , b (69)

4h 1, 1

, O =, = —— .
1-% " 27 Vi + A2
The last term in (68) may be any constant but here it is chosen to satisfy
condition (62).

Bl =B

(70)

1.1 ‘ T 1 T : T T T i 1
—@.4
—@.3
I, @
Cx
2.9
2.8

Figure 4: Normalized phase velocity ¢, = ¢/+/T + ¢ as a function of nondimensional

capillarity coefficient . Wave amplitudes 4 are indicated at the respective curves.
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Exact solution (67)-(70) was used as another means to validate scheme
GCl1-GC4 with o = 0. For all tested amplitudes, up to the maximum
possible amplitude (e.g. Crapper, 1984), the maximum difference be-
tween the numerical (M = 96) and the exact solutions as defined in (56)
was less than 5 - 10712,

4. Solution of the nonstationary equations

For spatial approximation of system (42), (43) we use a Galerkin-type
(or "spectral”) method based on Fourier expansion of the prognostic
variables with a finite truncation number M. The system is thus reduced
to that of ordinary differential equations for 4M + 2 Fourier coefficients
ne(7), ¢k(7), —M < k < M:

T}k = Ek(n—Mj N—M—1y--3TIM Qé_M, (;S—J’Vf—la iy ¢'M) (71)

Ok = Fo(0-M, Tt - MMy DMy DM =15 ey P0s) (72)

where Ey, F} are, respectively, the Fourier expansion coefficients for the
right-hand sides of (42) and (43) as functions of £.

To calculate E, Fj as functions of the prognostic variables Mk, Ok, for-
mulas (23) - (28) are used for the spatial derivatives (which are thus eval-
uated exactly), and the nonlinearities are calculated with the so-called
transform method (Orszag, 1970; Eliassen, 1970), i.e., by their evaluation
on a spatial grid. If Y(u(£),v(€),w(£),...) is a nonlinear function of its
arguments which are represented by their Fourier expansions, gridpoint
values u(£1)), v(€W)), w(¢W),... are first calculated, i.e., inverse Fourier
transforms are performed; then Y = Y (u(¢W)), v(¢W) w(¢), ) are
evaluated at each gridpoint; finally, the Fourier coefficients ¥; of the func-
tion V" are found by direct Fourier transform. Here ¢ = 27(5 — 1)/N,
and N is the number of gridpoints.

For the method to be a purely Galerkin one, i.e., to ensure the min-
imum mean square approximation error, the Fourier coefficients Ey, B
need to be evaluated exactly for —M < k < M. For this purpose, we
must choose

N>w+1)M (73)

23



where v is the maximum order of nonlinearities. Since the right-hand
sides of (42), (43) include division by the Jacobian, the nonlinearity is
of infinite order so that, strictly, the above condition on N cannot be
met. However, numerical integrations show that if we choose a value of
N ensuring exact evaluation of the cubic nonlinearities (v = 3 in (73)),
a further increase in N (with fixed M) virtually does not impact the
numerical solution. For most runs, M = 96 and N = 432 were used.

However high the spectral resolution might be, for long-term inte-
grations one must parameterize the energy flux into the severed part of
the spectrum (k > M); otherwise, spurious energy accumulation at large
wave numbers will corrupt the numerical solution. Simple dissipation
terms were added to the right-hand sides of equations (71), (72) for this
purpose:

e = Ex — pene (74)
bp = Fy — pude ; (75)
with
k|~kg\2 -
po= 1™ (=)™ if | > ks (76)
0 otherwise

where k3 = M/2 and r = 0.25 were chosen for most runs; the sensi-
tivity of the results to reasonable variations of k; and r was low. The
dissipation effectively absorbs the energy at wave numbers close to the
truncation number M while leaving longer waves virtually intact (note
that wave numbers —k; < k < k4 are not affected).

For time integration, the fourth-order Runge-Kutta scheme was used.

5. Validation of the model

The stationary solutions dealt with in Section 3 were used for validation
of the nonstationary model (equations (42), (43)). In the model’s coor-
dinate system bound to the mean flow, progressive waves were simulated
starting from initial conditions calculated as stationary solutions in a
moving (bound to the phase of the wave) coordinate system. If such a
wave is stable with respect to truncation errors, it should propagate with
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its specific phase velocity without changes of shape. The model was vali-
dated for three types of waves {experiments 1-3 in Table 3, respectively);
pure capillary waves described analytically by (67)-(70) (Crapper, 1957);
pure gravity (Stokes) waves; and gravity-capillary waves obtained nu-
merically as described in section 3 (experiments 1-3 in Table 3).

