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SUMMARY 
Effects of observation errors in linear regression and bin-averaged (BA) validation techniques are investi- 

gated using the example of marine wind speeds. It is shown that a conventional linear regression systematically 
underestimates the slope of the regression line, and systematically overestimates the random model error. A BA 
analysis systematically underestimates extreme wind speeds, incorporates spurious nonlinearity, and overestimates 
random model errors. Correction techniques are suggested for studies in which the observation error can be esti- 
mated. Using synthetic data the potential of the correction techniques is illustrated, and it is shown that the above 
errors are generally not negligible for wind speed validation studies. Practical examples consider the random errors 
of anemometers and wind speed estimates from satellites. These examples highlight the importance of the error 
corrections, and illustrate the difficulty of estimating observation errors. Finally, it is argued that the well-known 
symmetric slope regression should not be used for the validation of forecast systems. Although the present study 
deals with marine wind speeds, its results are expected to be valid for a wide range of validation studies. 
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1. INTRODUCTION 

In atmospheric and oceanic sciences linear regression analyses are used extensively 
to validate models and retrieval algorithms for remotely sensed data. It is well known that 
a conventional linear regression analysis is valid only if the observation error is negligible? 
(e.g. Draper and Smith (1981), section 2.14), but even in textbooks effects of observation 
errors are rarely discussed in detail. Whereas some validation studies attempt to account 
for observation errors by using more advanced linear regression techniques (see later), 
many validation studies simply ignore observation errors. 

By definition, linear regression assumes quasi-linear model behaviour. Nonlinear 
model behaviour is often investigated using bin-averaged (BA) analyses, where model 
statistics are determined for several narrow ranges of observations. As will be shown, BA 
analyses are also sensitive to observation errors. 

The present study addresses effects of observation errors in the above analysis tech- 
niques, and suggests error correction methods for studies where the observation error can 
be estimated independently. For convenience of discussion the validation of marine wind 
speeds with buoy observations is considered. The results are nevertheless expected to be 
valid for a wide range of validation studies in a wide range of disciplines. The analysis 
methods and effects of observation errors are discussed in section 2. Correction methods 
are described in section 3 and are tested with synthetic data in section 4. In section 5 two 
practical examples are presented. In the first, random anemometer errors are estimated. In 
the second, biases for satellite wind speeds are estimated. These applications illustrate the 
impact of the suggested error corrections, and difficulties in estimating observation errors. 
The advantages and limitations of the error-corrected analysis methods are discussed in 
section 6 and the conclusions are given in section 7. 

* Corresponding address: Ocean Modeling Branch, Environmental Modeling Center, N O W C E P ,  5200 Auth 
Road, Room 209, Camp Springs, MD 20746, USA. 
t With the exception of ‘controlled’ observations (Berkson 1950), which usually cannot be obtained in oceanography 
or meteorology (e.g. Ricker 1973). 
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2. ANALYSIS METHODS 

Systematic errors in statistical analysis techniques are most easily investigated using 
continuous probability density functions (pdfs), and integral quantities of pdfs as dis- 
cussed in subsection 2(a). Linear regression analyses and their errors are discussed in 
subsection 2(b), and BA analyses are discussed in subsection 2(c). 

(a)  Data description 
The present study deals with errors in the estimation of errors. To minimize the inher- 

ent confusion a systematic notation is adopted. Upper-case symbols denote true (error-free) 
values, lower-case symbols denote estimates (including effects of errors), and a prime iden- 
tifies an error quantity. The suffices ‘m’ and ‘0’ denote model and observation, respectively. 
For instance, defining (T as a standard deviation, C is the true standard deviation of the 
winds, C,!,, is the true standard deviation of the model error and (T; is its estimate. 

Consider a true wind speed U with a given pdf P ( U ) .  Modelled and observed wind 
speeds generally contain systematic and random errors. For observations to be useful in a 
validation study their systematic errors should be negligible and/or removed from the data 
before the validation takes place (U, 5 U ) .  Systematic model errors are to be retrieved, 
and thus are part of the true model wind speed U, # U .  

