U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
ENVIRONMENTAL MODELING CENTER

TECHNICAL NOTE

- ANEW TRANSFER FUNCTION FOR SSM/I BASED ON AN EXPANDED NEURAL
NETWORK ARCHITECTURE

by
Vladimir M. Krasnopolsky
General Sciences Corporation,
Laurel, MD 20707

William H. Gemmill and Laurence C. Breaker
Ocean Modeling Branch
Environmental Modeling Center
National Centers for Environmental Prediction
Washington, D.C. 20233

NATIONAL CENTERS FOR ENVIRONMENTAL PREDICTION
WASHINGTON, D.C.
NOVEMBER 1996

OMB Contribution No. 137



No.

No.

No.

No.
No.

No.

No.

No.
No.
No.
No.

No.

. 10.

11.

12.

13.

14.

4 ()

16.

175

18.

19.

20.

OPC CONTRIBUTIONS

Burroughs, L. D., 1987: Development of Forecast Guidance for Santa Ana Conditions. National Weather Digest, Vol.
12 No. 1, 7pp.

Richardson, W. S., D. J. Schwab, Y. Y. Chao, and D. M. Wright, 1986: Lake Erie Wave Height Forecasts Generated by
Empirical and Dynamical Methods -- Comparison and Verification. Technical Note, 23pp.

Auer, S. J.,, 1986: Determination of Errors in LFM Forecasts Surface Lows Over the Northwest Atlantic Ocean.
Technical Note/NMC Office Note No. 313, 17pp.

Rao, D. B,, S. D. Steenrod, and B. V. Sanchez, 1987: A Method of Calculating the Total Flow from A Given Sea
Surface Topography NASA Technical Memorandum 87799., 19pp.

Feit, D. M., 1986: Compendium of Marine Meteorological and Oceanographic Products of the Ocean Products Center.

NQAAI&chmcalMﬂmomndum_NﬂS_NMC_&S 93pp.

Auer, 8. J., 1986: A Comparison of the LFM, Spectral, and ECMWF Numerical Model Forecasts of Deepening
Oceanic Cyclones During One Cool Season. Technical Note/NMC Office Note No. 312, 20pp.

Burroughs, L. D., 1987: Development of Open Fog Forecasting Regions. Technical Note/NMC Office Note. No. 323.,
36pp.

Yu, T. W., 1987: A Technique of Deducing Wind Direction from Satellite Measurements of Wind Speed. Monthly
ﬂcather_RcJa.eﬂ,_llﬁ 1929-1939.

Auer, 8. J., 1987: Five-Year Climatological Survey of the Gulf Stream System and Its Associated Rings. Journal of
ﬁcﬂphysmal.Res&amh,ﬂZ 11,709-11,726.

Chao, Y. Y., 1987: Forecasting Wave Conditions Affected by Currents and Bottom Topography. Technical Note,
11pp.

Esteva, D. C., 1987: The Editing and Averaging of Altimeter Wave and Wind Data. Technical Note, 4pp.

Feit, D. M., 1987: Forecasting Superstructure Icing for Alaskan Waters. National Weather Digest, 12, 5-10.

Sanchez, B. V., D. B. Rao, and S. D. Steenrod, 1987: Tidal Estimation in the Atlantic and Indian Oceans. Marine
Geodesy, 10, 309-350.

Gemmill, W. H., T. W. Yu, and D. M. Feit 1988: Performance of Techniques Used to Derive Ocean Surface Winds.
MMMMMM 34pp.

Gemmill, W. H., T. W. Yu, andD M. Feit 1987: Performance Statistics of Techmques Used to Detemune Ocean
Surface Winds. ere k :
Halifax, Nova Scotia., 234-243.

Yu, T. W., 1988: A Method for Determining Equivalent Depths of the Atmospheric Boundary Layer Over the Oceans.

loumaLQf_G:QphymaLRﬁscamh_Qi 3655-3661.

Yu T W 1987 Analysis of the Atruosphenc Mlxed Layer Helghts Over the Oceans.

ia, 2, 425-432.

Feit, D. M., 1987: An Operational Forecast System for Superstructure Icing. Proceedings Fourth Conference
Meteorology and Oceanography of the Coastal Zone. 4pp.

Esteva, D. C., 1988: Evaluation of Priliminary Experiments Assimilating Seasat Significant Wave Height into a

Spectral Wave Model. Journal of Geophysical Research. 93, 14,099-14,105.

Chao, Y. Y., 1988: Evaluation of Wave Forecast for the Gulf of Mexico. Proceedings Fourth Conference Meteorology
and Oceanography of the Coastal Zone, 42-49,



LIST OF ABBREVIATIONS

BT:
C:

NDBC:
NN:
NRL:

OMBNNX:

OWS:
SBB:
SD:
SSM/I:
SST:
TAQO:
TOGA:
¥

'H

brightness temperature
degrees Celsius

correlation coefficient
calibration/validation

SSM/I instrument number XX

10° cycles/second

Goodberlet, Swift and Wilkerson (1989) - see References

horizontal polarization

degrees Kelvin

Krasnopolsky, Breaker and Gemmilll (1995) - see References

columnar liquid water

European oceanic weather ship

European oceanic weather ship

National Data Buoy Center

neural network

Naval Research Laboratory

Ocean Modeling Branch Neural Network number X
oceanic weather ship

Stogryn, Butler and Bartolac (1994) - see References
standard deviation

Special Sensor Microwave / Imager

sea surface temperature

tropical atmosphere ocean

tropical ocean global atmosphere

vertical polarization

columnar water vapor



ABSTRACT
A new neural network (NN) SSM/I transfer function (OMBNN3) which retrieves wind

speed (W), columnar water vapor (V), columnar liquid water (L), and SS7, using only satellite
data (five SSM/I brightness temperatures (BTSs)) is introduced and compared with the current
operational (GSW) algorithm and NN algorithms developed earlier (OMBNN1 and OMBNN?2).
The new NN algorithm systematically outperforms all algorithms considered for all SSM/I
instruments (F8, F10, F11 and F13), under all weather conditions where retrievals are possible,
and for all wind speeds. It also retrieves V and L with an accuracy close to that of cal/val (for V)
and Weng and Grody (for L) algorithms, and produces low resolution SSTs with moderate
accuracy. OMBNN3 demonstrates significantly better performance at higher wind speeds (and
higher latitudes) than previous NN-based algorithms. It generates wind speeds up to ~23 m/s for
the available test data, and has a theoretical upper limit of about 32 m/s. The retrieval accuracy

for OMBNN3 does not depend significantly on the satellite and/or instrument.



1. INTRODUCTION

This report contains a description of a new neural network (NN) SSM/I transfer function
(OMBNN?3) which retrieves wind speed (W), columnar water vapor (V), columnar liquid water
(L), and SST, using only satellite data (five SSM/I brightness temperatures (BTs)). Also
contained is a detailed comparison of the new algorithm with the current operational (GSW)
algorithm (Goodberlet, et al., 1989) and NN algorithms developed earlier (Krasnopolsky et al.,
1995a, 1995b). 1t is shown that our new NN algorithm outperforms all other algorithms in terms
of wind speed retrievals. It also retrieves V and L with an accuracy close to that of cal/val
(Alishouse, 1990) and WG (Weng and Grody, 1994) algorithms, and produces low resolution
SSTs with moderate accuracy. '

SSM/I wind retrieval algorithms encounter two problems: (1) atmospheric moisture and
(2) high wind speeds. It was shown (Stogryn et al., 1994; Krasnopolsky et al., 1994, 1995a), that
an adaptive nonlinear approach such as NNs can successfully handle the nonlinearity of the SSM/I
transfer function caused by atmospheric moisture, extending the retrieval capability under cloudy
atmospheric conditions. However, it is not yet clear to what extent retrievals can be extended
under cloudy conditions. Although an upper limit for retrievals (0.5 mm in terms of columnar
liquid water) has been suggested, it is clear that in particular situations this limit may be
significantly lower (e.g., in rain). Because high moisture events are relatively rare, they are poorly
represented in development data sets which makes this problem even more difficult. The new
OMBNN3 algorithm which estimates two moisture criteria, Vand L together with the wind
speed, provides an additional control on the level of moisture and on the accuracy of wind speed
retrievals.