Table 3. List of numerical experiments (G - pure gravity waves; C - pure capil-
lary waves; GC - gravity-capillary waves; A - amplitude of stationary wave (55); PS -
power spectrum (83) with parameters kg , Ap ; RP - random phases; ay, - amplitude of
k-th Fourier component of surface height. The last column indicates nonzero Fourier
components of the initial conditions, in &é-coordinate).

No. Type Initial conditions Modes
1 C Crapper's wave, A = 0.7 All
2 G Stokes wave, A = 0.3 All
3 GC,0=0.04 Stationary GC wave, A = 0.3 All
i GOC.F=005 PS5 RBP =1 As=0] 1-—25
5 & Lake & Yuen waves, a3 = as = 0.04 3,5
6 G W hite novse, ay = 0.001 1-25
T G PS5, RP, ks =10, A =001 1—25
8 GO,o=0006 PS, BPF, ky=10, A =001 1—-25
9 C P8, AP, ki =10, A; =041 1—25
10 G Stokes wave, A = 0.3, All+
+ white noise, a; = 0.001 15— 39

Integration of equations (45), (46) for Crapper’s waves (@ = 0) was
performed for the value of A = 0.7 up to 7 = 100, i.e. for about 16 pe-
riods of the wave, with the time step A7 = 0.001. Stokes waves (o = 0)
and gravity-capillary waves (o« = 0.04) were simulated for A = 0.3 up
to 7 = 1000 (~ 160 periods) with A7 = 0.01. Visual comparison of in-
stantaneous wave profiles (not shown) obtained for different values of 7
during the simulations showed that in all cases the surfaces moved with-
out any visible disturbances. To estimate ”steadiness” of the numerical
solution quantitatively, we calculated the phase velocities and amplitudes
of the Fourier components for consecutive values of 7 with intervals of
8A7T and obtained their temporal means and standard deviations over
the period of integration (Table 4).



The instantaneous phase velocity of the k-th wave component may
be calculated as follows

L TI=kTk — TkT—k
Clk)= A= —5——, (77)
A RN
where 7, are the Fourier expansion coefficients of the surface as defined
by (11), and A; are the phases:

n(&,7)= > /nE+n2;cos(k(€— A7)

0<k<M

If there is only one wavenumber-frequency spectrum component corre-
sponding to wave number k, i.e. if each Fourier component of the sur-
face propagates with a single phase velocity, formula (77) yields a con-
stant value of C for each k. In our case of progressive waves retain-
ing their shapes, this-value is the same for all k. For arbitrary wave
fields, there may be many modes (wavenumber-frequency spectrum com-
ponents) which have the same wave number but propagate with different
phase speed due to nonlinear effects, and even in the case of linear waves
there are, generally, two k-th modes propagating in opposite directions
with the same absolute speed. In such cases, (77) yields a weighed av-
erage phase velocity of the modes, which generally vary in time. In the
described runs, modes moving in the opposite direction were generated
during the integration because of truncation errors. The amplitudes of
these modes were by several orders of magnitude smaller than those of
the "true” (positively directed) components of the simulated waves, but
they manifest themselves in small shifts and perturbations of the instan-
taneous phase velocities, whose temporal means and standard deviations
are given in Table 4 for the first 15 modes.

The calculated phase velocities are very close to their values obtained
for the stationary solutions (also given in Table 4); although they slightly
decrease with increasing the wave number, their mean errors and stan-
dard deviations are small for all the three types of waves. Since conserva-
tion of the amplitudes (not shown) was also very accurate (the deviations
of their values during the simulations from their initial values were always
less than 1077 for the Stokes wave and less than 107 for the capillary
and gravity-capillary waves), the modes retained their initial energies
and remained consistent in phase; consequently, the simulated waves did
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not noticeably change their shapes during the integration. This result
implies that these waves are stable with respect to truncation errors, and
that the numerical solutions yielded by the model approximate the solu-
tions of the original differential equations with high accuracy.

Table 4. Themporal means and standard deviations of the phase velocities for the

first 15 modes of Crapper’s, Stokes and gravity-capillary progressive waves. (C is the

"exact” phase velocity, i.e. that obtained for the stationary solution).