Several issues contribute to the problems at high wind speed (see Krasnopolsky et al.,
1996a): (1) saturation of BT at high wind speeds due to saturation of the area of the ocean
surface covered by the persistent fraction of whitecap foam, (2) increasing noise in BT from the
transient part of whitecap foam fraction at high wind speeds, and (3) very few buoy observations
for higher wind speeds (W > 15 m/s). The linear GSW retrieval algorithm can, in principle,
generate high wind speeds; however, validation of this algorithm using buoy observations shows

that it has high scatter at high wind speeds and generates high wind speeds in some cases even



when observed wind speeds are low. The first NN algorithms, SBB NN (Stogryn et al., 1994 )
and OMBNN!I (originally called SER NN in Krasnopolsky et al., 1994 ), demonstrated retrieval
accuracies which were significantly better than that for GSW, however, they were not able to
generate high wind speeds (higher than 16-18 m/s). An improved high wind speed NN algorithm
was developed, OMBNN?2 (Krasnopolsky et al., 1995b), which is capable of generating higher
wind speeds (up to 20-21 m/s without a bias correction). It uses a bias correction to extend
retrievals to higher wind speeds (up to 25 -26). However, this bias correction is instrument
and/or satellite dependent. Here we introduce a new NN algorithm which generates wind speeds
up to 23-24 m/s on available data sets without any bias correction (theoretical high wind speed
limit for OMBNN3 is about 32 m/s) and whose accuracy does not depend significantly on the
instrument and/or satellite.

The purpose of this report is to document the development and validation of the new
OMBNNS3 algorithm. This new development was possible due to (1) new matchup data, and (2)
a new approach for empirical retrievals using NNs. Problems mentioned above together with
some mathematical and physical ideas which led us to this new algorithm will be described in

- Krasnopolsky et al. (1996b). In Section 2 of this report, the architecture of the new OMBNN3
algorithm is described. Section 3 describes the data we use and preprocessing procedures.
Section 4 describes the NN training process. In Section 5 we perform a detailed validation of the
OMBNN3 algorithm, using different criteria and matchups for all SSM/I instruments. Section 6
summarizes our results, and the FORTRAN program which implements OMBNNS3 algorithm, is
presented in the Appendix’,

"The corresponding FORTRAN file is available upon request from Vladimir Krasnopolsky,
e-mail address: wd21kv@sgi78.wwb.noaa.gov, tel. 301-763-8133.
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2. NEW ALGORITHM ARCHITECTURE

The first-generation wind speed retrieval algorithms, including the GSW algorithm
(Goodberlet, et al., 1989), SBB algorithm (Stogryn et al., 1994), OMBNN1 (Krasnopolsky et al.,
1994, 1995a) and OMBNN2 (Krasnopolsky et al., 1995b) followed a standard empirical
approach. They retrieved only one value (e.g., wind speed) regressing it on the satellite

measurements (e.g., BTs), as
W=f(BT) . oy

where BT is the brightness temperature vector and f is a regression function (NN in our particular
case). Representation (1) assumes (usually by default) that the data set which is used is complete
(representative) enough to eliminate dependencies of W on other physical parameters (liquid
water, water vapor, SST, etc.) through averaging. This assumption and, hence, representation
(1), is obviously not correct at W> 10 - 15 m/s where the buoy/SSMI matchup data are sparse,
and dependencies of the wind speed on V, L, and SST are not removed through averaging. These
dependencies create additional noise with respect to wind speed at higher wind speeds. In this
case, (1) gives a biased estimate for the wind speed with a large scatter (large bias and standard
deviation).

NNs allow us to solve this problem without including V, L and SST as additional
arguments in (1), which is the standard solution, that is not suitable for an operational algorithm.

The new NN algorithm (OMBNN3) can be symbolically written as,
Y=g (BI) )

where the output vector is Y = {W, V, L, SST}, the input vector is BT = {T19V, TI9H, T22V,
T37V, T37H} and g is a NN. The NN, g, which implements (2) has 5 inputs and 4 outputs, it also
has one hidden layer with 12 nodes. The architecture of OMBNN3 together with those for
OMBNN1 and OMBNN2 are shown in Fig. 1. Including additional outputs in the NN
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Fig 1 Evolution of the NN architecture from OMBNN1 to OMBNN3.
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architecture improves the training process, decreases the number of local minima in the error

function, and stabilizes and accelerates convergence in the training process.

The NN was trained, using the weighting scheme for high wind speed data described in

Krasnopolsky et al., (1995b), where the weighting function was inversely proportional to the

square root of the wind speed distribution.

3.

THE MATCHUP DATA

For algorithm development and validation several databases were used:

A raw SSMI/buoy matchup database, created by NRL was provided to us by G. Poe
(NRL). This database contains 3,144 F8/buoy matchups for the period 9/91 to 6/93,
12,013 F10/buoy matchups for the same period, and 10,195 F11/buoy matchups for the
period 12/91 to 6/93. NDBC buoys and TOGA-TAO buoys have been used in creating
these matchups. We carefully quality controlled the matchups extracted from the NRL
database. More than 30 different criteria have been applied to both the buoy and the
SSM/I data for quality control and to remove missing and noisy data. Daily locations for
TOGA-TAO buoys have been corrected using information from the TAO Web Home
page. As aresult 2,994 F8/buoy matchups, 11,705 F10/buoy matchups, and 9,948
F11/buoy matchups were extracted. As a second step, we selected matchups where the
satellite data are collocated with the buoy data in space for R, < 15 km and in time for R,
< 15 min. Eventually, 1765 matchups for F8, 7495 matchups for F10, and 6129
matchups for F11, were selected.

The F11 matchups collected by high latitude ocean weather ships (OWS) LIMA (430
matchups) and MIKE (639 matchups) were provided to us by D. Kilham of Bristol
University. After quality control and applying a 15 km x 15 min collocation filter, 547
(243 MIKE + 304 LIMA) matchups were selected.

For F13, we have created a new matchup database containing 1036 F13/buoy wind speed
matchups with a spatial collocation uncertainty R; < 25 km, and a temporal collocation
uncertainty R, < 0.5 hour. Because the buoy data in this case have been preprocessed

with a roundoff error of ~0.5 m/sec, an additional random error of approximately 0.3



m/sec rms has been introduced. Because we did not have access to telemetry in this case,
~ only limited filtering was applied to those BTs. As a result, these matchups have higher
noise than the matchups for F8, F10, and F11 which were extracted from the NRL
database. The F13 matchup data also cover a limited time interval from 11/95 to 4/96.
Thus, we only use F13 for a relative comparison of the different algorithms.
For all data, wind speeds have been adjusted to a height of 20 m. Some characteristics of the data
are shown in Table 1. Clear and cloudy conditions are defined below and correspond to the

retrieval flags given by Stogryn et al. (1994):

T37V-T37H>50K for clear case
and
T37V-T37H <S0K 3)
T19V < T37V
T19H < 185K
T37H < 210K for cloudy case
Table 1. Statistics for data used for algorithm development and validation.

Number of matchups Mean | o, | Max Max W Max W
w m/s W | (Clear+ | (Clear)
Total | Clear | Cloudy | TS m/s | Cloudy) | m/s

cond. cond. m/s

F08/Buoy 1765 1437 200 7.4 33 | 26.0 21.5 18.6
F10/Buoy 7495 5953 926 %3 32 | 2548 21.6 20.5
F11/Buoy 6633 5274 855 T 3.5 | 264 25.0 20.1
F13/Buoy 1071 864 172 10.3 4.7 | 27.5 27.5 24.7
F11/LIMA 304 253 31 10.4 4.9 | 26.4 26.4 239
F11/MIKE 243 215 27 9.8 4.9 | 242 24.2 211

As mentioned above, since F13 data are not extensive, contain additional noise, and cover
only several months, we have not used them for algorithm development but only for comparisons
with the different algorithms. As seen in Table 1, most of the high wind speed coincide with

higher levels of moisture and cloudiness. Matchup data for F8 and F10 do not have buoy wind
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speeds higher than 21.6 m/s even under clear + cloudy conditions. Several high wind speed
events in these data contain levels of liquid water which are so high that no retrievals are possible.
Only the F11 data contain high wind speed events under clear + cloudy conditions (up to 25 m/s).
Thus, the F11 data provide the only choice for algorithm development. To further improve the
coverage for high wind speeds, F11/buoy data have been supplemented with F11/LIMA and
F11/MIKE data. These data have wind speeds up to 26.4 m/s and correspond to high latitudes
(LIMA was located at ~ 57°N and MIKE at ~ 65°N). The resulting blended F11 matchup
database has subsequently been separated into two statistically equivalent sets: one for training

and one for testing.

4. TRAINING

As shown by Stogryn et al. (1994) and Krasnopolsky et al. (1994, 1995a), NN algorithms
can successfully retrieve wind speeds under clear + cloudy conditions. Therefore, for training we
used all available matchups which correspond to clear + cloudy conditions, according to
Stogryn’s retrieval flag (3). Statistics for clear conditions were then calculated by applying the
trained NN to the clear portion of the matchup data. Because higher wind speed events were
given extra weight, noise in this portion of the data .could reduce the effectiveness of the training
process. To minimize this possibility, we additionally removed a number of outliers at higher
wind speeds, but no outliers were removed for the test data, or for any other data which were
used for further validation.

Five SSM/I BTs {T19V, T19H, T22V, T37V, T37H} are used as the NN inputs. The
output vector is composed of wind speed and SST taken from the buoy portion of the matchup,
columnar water vapor (V) produced by the cal/val algorithm derived by Alishouse et al. (1990),
and columnar liquid water (L) produced by the WG algorithm from SSM/I BTs. Standard
backpropagation was used to train the NN. Afier training, the algorithm was applied to the F11
test data.

Table 2 shows wind speed statistics for clear conditions and Table 3 for clear + cloudy
conditions for both training and test sets. Under both clear and clear + cloudy conditions,

OMBNNS3 algorithm gives a small bias, an acceptable standard deviation (SD), and high
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correlation (CC). It also accurately reproduces not only the mean buoy wind speed but also its

SD, o,. As for the maximum wind speed, OMBNN3 underestimates high wind speeds by about

Table 2.

Training and test statistics for OMBNN3 algorithm under clear conditions.

Columns 3 - 5 show statistics for the wind speeds per se (0, denotes standard deviation), and

columns 6 - 8 for the difference between buoy and algorithm-generated wind speeds. SD denotes

standard deviation, and CC denotes correlation coefficient.

Data set MaxW | Mean W o, Bias SD CC
Training Buoy 22.8 713 3.27 N/A N/A N/A
OMBNN3 19.5 7.14 2.97 -0.01 1.36 0.91
Test Buoy 239 7.14 331 N/A N/A N/A
OMBNN3 202 721 3.08 -0.08 1.49 0.89

Table 3. Training and test statistics for OMBNNS3 algorithm under clear+cloudy conditions.

Columns 3 - 5 show statistics for the wind speeds per se (o, denotes standard deviation), and
columns 6 - 8 for the difference between buoy and algorithm-generated wind speeds. SD denotes
standard deviation, and CC denotes correlation coefficient.

Data set MaxW | Mean W g, Bias SD CC
Training Buoy 26.4 7.48 3.49 N/A N/A N/A
OMBNN3 22.8 7.49 3.20 -0.004 1.41 0.91

Test Buoy 26.4 7.44 331 N/A N/A N/A
OMBNN3 22.8 7.66 3.34 -0.21 1.77 0.87

10 - 15%, which we consider acceptable for wind speeds > 22 m/s, where the noise level is
highest (see discussions in the introduction here and in Krasnopolsky et al. (1996a)). The
differences between the statistics for the training and the test data are mainly due to outliers which
have not been removed from the test set. The difference between clear and clear + cloudy case is
small but significant. The cloudy case and statistics for other NN outputs (V, L, and SST) are

discussed in following sections.

11



5. VALIDATION AND COMPARISONS

Previous empirical wind speed algorithms have, in most cases, been developed and
validated, using the F8 matchup database created by GSW. Here we use a newly-created
database described in Section 3 for validation for all SSM/I instruments (F8, F10, F11, and F13)
and for comparison of the various wind speed algorithms. For comparison with the new
OMBNN3 algorithm we have used the current operational algorithm (GSW), our original NN
algorithm OMBNNI1 (or SER NN), and our OMBNN?2 improved for high wind speeds. Because
the bias correction for OMBNN2 is instrument and/or satellite dependent (Krasnopolsky et al.,
1996a), we do not include it here but use only the NN part of OMBNN2 algorithm.

5.1  Wind Speed

In this section we present statistics for the primary output of the OMBNN3 algorithm -
wind speed. By including additional outputs in OMBNN3, the performance of OMBNN3 is
significantly improved, especially at higher wind speeds. Statistics for the other outputs are
presented in following sections.

5.1.1 Total (for all wind speeds) statistics.

Table 4 shows total statistics for clear case, Table 5 for clear + cloudy conditions and
Table 6 for cloudy conditions. Tables 4 and 5 contain statistics for four satellites and four
selected algorithms. For cloudy case, F8 and F13 cloudy subsets are small and for these satellites
strongly overlap with the high wind speed subsets (Table 7), thus only statistics for F10 and F11
are shown for cloudy conditions in Table 6. These tables also contain buoy wind speed statistics
for each data set: maximum wind speed, mean wind speed, and the SD, a,,

We now summarize the information contained in Tables 4 - 6:

o For all weather conditions considered, and for all SSM/I instruments, the NN-based
algorithms outperform the GSW algorithm based on the standard deviation (SD) as a criterion.
Based on the biases, the new OMBNN3 also outperforms the GSW algorithm for most cases;
otherwise it produces similar biases. Wind speeds generated by OMBNNS3 have mean values and
SDs which are close to those of the observed buoy wind speeds; therefore, the OMBNN3-

generated wind speed distributions are properly centered and have proper width (also see Fig. 2).
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Table 4 Total statistics for GSW, OMBNN1, OMBNN2 and OMBNN3 algorithms

for CLEAR conditions and for four different SSM/I instruments. Columns 3 - 5 show statistics for
the wind speeds per se (o, denotes standard deviation), and columns 6 - 8 for the difference
between buoy and algorithm-generated wind speeds. SD denotes standard deviation, and CC
denotes correlation coefficient.