Crapper's waves

Stokes waves

CG waves

A=07T, 0 =08715218 A=03 C=1048040 A=03, &= 11605814

O —3 O Ot = W DD

— = = e
Ut = W N — O Ww

0.971524
0.971523

0.971522
0.971521
0.971520
0.971518
0.971516

0.971511
0.971508
0.971505
0.971502
0.971500
0.971494
0.971489

(1
(1
(1
(1
(1
(1
(1-
0.971514 (1 -
(1
(1
)
(1
(1
(4
(2

1.045997
1.045940
1.045844
1.045711
1.045539
1.045329
1.045081

1.044472
1.044410
1.043709
1.043271
1.042795
1.042281
1.041730

(2
(2
(2
(2
(2
(2
(2
1.044790 (2 -
(2-
(2
(2
(2
(2
(2
(2

invariants during the integration, i.e. of volume

horizontal momentum

27

2
V=0 [ st
0]

27
I=(2m)7 [ gzde
. 0
and energy £ = Ex + Epg + Epr , where

1.160514
1.160513
1160512
1.160510
1.160507
1.160505
1.160501

1.160493
1.160488
1.160482
1.160476
1.160470
1.160463
1.160436

(2
(2
(2
(2
(2
(2
(2
1.160497 (2 -
(2
(2
(2
(2
(2
(2
(2

Another criterion of model accuracy is conservation of the integral

(78)

(79)



2T

Ep = {(2#)" ; P dé (80)
1s the kinetic energy,
27 ’
Epg = (271’)_1] 2 zedE (81)
0
is the potential energy of gravity, and
2w
Epr = (27r)_10/ (J712 —1)de (82)
0

is the potential energy of surface tension. Formulas (78) - (82) are ob-
tained by transformation of starndard Cartesian-coordinate expressions
for the invariants into (¢, () coordinates and refer to a unit length along
the horizontal axis.

An example of the temporal evolution of Ex, Ep, Er, and E is rep-
resented in Fig. 5 for the case of gravity-capillary waves with ¢ = 0.05.
The initial surface was chosen in the form of a superposition of M,, = 25
linear modes with amplitudes a; assigned according to

L\ P
ay = Ao (}5) ko <k <ko+ My, —1 (83)
0 otherwise

where Ag = ay, is the amplitude of the k¢-th mode, and power P < (0 is
the amplitude decrement. The Fourier coefficients were calculated as

(84)

_ Sin/\k k‘SO
e = cos Ay k>0

where the A are random phases.

The Fourier coefficients for the initial surface velocity potential ® were
assigned so that, in linear approximation, all wave components propa-
gated in the positive direction. It can be easily derived from the linear
theory that this is ensured by the relations:

; . 1+ ok?
Pr = bing, by = sign(k), Ftanh (I (85)

For the calculations represented in Fig. 5, ¢ = 0.05, 4 = 0.1,
P = —%, ko =1, M,, = 25, and H = oo (deep water). The horizontal
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momentum [ and the volume V' conserved with relative error margins of
the order of 107 and 10~ respectively. From Fig. 5 it can be seen that
while the energy components Ex, Epg, and Epr show significant fluctu-
ations, their sum nearly conserves; its slow decrease is due to damping at
high wave numbers. Similar results were obtained for a number of other
test simulations, including ones with a finite depth H.
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Figure 5: Time evolution of gravitational potential energy Epg (curve 1), kinetic en-
ergy Ex (2), potential energy of surface tension Epp (3) and their sum E (4) (Exp.
4) for gravity-capillary waves (o = 0.04).

The results described in this section suggest that the model can suc-
cessfully simulate evolution of multi-component wave fields.

6. Results of the simulations



The progressive gravity, capillary, and gravity-capillary waves dealt with
in sections 3 and 5 represent a very special case of nonlinear interactions:
they consist of Fourier modes which, rather than obey the linear disper-
sion relation (59), propagate with one and the same phase speed. It is
evident that similar effects may also be observed in more general situa-
tions: due to the impact of nonlinearity, a multi-mode wave motion can-
not be represented as a superposition of Fourier modes propagating with
their linear phase speeds; moreover, a specific wave number, generally, is
not associated with any single phase speed. Perhaps the most striking
manifestation of nonlinearity is that some shorter waves propagate with
phase speeds close to that of long waves. The existence of such forced
(or "bound”) components was clearly demonstrated in many laboratory
and observational studies (Yuen and Lake, 1982). Various explanations
has been proposed for this phenomenon, including wind-wave and wave-
current coupling, but Lake and Yuen (1978) found that this effect is
mainly due to nonlinearity of the waves themselves. Realistic wave fields
contain both types of waves, free and bound, for the same wave number,
and the "observed” phase velocities reflect a combined effect of the two.
Partitioning of the energy between these types of waves depends on the
wave spectrum, whose shape is influenced by external forcing. A theoret-
ical explanation of this effect based on Zakharov's (1968) equation was
proposed by Yuen and Lake (1982). The phenomenon was reproduced in
a 1-D hydrodynamical potential wave model by Chalikov and Liberman
(1991) who pointed out that, with phase velocities calculated according
to (77), each Fourier component turns out to have a phase speed value
much greater than that predicted by the linear theory. They also found
that the phase velocity varies in time, and that its standard deviation
increases with the wave number. However, their model could not per-
form long-term simulations with high spectral resolution, which require
a greater computational efficiency and accuracy. Experience with the
new model described above has shown that, for analysis of wavenumber-
frequency spectra to be virtually unaffected by further increase in the
model resolution and the length of simulations, it is essential that the
model be run for several hundred periods of the longest wave with the
spectral truncation number M of the order of 100. In the runs discussed
below, M = 96 and N = 432 was used.