Satellite Max W | Mean W o, Bias SD CC
Buoy 19.2 7.06 3.01 N/A N/A N/A
F08 GSW 214 7.08 3.18 -0.02 1.77 0.84
OMBNN1 15.1 6.13 2.38 0.93 1.49 0.87

1437
m-ups OMBNN2 16.8 6.56 2.68 0.50 1.48 0.88
OMBNN3 20.1 7.07 3.01 -0.01 1.43 0.88
Buoy 20.5 6.98 2.95 N/A N/A N/A
F10 GSW 20.8 7.20 3.22 -0.22 1.86 0.82
OMBNN1 14.7 6.23 2.46 0.75 1.63 0.84

5953
m-ups OMBNN2 171 6.13 2.61 0.84 1.60 0.84
OMBNN3 20.2 7.21 2.97 -0.23 1.68 0.84
Buoy+OWS 23.9 713 3.29 N/A N/A N/A
Fl1 GSW 209 7.34 3.36 -0.21 172 0.87
OMBNN1 16.9 6.47 2.55 0.66 1.55 0.89

5274
m-ups OMBNN2 17.9 6.32 2.72 0.81 1.56 0.88
OMBNN3 20.2 7.17 3.03 -0.04 1.43 0.90
Buoy 24.0 9.46 4.16 N/A N/A N/A
F13 GSW 23.6 1049 | 3.84 -1.02 2.1% 0.86
S6i OMBNN1 18.5 9.01 3.39 0.45 2.02 0.88
m-ups OMBNN2 21.1 9.35 3.51 011 1.96 0.88
OMBNN3 22.0 10.1 3.70 -0.61 1.87 0.89
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Table 5 Total statistics for GSW, OMBNN1, OMBNN2 and OMBNN3

algorithms for CLEAR plus CLOUDY conditions and for four different SSM/I instruments.
Columns 3 - 5 show statistics for the wind speeds per se (0,, denotes standard deviation), and
columns 6 - 8 for the difference between buoy and algorithm-generated wind speeds. SD denotes
standard deviation, and CC denotes correlation coefficient.

Satellite MaxW | Mean W ., Bias SD CC
Buoy 21.5 7.31 317 N/A N/A N/A
FO8 GSW 259 7.65 3.54 -0.34 213 0.80
OMBNN1 171 6.32 2.45 0.99 1.62 0.86
1637
m-ups OMBNN2 18.4 6.80 2.92 0.51 1.60 0.87
OMBNN3 20.6 7.41 3.09 -0.10 1.59 0.87
Buoy 21.6 7.26 3.18 N/A N/A N/A
F10 GSW 26.0 7.81 3.59 -0.55 2.15 0.80
OMBNN1 16.4 6.42 2.53 0.85 1.74 0.84
6879
m-ups OMBNN2 19.5 6.32 237 [+ 195 1.2 0.84
OMBNN3 225 157 3.18 -0.31 1.81 0.84
Buoy+OWS 26.4 7.47 3.51 N/A N/A N/A
Fi1 GSW 30.3 7.99 3.77 -0.53 2.09 0.84
OMBNN1 19.4 6.70 2.65 0. 1:7 0.88
6129 - i -
m-ups OMBNN2 20.7 6.56 2.90 0.91 1.70 0.88
OMBNN3 22.8 757 3.27 -0.11 1.61 0.89
Buoy 27.5 10.21 4.58 N/A N/A N/A
Fi3 GSW 29.0 11.43 4.36 -1.22 2.59 0.83
OMBNN1 18.5 9.65 3.61 .55 241 0.
1036 - =
m-ups OMBNN2 20.5 9.55 3.49 0.66 2.40 0.86
OMBNN3 23.1 10.84 4.04 -0.63 2.26 0.87
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Table 6 Total statistics for GSW, OMBNN1, OMBNN2 and OMBNN3 algorithms

for CLOUDY conditions and for two different SSM/I instruments. Columns 3 - 5 show statistics
for the wind speeds per se (o, denotes standard deviation), and columns 6 - 8 for the difference
between buoy and algorithm-generated wind speeds. SD denotes standard deviation, and CC
denotes correlation coefficient.

Satellite | Algorithm | MaxW | Mean W | o, Bias SD CC
Buoy 21.6 8.90 3.77 NA | NA N/A
F10 GSW 26.0 11.91 3.48 -3.01 3.19 0.61
OMBNN1 16.4 7.61 2.58 1.28 2.47 0.76
;0:35 OMBNN2 19.5 7.49 3.38 1.41 2.50 0.76
OMBNN?3 225 9.97 3,52 -1.08 2.76 0.72
Buoy+OWS | 25.0 8.79 3.63 N/A N/A N/A
Fi1 GSW 30.3 11.97 3.42 -3.18 3.07 0.62
- OMBNN1 15.8 7.79 2.49 0.99 2.39 0.76
m-ups OMBNN2 20.7 7.65 3.26 1.13 2.40 0.76
OMBNN3 22.8 9.78 3.39 -0.99 2.59 0.73

o Under cloudy conditions, the biases and SDs are unacceptably high for GSW algorithm,

whereas OMBNNG3 algorithm yields a bias and SD which are acceptable for operational use.
Wind speeds are higher on average under cloudy conditions (see Table 6) and with an rms error of
less than 3 m/s yielding a relative error of 15 - 25 % of the wind speed, considered acceptable,
taking into account the higher level of noise under cloudy conditions. Thus, the OMBNN3
algorithm extends the retrieval domain from clear, to clear plus cloudy, conditions yielding an
increase in areal coverage of ~15%. This result is particularly significant for obtaining more
complete coverage of synoptic-scale weather systems such as extratropical cyclones which are
typically characterized by higher levels of moisture and higher wind speeds. Since the BT
retrieval flags which we use are essentially statistical, they are not highly sensitive to local
conditions. In some cases this may lead to corrupted retrievals; therefore, any additional
information about local conditions (e.g., such as rain/norain) may help to further improve the

accuracy of retrievals under cloudy conditions.
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° SDs for OMBNN3 are comparable with SDs for OMBNN1 and OMBNN2 (sometimes
even smaller), which indicates that our NN approach, including the previous weighting of higher
wind speeds, is robust enough to prevent decreasing the accuracy of lower wind speeds because
of high levels of noise at higher wind speeds. Additionally, there is a consistent improvement
(from OMBNN1 to OMBNN?3) in the ability of these NN algorithms to generate higher wind
speeds in each case.

. In comparing F8, F10, and F11, the variations in SD and bias are relatively small for all
algorithms (we do not include F13 here). The largest differences for all algorithms occur for F10
which may be due to the orbit ellipticity for this satellite (G. Poe, personal communication).

Fig. 3 shows scatter plots of retrieved vs. observed wind speeds for all four instruments
and for GSW, OMBNN2 and OMBNN3 algorithms. OMBNN3 yields the lowest scatter both at
low and high wind speeds.

5.1.2 High wind speeds statistics.

Table 7 shows statistics calculated separately for wind speeds > 15 m/s, only.

Although the sample sizes are small in each case, some conclusions can be drawn from the table.
At high wind speeds, the NN-based algorithms perform significantly better than GSW based on
the SD. OMBNNI and OMBNN?2 have large positive biases because they significantly
underestimate the speed at high wind speeds; however, OMBNN3 demonstrates a smaller bias at
high wind speeds.

5.1.3 Binned wind speed statistics

Fig. 4 shows binned bias, SD, and rms error for the difference between buoy wind speeds
and algorithm-generated wind speeds vs. observed wind speed for GSW, OMBNN2 and
OMBNNG3 algorithms, where the bin size is 1 m/s. Fig. 4 shows that OMBNN3 is uniformly
better than the other two algorithms in terms of SD and rms error (except occasionally at high
wind speeds for rms error) for all instruments and all wind speeds.

Fig. 5 shows binned bias and rms error for the difference between buoy wind speed and |
algorithm-generated wind speeds for GSW, OMBNN2 and OMBNN3 algorithms vs. amount of
columnar liquid water L, where the bin size is 0.05 mm. For all algorithms, biases and rms errors

increase with L; however, OMBNN3 demonstrates better performance for all values of L.
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Table 7 High winds (W > 15 m/s) statistics for algorithms presented in Table 4, for
CLEAR+CLOUDY conditions and for four different SSM/I instruments. Columns 3 - 5 show
statistics for the wind speeds per se (0,, denotes standard deviation), and columns 6 - 7 for the
difference between buoy and algorithm-generated wind speeds. SD denotes standard deviation.

Satellite Max W Mean W a, Bias SD
Buoy 21.5 16.8 1.55 N/A N/A
GSW 21.4 16.9 2.97 0.10 1.52
F08

OMBNN1 15.1 12.6 1.21 4.15 1.39
23 OMBNN2 17.4 13.6 1.40 321 1.47

m-ups
OMBNN3 20.6 16.4 1.76 0.42 1.40
Buoy 21.6 16.8 1.51 N/A N/A
GSW 26.0 17.1 2.95 03 2.61
HH OMBNN1 15.7 12.5 1.63 4.30 1.64
18 OMBNN2 195 13.9 1.78 2.90 1.93
— OMBNN3 22.5 16.4 2.62 0.40 2.16
Buoy+OWS 26.4 17.5 234 N/A N/A
GSW 30.3 17.0 2.98 0.46 2.68
ek OMBNN1 19.4 147 1.93 433 1.90
i OMBNN2 20.7 14.0 223 3.53 225
I OMBNN3 2.8 163 2.50 1.17 225
Buoy 27.5 18.1 2.51 N/A N/A
GSW 29.0 17.5 2.68 0.57 2.48
s OMBNNI1 18.5 14.6 1.68 3.45 228
- OMBNN2 20.5 14.6 1.91 3.52 2.18
Sitetipis OMBNN3 23.1 16.8 2.26 123 217
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These dependencies provide additional information regarding the accuracy of wind speed
retrievals under cloudy conditions and can be used to improve the retrieval flags.

Fig. 6 shows binned bias and rms error for the difference between buoy wind speeds and
algorithm generated wind speeds for GSW, OMBNN2 and OMBNN3 algorithms vs. amount of
columnar water vapor V, where the bin size is 5 mm. Bias and rms error increase sharply at V >
40 mm for GSW. This agrees with our previous experience which shows that GSW performs
poorly in tropical areas. For OMBNN3, the bias is small and almost independent of V; however,
rms error increases slowly at V> 50 mm.

Fig. 7 shows binned bias and rms error for the difference between buoy wind speeds and
algorithm-generated wind speeds for GSW, OMBNN2 and OMBNN3 algorithms vs. SS7T, where
the bin size is 5°C. Bias and rms error for GSW increases sharply for SST > 20°C, which is
related to GSW'’s poor performance in tropical areas. For OMBNN3, the bias does not show a
significant dependence on SST.

Fig. 8 shows binned bias and rms error for the difference between buoy wind speeds and
algorithm-generated wind speeds for GSW, OMBNN2 and OMBNN3 algorithms vs.

_ latitude, where the bin size is 5°. OMBNN1 and OMBNN2 have been developed, using F8
matchup data where high latitudes were poorly represented. As a result, these algorithms may be
expected to demonstrate large (up to 1 - 2 m/s) biases at high latitudes. For OMBNNS3, the bias
and rms error are much smaller at high latitudes which is due to the new matchup data which
include matchups at high latitudes where the moisture/wind speed relationships are expected to be
different. For GSW algorithm, the latitude dependence is not smooth and there are regions where

bias and/or rms error are unacceptably high.
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5.2  Columnar Water Vapor.

OMBNN3 has been trained to retrieve the amount of columnar water vapor V, using
SSM/I BTs. Values of V generated by the cal/val algorithm developed by Alishouse et al.
(1990) were used as ground truth during the training. Therefore, OMBNN3 simulates V-
retrievals produced by the cal/val algorithm. Table 8 shows retrieval statistics for columnar water
vapor (max V, mean V, and standard deviation oy) for the cal/val and OMBNN3 algorithms. It
also shows bias, SD for the difference between the cal/val and OMBNNS3 and the correlation
coefficient (CC) between cal/val and OMBNNS3 retrievals. OMBNN3 reproduces the cal/val

retrievals with an rms difference of about 1 mm and a bias of < 0.3 mm.

53  Columnar Liquid Water.

OMBNN3 hasl also been trained to retrieve the amount of columnar liquid water L, using
SSM/I BTs. Values of L generated by the WG algorithm developed by Weng and Grody (1994)
were used as ground truth during the training. Table 9 shows retrieval statistics for columnar
liquid water (max L, mean L, and standard deviation ;) for the WG and OMBNN3 algorithms.
It also shows bias, SD for the difference between WG and the OMBNN3, and CC between WG
and OMBNN3 retrievals. OMBNN3 reproduces WG retrievals with an rms difference of about
0.015 mm and a bias of < 0.05 mm.

Table 8. Total statistics for columnar water vapor V (in mm) retrieved by cal/val

and OMBNN3 algorithms for CLEAR + CLOUDY conditions and for F10 and F11 SSM/I
instruments. Columns 3 - 5 show statistics for the columnar water vapor per se (0, denotes
standard deviation), and columns 6 - 8 for the difference between cal/val and OMBNN3
algorithm-generated columnar water vapor. SD denotes standard deviation, and CC denotes
correlation coefficient.

Satellite | Algorithm MaxV | MeanV Oy Bias SD CC
F10 Alishouse 60.8 31.0 14.7 N/A N/A N/A
59:1,75 OMBNN3 59.2 30.9 15.4 0.1 1.1 1.0
F11 Alishouse 64.4 31.6 152 N/A N/A N/A
;6535 OMBNN3 60.1 31.4 13.7 0.3 0.9 1.0
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Table 9. Total statistics for columnar liquid water L (in mm) retrieved by WG and
OMBNN?3 algorithms for CLEAR + CLOUDY conditions and for F10 and F11 SSM/I
instruments. Columns 3 - 5 show statistics for the columnar liquid water per se (o, denotes
standard deviation), and columns 6 - 8 for the difference between WG and OMBNN3 algorithm-
generated wind speeds. SD denotes standard deviation, and CC denotes correlation coefficient.