We will first consider the results of a model simulation (Exp. 5) of
one of the experiments by Lake and Yuen (1978) who investigated the
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nonlinear interaction of two gravity waves with wave numbers close to
each other. They evalnated the phase velocities of different modes by
calculating the coherence of the surface elevation values in two sections
of a wave channel (Fig. 8 of Lake and Yuen (1978)), and found out that
the phase velocities of the waves not produced by the wave maker were
close to those of the primary waves. It is hardly possible to exactly re-
produce their experiment in a model simulation, since the amplitudes of
the waves were not reported, and there are uncertainties as to modeling
of the forcing. In the model, to obtain a flow qualitatively similar to
that in their experiment, we used a superposition of the 3rd and the 5th
waves with equal amlitudes of 0.04 as the initial conditions for the sur-
face elevation; no forcing was imposed. In this and all other runs (except
those dealing with progressive waves described in section 3), the initial
conditions for the velocity potential on the surface were prescribed ac-
cording to the linear theory for unidirectional waves (formula (85)). The
simulation was performed with A7 = 0.01 up to = = 1000.

The wavenumber spectra (calculated from Fourier expansions of the
surface elevation with respect to z coordinate) averaged for 6 consecutive
time intervals (167 nondimensional time units each) are given in Fig. 6.
The energy decreases slowly in time because of dissipation at high wave
numbers. The energy of the 3rd mode is nearly conserved but the energy
of the 5th mode (which was initially equal to that of the 3rd mode) is
considerably less.

In Fig. 7, temporal means and standard deviations of the instanta-
neous phase velocities (77) are shown. It is seen that the linear dispersion
relation is observed only for wave numbers 2 < k < 5. For k > 5, the
waves propagate significantly faster than the linear waves but slower than
the primary waves. This effect is clearly pronounced only for the tem-
poral means of the phase velocities; the instantaneous values vary highly
(as pointed out in Chalikov and Liberman, 1991), which is reflected by
large standard deviations for wave numbers & > 5. This scattering is
caused by the presence of both bound arid free waves.

More information on free and bound waves and their phase velocities
1s provided by the wavenumber-frequency spectrum S(k,w) whose loga-
rithm is shown in Fig. 8 along with the logarithms of the time-averaged
wavenumber (S*(k)) and frequency (S“(w)) spectra. The picture of S
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looks as if it consisted of patches; this effect is caused by the high density
of the contour lines. To calculate S for each &, instantaneous Fourier ex-
pansions with respect to z coordinate were stored during the entire period
of integration 0 < 7 < 1000 with time intervals of 0.08, and Fourier trans-
forms with respect to time were used. In this and other runs, the length of
simulation ensured sufficient frequency resolution (here, fw = 27/1000)
which is essential for the analysis of the spectra, and the maximum re-
solved frequency ( w = 7/0.08 for this run) far exceeded any possible
"physical” value of w and thus rendered the transforms’ aliasing error
negligible.

g. T T T T i T T T

k
Figure 6: Time-averaged wavenumber spectra S*(k) for 6 consecutive time intervals
of length é7 = 167, Exp. 5.

The most remarkable feature of the wavenumber-frequency spectrum
Is that it is split into a set of branches in a regular way. This effect is
well pronounced for the waves propagating in the direction prescribed
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originally by using (85) (k > 0 in Fig. 8), but it is also noticeable for the
waves moving in the opposite direction, which were not present in the
initial conditions (k£ < 0 in Fig. 8 where the sign of k is determined by
the sign of the component’s phase velocity, while w is assumed positive).
A considerable part of energy is borne by the components which nearly
obey the linear dispersion relation w? =| k| (Curve 1).

1.2 T T T T T l T I

_—

Figure 7. Time-averaged phase velocity (77) (asterics) and its standard deviation
(vertical bars) as functions of wave number k, Exp. 5 (simulation of the non-wind
experiment by Lake and Yuen, 1978). The curve corresponds to the linear dispersion

relation.

The remaining energy mostly belongs to what may be, with some gen-
eralization, interpreted as bound components, which propagate with the
phase velocities of their carrying waves from near Curve 1 and lie on the
branches approximated by the curves
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wr=nlk| - (86)

where n (the number of the branch) is a positive integer. (Strictly, not
all of the components (86) with n > 1 may be called bound, since those
with & which is not a multiple of n have no "carrier”. However, they
propagate as if they were bound to a free wave with wave number k/n).

iong“’(u)

28

l(:ngk(k)

Figure 8: Time-averaged spectral characteristics for the period of 67 = 1000, Exp.
5. Curve 1 - linear dispersion relation w? = k, the other parabolas - w? = nk, k =
1,2,..,9. The contour lines of log;y S(k,w) (wavenumber-frequency spectrum) are
seen as concatenated in patches. Curve 2 is log;y S* (k) (wavenumber spectrum, right
scale), Curve 3 is log; $*(w) (frequency spectrum, top scale).

Each of the branches follows relation (86) closely at lower wave num-

bers k£ and tends to straighten at higher wave numbers so that, with &
increasing, the group velocity appears to tend to a constant whose value
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is the same for all the branches. Along with this set of branches, there
are also other patterns which, despite their relatively low energy, show a
notably regular discrete structure.

log1pS+(w)

log10S% (k)

Figure 9: Same as in Fig. 8, but instead of log, S the contours of normalized spec-
trum S(k,w)/S5%(w) are plotted.

Another representation of the wavenumber-frequency spectrum can
be obtained through normalizing each value of S(k,w) by S*(k) (which
for a given k is the spectral density integrated over w). The normalized
spectrum (Fig. 9), which characterizes the fractional energy distribution
over frequencies for each wave number, exhibits up to 13 branches of the
type described above. A most peculiar feature of the spectrum, clearly
seen in both Fig. 8 and 9, is a pattern which may be approximated by
a straight line passing through the origin of the coordinates; the corre-
sponding modes thus tend to propagate with roughly the same phase
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velocity which seems to be equal to the aforementioned apparent limit
value of group velocity.

Figure 10: Same as in Fig. 7 but for Exp. 6 (initial conditions approximating white

noise).

The next numerical experiment (Exp. 6) simulated a pure gravity
wave field with initial conditions approximating white noise; other fea-
tures were the same as in Exp. 5. For the first 25 wave numbers k, the
initial amplitudes were assigned the same value of 0.001, with random
phases; for k£ > 25, the amplitudes were set to zero. The phase veloci-
ties (77) and their standard deviations are shown in Fig. 10. Because
the amplitudes of the initially assigned waves were small, these waves
nearly obey the linear theory: their phase velocities are close to the lin-
ear ones and have small standard deviations. The waves produced by
the nonlinear interactions (k > 25) again propagate faster than linear
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waves. In the wavenumber-frequency spectrum (Fig. 11), only the first
two (n = 1, where most of the energy is concentrated, and n = 2) of the
"main branches” approximated by (86) are seen. The remaining part of
the energy is small, and, again, most of it is concentrated near a straight
line passing through the origin, while the remainder is distributed along
other regularly located curves. Further investigations are needed for ex-

planation of these features.

loglOS“’(w)

ng“]Sk(l()

Figure 11: Same spectral characteristics as in Fig. 8 but for ”white noise” simulation
(Exp. 6). Curves 1 and 2 are dispersion relation w? = nk (n =1, 2), 3 - S¥(k), 4 -
S¥ (w).

Another run (Exp. 7), which also differed from the previously de-
scribed ones by the initial amplitudes only, was designed to approximate
a real ocean wave field. The initial spectrum of the surface elevation was

prescribed by (83), (84), with Aq = 0.01, kg = 5, P = —1.5. The results
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are shown in Fig. 12. In the wavenumber-frequency spectrum, we again
see most of the energy concentrated along the "main” branches (36), and
the "quasi-rectilinear” branch 1s again quite distinct.

long?’(w}

log1aS*(k)

Figure 12: Same spectral characteristics as in Fig. 8 but for Exp. 7 (initial conditions
with spectrum (83) approximating real waves)

In the next run (Exp. 8), gravity-capillary waves were simulated, with
the nondimensional capillarity coefficient ¢ = 0.05. The initial conditions
were chosen according to (83), (84) with Ag =0.01,k, =5, P=—1.5,s0
that for the waves bearing most of the energy the gravity and capillarity
forces were of the same order. The time integration was carried out up
to 7 = 1000 with the time step A7 = 0.01. The dependence of phase
velocity (77) and its temporal standard deviation on the wave number is
shown in Fig. 13.
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As in the runs with pure gravity waves, the lower wave numbers
tend to follow the linear dispersion relation (77), though with consider-
able scattering, while the shorter waves, which are mostly generated by
the nonlinear interactions, tend to assume the phase velocities which are
characteristic for longer waves and are in this case lower than those given
by the linear theory.