Satellite | Algorithm Max L | Mean L o, Bias SD CC
F10 WG 0.44 0.034 0.058 NA | NA N/A
6847
m-ups OMBNN3 0.38 0.039 0.058 | 0.005 0.016 0.96
F11 WG 0.38 0.034 0.058 N/A N/A N/A
5673
m-ups OMBNN3 0.36 0.036 0.057 0.00 0.015 0.97

5.4  Sea Surface Temperature.

OMBNN3 has been trained to retrieve SSTs from SSM/I BTs, using buoy SST
measurements. Table 10 shows retrieval statistics for SS7 (max SS7, mean SS7, and standard
deviation Oggr) based on the OMBNN3 algorithm. It also shows bias, SD and CC for OMBNN3
vs. the buoy observations. OMBNN3 reproduces buoy SST's with an rms error of < 5 °C, and
bias < 0.7°C. Although these retrievals have relatively low resolution (of order of SSM/I
footprint size), as mentioned above, incorporation of SST as an additional output for the NN

improves the overall accuracy of the training process.

Table 10 Total statistics for SST (°C) retrieved by OMBNN3 vs. buoy for CLEAR +
CLOUDY conditions for F10 and F11 SSM/I instruments. Columns 3 - 5 show statistics for the
SST (0ssr denotes standard deviation), and columns 6 - 8 for the difference between buoy and
OMBNN3-generated SST. SD denotes standard deviation, and CC denotes correlation
coefficient.

Satellite Max SST | Mean SST | Og Bias SD CC
F10 Buoy 31.0 20.7 8.57 N/A N/A N/A
6847

m-ups | OMBNN3 31.0 20.16 8.29 0.58 4.87 0.83
F11 Buoy 313 20.0 8.86 N/A N/A N/A
5673

m-ups | OMBNN3 30.7 20.7 7.91 -0.68 4.52 0.86
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6. CONCLUSIONS

We have presented a new NN-based OMBNN3 transfer function (i.e., retrieval algorithm)
for SSM/I retrievals (including wind speed, columnar water vapor, columnar liquid water, and
SST ) which demonstrates high retrieval accuracy overall, together with the ability to generate
high wind speeds with acceptable accuracy. The results demonstrate that- OMBNN3
systematically outperforms all algorithms considered for all SSM/I instruments, for all weather
conditions where retrievals are possible, and for all wind speeds.

Previous NN-based algorithms have not performed well at high wind speeds. This
problem may be due to several factors including increased buoy wind speed errors at high wind
speeds, nonuniformity of the wind speed distribution itself, collocation errors in the matchups,
and systematic and random errors which occur at high wind speeds due to increasing complexity
of the ocean surface as an emitter of microwave radiation (e.g., whitecaps and foam)
(Krasnopolsky et al., 1996a). Thus, a practical upper limit for making SSM/I wind speed
retrievals may be as low as ~30 m/s in some cases (for some ocean surface states). In developing
the OMBNN3 SSM/I transfer function, a new NN training strategy which includes preferential
weighting at high wind speeds was introduced to compensate for the nonuniformity in the
distribution of observed wind speeds. Also, the OMBNN3 algorithm was developed and tested,
using a new matchup database. We created this database from F11 SSMI/buoy matchups and
high latitude SSMI/OWS matchups which contained a significant number of high wind speed
events. As a result, OMBNN3 demonstrates significantly better performance at higher wind
speeds and at higher latitudes than previous NN-based algorithms. It generates wind speeds up to
~23 m/s for the available test data, and has a theoretical upper limit of about 32 m/s
(Krasnopolsky et al., 1996a). It was also validated for the F8, F10, and F13 sensors and showed
significant improvement in the accuracy of the retrievals for these instruments at higher wind
speeds.

The retrieval accuracy for OMBNN3 does not depend significantly on the satellite and/or
instrument. The largest bias and rms error occur for F10 (not taking into consideration the noisy

data from F13) which may be due to the increased orbit ellipticity for this satellite.
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for GSW algorithm, whereas the OMBNN3 algorithm yields a bias and SD which are acceptable
for operational use. Therefore, the NN-based algorithms have also expanded the retrieval domain
from clear, to clear plus cloudy, conditions yielding an increase in retrieval coverage of ~15%.
This result is particularly significant for obtaining more complete coverage of synoptic-scale
weather systems such as extratropical cyclones which are typically characterized by higher levels
of moisture and higher wind speeds. In this study we have defined cloudy conditions, according
to the BT retrieval flags given by Stogryn et al. (1994). These retrieval flags are based only on
BTs and are statistical by definition; therefore, they do not preclude contamination from rain in all
cases. If information about local conditions is available, it can be used to improve the accuracy
of retrievals under cloudy conditions significantly. Because OMBNN3 generates columnar liquid
water, columnar water vapor and SST simultaneously with wind speed, it offers additional
opportunities for specifying local conditions and improving retrieval flags.

Regarding columnar liquid water L and columnar water vapor V, OMBNN3 was trained to
simulate cal/val retrievals for V, and WG retrievals for L. As shown in Sections 5.2 and 5.3, it
reproduces the cal/val and WG results with high accuracy. Although, we did not have ground
truth data to validate or improve these retrieval estimates, if such data become available (e.g.,
radiosonde measurements), they could be used in the future during the process of training to

improve the algorithm’s retrieval capabilities.
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APPENDIX
C*************lﬁlﬁ*****!***II******’l***!!*ii*#*************#********************
C

C Name: OMBNN3

&

C Language: FORTRAN77 Type - FUNCTION

C

C Version: 1.0 Date: 15-07-96 Author: V. Krasnopolsky

REAL FUNCTION OMBNN3(XT,V,L,SS5T)

a0 oo

C Description:  This retrieval algorithm is a Neural Network

O implementation of the SSM/I transfer function.
It has been developed in EMC of NCEP, NOAA.
OMBNN3 means Ocean Modeling Branch (at EMC)
Neural Network #3.
OMBNN3 retrieves the wind speed (W) at the height 20. m,
columnar water vapor (V), columnar liquid water (L) and
SST. The NN was trained using back-propagation algorithm.

C

(&

C

C

C

C

C

C OMBNN3 transfer function is described and compared
C with cal/val and other algorithms in OMB Technical

C Note No. "A new neural network transfer function for SSM/I"
C by V. Krasnopolsky, W. Gemmill and L. Breaker.
C

c

C

C

C

C

C

C

C

C

C

e-mail: wd21kv@sgi78.wwb.noaa.gov (V. Krasnopolsky)
Tel: 301-763-8133

Fax: 301-763-8545

address:

Environmental Modeling Center,

W/NMC21, Room 207,

5200 Auth Rd.

Camp Spring, MD 20746

Description of training and test data set:
The training set consist of 3460 matchups which were received from
two sources:
1. 3187 F11/8SMI/buoy matchups were filtered out from a preliminary
version of the new NRL database which was kindly provided by
G. Poe (NRL). Maximum available wind speed is 24 m/s.
2. 273 F11/SSMI/OWS matchups were filtered out from two datasets
collected by high latitude OWS LIMA and MIKE. These data sets were
kindly provided by D.Kilham (University of Bristol).Maximum
available wind speed is 26.4 m/s.
Satellite data are collocated with both buoy and OWS data in space
within 15 km and in time within 15 min.

Doaadanoonooo.
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C  The test data set has the same structure, the same number of matchups
C and maximum buoy wind speed.