M
%
[Ny PR S,
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8. = 18. 15 29, 25. 39. - 35. 48. 45. 58.

Figure 13: Same as in Fig. 7 but for Exp. 8 (gravity-capillary waves, o = 0.05).

The wavenumber spectrum, whose temporal evolution is shown in Fig.
14 in the same way as in Fig. 7 for Exp. 5 and whose mean over the
period of integration is represented by Curve 2 in Fig. 15, show a greater
nonlinear energy flux to higher wavenumbers than in the case of pure
gravity waves. This is manifested in a much less steep slope of the curve,
compared to the corresponding results of the previous run (Fig. 12, Curve
6) which was performed with the same initial surface elevation, and in
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a relatively fast decrease of energy with time due to dissipation on high
wave numbers. The same observation can be made for the frequency
spectra (compare Fig. 15, Curve 3 and Fig. 12, Curve 7).

Figure 14: Same as Fig. 6 but for Exp. 8.

In the wavenumber-frequency spectrum (Fig. 15), it is hard to distinguish
visually between Iree and bound waves, since Curve 1 which corresponds
to the linear dispersion relation (59) is too close to a straight line, except
for the longest waves whose energy is negligibly small. Here, using (59)
and regarding that a bound wave propagates with the same phase velocity
w/k as its carrying wave and has a wave number k which is an integer
multiple of the latter, we can write the following approximation for the
"main branches”:
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where n = 1 for the free (carrying) waves and n = 2,3, ... for the bound
waves. However, the branches appear to merge with each other.

log195¥(w)

Figure 15: Same spectral characteristics as in Fig. 8 but for Exp. 8. Curve 1 - linear
dispersion relation (n = 1 in (87)), 2 - log,, S*(k); 3 - logyo S(k,w).

Results of simulation of pure capillary waves (Exp. 9, @ = 0 in (46))
are shown in Figs. 16 and 17 (the same spectral characteristics as in
Figs. 14 and 15 respectively). The initial values of surface elevation were
the same as in Exp. 7 and 8; the period of integration was 7 = 100,
and the time step Ar = 0.001. It is remarkable that the slope of the
wavenumber spectrum is much closer to that obtained for pure gravity
waves (Exp. 7) than to that of gravity-capillary waves (Exp. 8). The
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wavenumber-frequency spectrum agrees well with the linear dispersion
. relation w =| k |32 (Curve 1); however, below the curve is what appears
to be the set of "main branches” corresponding to bound waves and

approximated by

wh = (88)

(this formula following from (87) with the gravity term omitted and
o = 1), and there is an additional set of waves above the curve which
resembles the ”"quasi-rectilinear” patterns observed in the pure gravity
wave spectra. Fig. 8,9, 11, 12, 17 may suggest the hypothesis that these
patterns correspond to waves which, through nonlinear interactions of
modulated shorter waves, are forced to propagate with the group veloci-
ties of the latter; further extensive simulations are needed to study this

hypothesis.

1. 6. 11, 6. 21, 26, 39, 38, 40 45, s6.
_ k
Figure 16: Same as in Fig. 6 but for Exp. 9 (capillary waves), 67 = 16.7.
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Besides the simulations described above, we ran a number of other
experiments with different initial conditions, resolution in the horizontal,
and dissipation parameters; some of the runs included various types of
external forcing (not discussed here). The wavenumber-frequency spectra
observed in all runs had similar features which may be summarized as
follows. Most of the energy is concentrated along the curves which were
called "main branches” and which consist of free (n = 1) and generalized
bound (n = 2,3, ...) waves. The general formula for this set of curves is

D (3,5) - (39)

and, for not too large k, is approximated by (87) (or (88) for pure capillary
waves).

105105}((1’4)

log10S¥(k)

Figure 17: Same as in Fig. 8 but for Exp. 9 (capillary waves), with Curve 1 being
the linear dispersion relation (n=1 in (88))
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In the dispersion relation (89), nonlinearity is manifested in two ways:
first, there is a set of branches instead of one curve corresponding to linear
waves; second, the function D(w’, £') itself differs from its approximation

D', k) ="~ | K | —c | k' (50)

yielded by the linear theory. The specific form of D depends on the energy
distribution over the spectrum and is determined by external forcing
and/or the initial conditions. For example, in the very special case of a
single progressive wave,

D(w' k') = ' — ck’ (91)

Figure 18: Same as in Fig. 6 but for Exp. 10 (initial conditions: Stokes wave with
superimposed short gravity waves).
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where c is the phase velocity of the wave; here, each branch consists of
one point, and the function D bears no resemblance with (90) except
that ¢ can be approximated by the linear phase velocity (59). With in-
creasing k, there is a tendency for the branches to straighten. Along with
the "main branches” (89), there are other patterns in the spectra; the
corresponding modes bear relatively low energy. These structures need
further investigation.

The last model run to be described (Exp. 10) again deals with pure
gravity waves and illustrates interaction of a large long wave with small
short waves.

! | l I |

9. 5. 16. 15. 28. 25. 3B. 35. 4@. 45. 58

Figure 19: Same as in Fig. 7 but for Exp. 10.

A set of white-noise-like waves with the amplitude of 0.001 in the range
15 < k& < 40 was superimposed on a 27 - periodic Stokes wave with the
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amplitude A = 0.3 . The integration was performed up to 7 = 1000 with
AT =0.01.

Time evolution of the wavenumber spectrum is given in Fig. 18 which
shows that the energy of the main Fourier components of Stokes wave
remained virtually unchanged while the energy of the short waves de-
creased considerably during the integration. The dependence of phase
velocity (77) on wave number differs substantially from the correspond-
ing results of the previously described rumns: it bears little resemblance
with the linear-theory dependence (59) (the curve in Fig. 19).

log105%(w)

39. T T T T T T T T T 8.3

2l

2

log10S* (k)

[

Figure 20: Same spectral characteristicsas in Fig 8 but for Exp. 10. Curve 1 - linear
dispersion relation w? = k, 2 - log,, S¥(k); 3 - log,, 5§¥(w), 4 - components of the
Stokes wave (w = ck).

Correspondingly, in the wavenumber-frequency spectra (Fig. 20) the
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"main branches” (89) appear to be represented only by the Fourier com-
ponents of the Stokes wave and so are described by (91), while the super-
imposed waves belong to additional regular patterns which are completely
different from those observed in Exp. 6 (Fig. 11) where "pure” white
noise was used as the the inintial conditions. The difference suggests that
the behavior of the superimposed waves is strongly controlled by interac-
tions with the Stokes wave. The same conclusion can be drawn from the
fact that the distribution of the energy density of the short waves over
the phase of the Stokes wave (Fig. 21) is far from uniform or chaotic,
and show clear maxima at the points of maximum slope of the Stokes

wave.

6.9 1.26 2.51 BT 5.83 6.28

Figure 21: Distribution of the time-averaged potential energy of perturbations (mul-
tiplied by 100, thick curve) over the phase of the running Stokes-like wave (thin curve,
obtained by time averaging of the surface profile) (Exp. 10). The averaging is per-
formed in a coordinate system moving with the component k = 1.
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Conclusions

The behavior of nonlinear waves is difficult to investigate analytically.
Even for the stationary equations, exact solutions are known only in the
isolated case of pure capillary (Crapper’s) waves. In the case of station-
ary pure gravity (Stokes) waves, construction of analytical expansions
for consecutive Fourier coefficients provides only an approximation for
truncated Fourier series and is thus, actually, a numerical procedure in
which the amount of calculations increases sharply with increasing trun-
cation number. As for general nonstationary wave fields, their analytical
investigation is clearly impossible without drastic simplifications which
may lead to unpredictable consequences. In the development of numer-
ical algorithms for 1-D potential waves, considerable progress has been
made during the last 15 years, but the applicability of these techniques
for simulation of multi-mode wave fields over a long time period has not
been proven. One possible approach to circumvent these problems is to
develop a highly accurate numerical scheme for the principal equations of
potential waves. With such a scheme, direct hydrodynamical modeling
of wave phenomena may be expected to provide improvements in many
theoretical and applied aspects of wave studies.

The main difficulty in constructing numerical methods for nonsta-
tionary potential vaves is how to deal with the vertical dimension which,
in order to simplify the problem, must be eliminated from the model
prognostic equations which are to be solved by numerical time integra-
tion. The nonstationary surface-following conformal mapping used in our
scheme is, indeed, a most effective way to resolve this problem and make
the model capable of long-term multi-mode simulations.

The results obtained in this work may be divided into three groups.

1. The method of conformal mapping developed by Stokes (1848) for sta-
tionary potential waves was extended to the nonstationary case, where
the conformal transformation becomes time dependent, and the surface-
following coordinates are no longer the velocity potential and the stream
function. The method proved effective because the original system con-
sisting of a Laplace equation and two nonlinear boundary conditions on
a curvilinear surface are reduced, without any simplification, to a system
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of two one-dimensional nonstationary equations. As in the Cartesian
coordinates, the dependent variables are the elevation and the velocity
potential of the surface, but their dependence on the Cartesian horizontal
coordinate z is represented parametrically via the new horizontal coordi-
nate £. The transformed system may be solved by numerical integration,
which is done efficiently by calculating nonlinearities via Fourier trans-
form method. The system may also be used for analytical investigations
based on various methods developed for the original system, with the
important advantage that the problem of extapolating the velocity po-
tential in the vertical does not exist.