C

C Description of retrieval flags:

Retrieval flags by Stogryn et al. are used. The algorithm produces
retrievals under CLEAR + CLOUDY conditions, that is if:

T37V - T37H > 50. => CLEAR condition
or

T19H =< 185. and |

T37H =< 210. and | => CLOUDY conditions
TI19H <T37v |

SOME COMPARISON STATISTICS:

oloNoNoNoNoNoRoReloNoReRoloNoRe)

C Wind speed statistics on training + test sets (CLEAR + CLOUDY conditions)
C D = Wbuoy - Wnn, SD - standard deviation, CC - correlation coeff.:
C

C Max W Mean W SDof W Bias SDofD CC(Wbuoy,Wnn)
C m/s m/s m/s m/s m/s

C

C Buoy 264 7.47 3.51

C -0.11 1.61 0.89
COMBNN3 22.8 7.56 3.27

C

C

C OMBNN3 water vapor statistics vs. cal/val and Wentz algorithms:
C

C

C

C Bias SD CC

C mm mm

es

Cvs.calival 03 09 1.0
Cvs. Wentz 02 38 097
e
Cc
C OMBNN3 liquid water statistics vs. Weng and Grody (WG) and Wentz algorithms:
C

C Bias SD cC
C mm mm
C-- ——

Cvs. WG 0.0 0.015 0.97

Cvs. Wentz -0.03 0.06 0.94

s s e s

C

C SST statistics vs. buoys, D = S§Tbuoy - SSTnn:
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C
C Max SST Mean SST SDof SST Bias SDof D CC(SSTbuoy,SSTnn)
C deg C deg C deg C degC degC

C Buoy 31.3 20.0 8.86
C -07 45 0.86
COMBNN3 30.7 20.7 7.91
C
(&

C*##*******ii********l******i*************t*****************#***************

C Arguments:

)

C INPUTS: OMBNN3 algorithm uses 5 brightness temperatures.

XT - THE BRIGHTNESS TEMPERATURES IN THE ORDER:
XT(1) = TI9V
XT(2) = T19H
XT(3) = T22V
XT(4) = T3V
XT(5) = T37H

OUTPUTS:

One value is returned by the function:

coooooanntaan

OMBNN3 - wind speed in m/s, at the height 20 m
Three values are returned as arguments:

V - columnar water vapor in mm

L - columnar liquid water in mm

SST - sea surface temperature in deg C

If brightness temperatures are rejected by the retrieval flag then
all outputs are - 99.9 !

s e ok o e e ok ok o ok ok 3k ok ok 3l sk s ok sk ok o ok ok i sk sk e ke ok s e ol 3l ol o ol sk s e sl e ook o ol ol ok ol o e i ol e ek ok e e ok o ok ok o ok o R ok

poaoooonoonn

CALLING FROM A FORTRAN PROGRAM:

REAL XT(5),V,L,SST,W
Input XT
W = OMBNN3(XT,V,L,SST)

35 3K 3k ok ke sk ok ok ok o 3k ok ok ofe 3k ok sk 3k ok e ok sk sk sk sk ok sk ok ok ok ok ok 3k sk ol ok ale e s sl sl sl sl sk sl e sk skl ok ok ok ke Sk ok ok e 3k 3k 3 a3k ok ok ok ok ok ok ok ok ok
PARAMETER (OUT =4, IN = 5, flag = -99.9)

logical 1q1,192,193,1L.Q4

O 0O aoaQoacoonoan

REAL XT(IN),Y(OUT), V, L, SST
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C
EQUIVALENCE (Y(1),SPN)

[op— Retrieval flag (Stogryn) ”

C T19H =< 185
Iql = (xT(2).1e.185.)
C T37H =< 210
192 = (xT(5).1e.210.)
C T19H < T37V
1g3 = (xT(1).1t.xT(4))
C T37V - T37H =< 50.
LQ4 = ((XT(4) - XT(5)).LE.50.)

lql = (Iql.and.lq2.and.lq3)

&
if (.not.1q1.AND.LQ4) then
OMBNN3 = flag
V = flag
L ={flag
SST = flag
RETURN
endif
C
C e Call NN
e
C NN wind speed
C
CALL N5124b11 (XT,Y)
V=Y(2)
L=Y(3)
SST =Y(4)
C
C -—mmmeee Remove negative values
C
c
IF (SPN.LT.0.) SPN = 0.
IF (SST.LT.0.) 8ST = 0.
IF(V.LT.0.) V =0.
IF (L.LLT.0)L=0.
C
OMBNN3 = SPN
G
C
RETURN
END

CH355353 553855855 835553355535535555585553555555538855555555555$
C*******lit1!‘**************************************!‘I***************************
(&

C Name: NN5124B11

C

C Language: FORTRAN77 Type - SUBROUTINE
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Version: 1.0 Date: 07-15-96 Author: V. Krasnopolsky

SUBROUTINE N5124B11(X.,Y)

C
C
C
C
C
C
C
C
C

Description: This NN calculates W (in m/s), V (in mm), L (in mm),
-------------- and SST (in deg C). This NN was trained on blended
F11 data set (SSMI/buoy matchups plus SSMI/OWS
matchups 15km x 15 min) under Clear + Cloudy conditions

C**’llﬂ**l!l*!******************************IF***H*****#Hll#*itl******************i

C
INTEGER HID,OUT
PARAMETER (IN = 5, HID = 12, OUT = 4)
C
C Arguments:
INPUT:
X(1)=T19Vv
X(2)=T19H
X(3)=T2V
X(4)=T37V
X(5)=T37H

DIMENSION X(IN)

OUTPUT:
Y(1) = Wind Speed in m/s
Y(2) = Columnar Water Vapor in mm
Y(3) = Columnar Liquid Water in mm
Y(4)=SSTindeg C

DIMENSION Y(OUT)

o o0 onoaonoanan

C%6% %% %% %6 % %6 %o %6 %o %6 %o %o % %o %o To %o T %o %o % %o % % % %o %o % %o %o % % %6 %6 To %o %o To % % % % %o % % % % % %6 %% % %o %%

@

C Internal variables:

IN - NUMBER OF NN INPUTS
HID - NUMBER OF HIDDEN NODES
OUT - NUMBER OF OUTPUTS

W1 - INPUT WEIGHTS

aaaaoaanan
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O

&
G

C
C
(&

W2 - HIDDEN WEIGHTS
B1 - HIDDEN BIASES
B2 - OUTPUT BIAS
DIMENSION W1(IN,HID),W2(HID,0UT),B1(HID),B2(OUT)

A(OUT), B(OUT) - OUTPUT TRANSFORMATION COEFFICIENTS

A T R R R R

DIMENSION O1(IN),X2(HID),02(HID),X3(OUT),03(0UT),A(OUT),B(OUT)