2. A numerical method for solution of the stationary equations for gravity
and gravity-capillary waves has been developed. The method allows us to
obtain the solutions with computer accuracy and is based on representa-
tion of the differential equation for the surface height, written in the new
coordinates (which in this case are proportional to the velocity potential
and the stream function) via operators of integration and (generalized)
Hilbert transformation calculated in Fourier space. Again, the use of
Fourier transform method to calculate nonlinearities allows a highly ef-
ficient implementation of the method. It should be noted that we had
to develop two separate algorithms for pure gravity and gravity-capillary
waves, and that in the latter case our algorithm fails to converge when
the nondimensional capillarity coefficient becomes small. This problem
will require further investigations. It was shown that, with decreasing
values of capillarity coefficient, the phase velocities of gravity-capillary
waves decrease rather than approach the values of the Stokes phase ve-
locity. Thus, the Stokes waves do not appear to be an asymptotic form of
the gravity-capillary waves as the capillarity goes to zero. This, together
with non-convergence of the algorithm (and its various modifications) for
small capillarities, may be an indication that stationary gravity-capillary
waves which are only slightly affected by capillary forces are unstable or
simply do not exist.

While properties of stationary solutions imply many intriguing prob-
lems, we used these results mainly as a tool to validate the nonstationary
model. The validation was performed by using solutions obtained in sec-
tion 3 as initial conditions for the nonstationary problem. Since the coor-
dinate system of the latter was bound to the mean flow rather than to the
wave profile, the model simulates running Stokes and gravity-capillary

49



waves. It should be emphasized that the validation was far from trivial,
as the nonstationary model is based on equations much more complicated
than the stationary ones and on a numerical procedure of its own, which
"does not know” that the simulated waves are supposed to retain their
shape. Nevertheless, they did retain it surprisingly well even for large
amplitudes. This suggests that (1) Stokes and gravity-capillary waves
are stable with respect to truncation errors of the nonstationary model,
and (2) these errors are small enough.

3. We used the nonstationary model for case studies of evolution of non-
linear wave fields. The cases described in section 6 were chosen somewhat
arbitrarily, as our aim was to provide a possibly broader variety of ap-
plications of the technique developed. The effects of bound waves were
most clearly seen in the simulation designed to approximate the labo-
ratory experiment by Yuen and Lake (1982). A most surpising feature
of multi-mode wave fields was a clear separation of the wavenumber-
frequency spectra into regular curvilinear branches, with most of the
energy concentrated along what we called "main branches”. This set of
branches satisfies a dispersion relation whose form is given by (89) where
the number n of the branch is 1 for the branch consisting of free waves
and 1s greater than 1 for branches consisting of generalized bound waves.
In this structure, nonlinear effects were manifested both in the existence
of multiple branches and in deviation of the "parent” curve (% = 1) ftem
the linear dispersion relation for relatively large wave numbers. In most
cases the deviation clearly appeared to be such that the curve approaches
a straight line and so the group velocity tends to a constant; however,
this effect needs further analysis. The nonlinear interactions also pro-
duced other regular branches. The energy of the modes belonging to
these additional branches was usually very small, sometimes with the
remarkable exception of a peculiar pattern (or group of patterns) which,
at least for wave numbers that are not too small, could be roughly ap-
proximated by a straight line passing through the origin. The nonlinear
behavior was perhaps most strongly manifested in the case of a long
Stokes wave with superimposed small short waves, where the free wave
branch is poorly represented, and propagation of short waves is largely
controlled by interactions with the Stokes wave. On the other hand, the
nonlinear energy flux to higher wavenumbers was remarkably larger in
the case of gravity-capillary waves than in all other runs, which included
pure gravity and pure capillary waves simulations with the same initial

50



surface hight. This case also needs further investigation, as the structure
of the wavenumber-frequency specrtum was partially obscured by appar-
ent merging of the branches.

The technique developed here may be used to study a variety of prob-
lems of the nonlinear wave dynamics:

- spectral properties of nonlinear wave fields in a wide range of wave
numbers, depths and capillarity coefficients:

- coupling between short and long waves;

- validation of kinematic wave models by use of the developed hydro-
dynamical model as a generator of moving wave surfaces;

- wind-wave interaction, which can be studied by coupling of the de-
scribed model with a wave boundary layer model (e. g. Chalikov, 1986).
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