DATA ((W1(L,]),] = 1,HID),I = 1,IN)
& /-0.0435901,0.0614709,-0.0453639,-0.0161106,-0.0271382,.0229015,
&-0.0650678,0.0704302,0.0383939,0.0773921,0.0661954,-0.0643473,
&-0.0108528,-0.0283174,-0.0308437,-0.0199316,-0.0131226, 0.0107767,
&0.0234265,-0.0291637,0.0140943,0.00567931,-0.00931768,
&-0.00860661,0.0159747,-0.0749903,-0.0503523,0.0524172,0.0195771,
&0.0302056,0.0331725,0.0326714,-0.0291429,0.0180438,0.0281923,
&-0.0269554,0.102836,0.0591511,0.134313,-0.0109854,-0.0786303,
&0.0117111,0.0231543,-0.0205603,-0.0382944,-0.0342049,
&0.000524070,0.110301,-0.0404777,0.0428816,0.0878070,0.0168326,
&0.0196183,0.0293995,0.00954805,-0.00716287,0.0269475,
&-0.0418217,-0.0165812, 0.0291809/
DATA ((W2(L,J),] = 1,0UT),I = 1,HID)
& /-0.827004,-0.169961,-0.230296,-0.311201,-0.243296,0.00454425,
&-0.0678487,0.428192,0.827626,0.253772,0.112026,0.00563793,
&-1.28161,-0.169509,0.00190850,-0.137136,-0.334738,0.224899,
&-0.189678,0.626459,-0.204658,-0.885417,-0.148720,0.122903,
&0.650024,0.715758,0.735026,-0.123308,-0.387411,-0.140137,
&0.229058,0.244314,-1.08613,-0.294565,-0.192568,0.608760,
&-0.753586,0.897605,0.0322991,-0.178470,0.0807701,
&-0.781417/
DATA (B1(I), I=1,HID)
& /-9.92116,-10.3103,-17.2536,-5.26287,17.7729,-20.4812,
&-4.80869,-11.5222, 0.592880,-4.89773,-17.3294, -7.74136/
DATA (B2(I), I=1,0UT)
& /-0.882873,-0.0120802,-3.19400,1.00314/
DATA (A(), I=1,0UT)
& /18.1286,31.8210,0.198863,37.1250/
DATA (B(D), I=1,0UT)
& /13.7100,32.0980,0.198863,-5.82500/

DOI=1,IN

OL(D) = X(T)
END DO

- START NEURAL NETWORK
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%
C - INITIALIZE X2
C
DOI=1,HID
X2(I) = 0.
DOJ =1,IN
X2(I) = X2(D) + 01(3) * W1(J,I)
END DO
X2(I) = X2(1) + B1()
02(I) = TANH(X2(D))
END DO

- INITIALIZE X3

[oReNeNe]

DO K =1,0UT
X3(K) = 0.
DO J = 1,HID
X3(K) = X3(K) + W2(J,K)*02(T)
ENDDO

X3(K) = X3(K) + B2(K)

--- CALCULATE O3

e 6

03(K) = TANH(X3(K))
Y(X) = AK) * 03(K) + B(K)
ENDDO
C
RETURN
C
END
C
CH R R R A
C
C----- Table of results for different input values

C
Cl!I!I*****************illi*I**i**************F********************************
C - OMBNN3 inputs ----------------- --OMBNN3 outputs ----

C T19V TI9H T22V T37V T37H w Vv L. SS§ST

C m/s mm mm degC

C e

C 192.19 115.45 215.52 209.78 136.25 .37 19.68 .001 23.23
C 198.44 125.17 226.33 212.71 143.99 1.96 28.41 .001 26.78
C 215.19 154.71 251.70 22591 167.45 2.57 51.09 .005 29.69
C 181.66 105.93 197.58 206.14 138.10 3.02 8.57 .028 5.70
C 196.86 126.62 223.89 212.94 146.94 3.41 25.77 .003 23.56
C 221.62 16747 260.36 232.57 182.18 3.73 57.20 .052 29.74
C 182.27 101.32 192.79 201.37 127.06 3.99 8.78 .000 18.30
C 203.23 133.41 231.54 215.77 151.80 4.21 31.83 .002 28.66
C 198.10 130.59 227.79 213.42 149.43 4.43 29.40 .002 22.39
C 204.93 145.16 241.92 223.42 172.41 4.58 38.48 .059 17.62
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C 199.32 132,54 228.22 214.77 151.75 4.75 28.94 .005 23.27
C 218.18 162.99 258.01 228.43 176.90 4.93 56.00 .011 28.87
C 199.57 131.29 228.70 213.81 150.77 5.07 30.08 .002 25.37
C 209.37 146.85 243.83 220.60 162.03 5.18 42.78 .002 28.54
C 213.24 155.29 251.08 224.24 169.45 5.34 50.34 .004 27.85
200.10 134.79 230.94 21491 153.29 5.44 31.66 .003 22.67
198.52 136.20 231.10 217.07 160.14 5.54 30.82 .032 12.46
189.10 118.23 209.89 210.55 148.15 5.68 14.83 .052 13.15
214.12 156.41 25021 225.56 171.91 -5.78 49.13 .017 28.49
199.14 140.16 227.20 223.84 174.62 590 23.95 .160 11.38
212.15 154.86 250.68 224.15 171.21 6.01 49.43 .008 25.97
180.47 105.98 190.84 205.38 139.67 6.13 5.92 .039 4.11

220.90 166.63 260.82 228.47 177.87 6.26 58.15 .004 30.01
215.85 158.74 255.15 22441 171.30 6.39 54.51 .001 29.18
191.51 121.17 214.43 207.94 142.40 6.49 20.28 .001 21.35
181.43 108.51 195.97 203.89 137.26 6.58 8.47 .010 6.56

226.77 177.02 264.94 235.22 189.37 6.71 59.41 .069 30.41
220.79 167.62 260.26 229.29 180.21 6.80 57.62 .012 29.71
187.15 118.38 208.22 206.81 141.54 6.89 15.06 .003 10.74
213.86 157.83 248.56 230.26 184.39 7.00 45.15 .126 25.62
199.33 13271 227.51 213.59 152.85 7.13 29.09 .004 24.91
193.54 126.33 221.72 209.01 146.24 7.24 26.51 .000 19.23
207.45 153.14 244.89 22530 178.54 7.36 41.97 .060 15.88
198.60 132.70 226.66 213.09 152.37 7.50 28.65 .004 23.85
219.45 167.32 257.96 228.97 180.44 7.63 56.10 .019 29.06
180.65 103.87 191.03 200.99 132.24 7.75 7.68 .002 12.28

204.99 142.84 236.36 218.38 161.83 7.87 34.80 .012 25.99
186.18 118.79 210.99 207.30 144.66 8.00 17.58 .006 17.58
200.16 135.66 231.40 213.90 155.70 8.13 32.71 .003 23.45
196.67 133.51 226.52 213.34 15542 8.27 28.54 .010 15.63
209.47 150.94 241.13 227.64 181.72 8.42 36.29 .134 23.91
210.56 151.34 246.22 220.63 166.96 8.57 45.57 .002 28.14
203.59 141.46 234.78 215.93 158.25 8.75 34.93 .002 25.90
200.23 136.19 227.98 214.79 156.62 8.92 28.65 .013 24.07
203.98 141.14 235.13 215.91 158.97 9.11 35.09 .003 26.76
206.30 155.16 235.82 235.40 203.38 9.38 27.34 321 7.83

190.30 124.59 212.88 210.83 153.60 9.62 16.97 .055 11.05
185.57 115.67 201.98 206.22 144.51 9.90 11.02 .021 10.65
190.79 125.83 216.95 208.68 150.55 10.17 21.98 .008 11.76
188.04 124.76 207.30 212.88 160.38 10.49 11.56 .135 5.94
200.43 139.99 226.56 222.24 17621 10.85 22.76 .145 17.37
190.71 125.15 214.90 208.40 151.07 11.27 20.16 .013 14.41
212.07 159.10 246.02 225.34 179.48 11.77 43.65 .053 24.74
214.19 161.07 246.24 226.43 180.56 12.47 43.89 .069 27.09
203.49 142.80 233.04 215.09 162.82 13.30 32.84 .008 26.37
185.75 118.12 199.78 204.60 145.51 14.48 10.05 .013 11.54
197.40 136.88 212.20 221.32 176.01 16.71 10.92 .166 11.92
174.92 237.75 229.32 199.47 22.84 32.77 .121 17.31
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