Model and observation errors are expected to be uncorrelated. Describing the obser- 
vation error for a given wind speed U with the error pdf pA(u,l U ) ,  and using a similar 
description for the model error, the joint pdf p ( u , ,  u,) of observed and modelled wind 
speeds becomes 

00 

p(uo,  urn> = ~ ( u )  p ~ ( u 0 1  u)  pk(urnl u> d~ * (1) 

This distribution is generally described with integral quantities such as the mean observed 
and modelled speeds U, and U,, the variances so, and s,, and the covariance so,, 

These parameters incorporate effects of random errors and, for random errors with sym- 
metric distributions, they can be expressed in terms of their expected error-free counterparts 
as 

where (...) represents the expected value 
00 

(X) = 1 X(U) P ( U )  dU . 
n 
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Figure 1. Normalized error probability density functions C' p'(u I U )  of Eq. (15) as a function of the normalized 
wind speed u/C'  for true wind speeds U / C '  = 0, 0.5, 1, 1.5, 2, 3 and 4 from left to right. The left-most curve 

represents the Rayleigh distribution (11) with u,  = C'. See text for further explanation. 

The mean wind speeds i?, and Em and the covariance so, thus are not influenced by 
random errors, but the variances so, and s,, are increased by the corresponding mean 
error variances (SL) and (S,/,,,). Note that the equalities (5)  to (9) are valid here because 
the averages on the left side are calculated from the continuous pdfs. For practical studies 
these averages are calculated from the data and hence will include sampling errors, making 
the above equalities approximations. 

To quantify errors in the following sections, pdfs have to be assumed. Somewhat arbi- 
trarily, skewed wind speed distributions will be described here with a Rayleigh distribution 
(see Fig. 1) 

where u, is the single parameter defining the distribution. The corresponding mean wind 
speed ( U )  and standard deviation C are 

All further calculations have been preformed with u, = 7 m s-l, resulting in ( U )  = 
8.8 m s-l and X = 4.6 m s-'. 

Random errors are commonly described with a normal distribution 

This distribution, however, includes negative wind speeds, which is obviously not realistic. 
Negative wind speeds can be avoided by considering the vector equivalent of (13) 

- 1 1  u - u I1 1 
c ' 2 2 n  exp ( 2 C t 2  2 ,  . p'(ul U )  = - 
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Figure 2. Normalized pseudo bias U‘ /C ‘ ,  standard deviation C“/C‘ and r.m.s. error c / X ’  as functions of the 
wind speed U /  C‘ for the cut-off normal distribution (15). See text for explanation of the symbols. 

Integration for constant 11 U 11 gives the corresponding scalar pdf 

where l o ( .  . .) is a modified Bessel function (see, for example, Abramowitz and Stegun 
(1973), section 9.6.16). This pdf is presented in Fig. 1. For large U / C ’ ,  (15) corresponds 
to the normal distribution (13). For U = 0, (15) corresponds to the Rayleigh distribution 

Distribution (15) includes a pseudo bias U’ (solid line in Fig. 2) .  This pseudo bias oc- 
curs for any assumed error distribution (e.g. Hinton and Wylie 1985), and makes it virtually 
impossible to separate mean and random errors for small wind speeds U /  C’. Furthermore, 
the actual standard deviation C” of (15) is considerably smaller than C’ for wind speeds 
U /  C’ < 3 (dashed line in Fig. 2).  The root-mean-square error c = Jm differs by 
less than 10% from C’ for U /  C’ > 0.5. Because the skewed errors are generally relevant 
for a relatively small part of the data only, and because the corresponding pseudo biases 
can be removed, symmetric errors are assumed in the following. 

(11). 

(b) Linear regression 
In a linear regression analysis the functional relation U, = @(U,) is approximated 

by a straight line 

U, = a  + b u o ,  (16) 
where b is the regression coefficient and a is the intercept. Regression techniques differ 
in the way in which this relation is fitted to the data. The ‘conventional’ regression is 
the regression of urn on u,,, where the optimization considers differences between the 
regression line and the modelled wind speeds only. Using the suffix ‘0’ for this regression 
line, the standard result becomes 

- So, a, = U, - bozo , b, = - 
so0 
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Its error-free counterpart is 

901 

The latter regression line represents a better estimate of the functional relation U, = +(U,) 
as it is not influenced by random errors. The two regression lines have the point (E,, Urn) in 
common, but have different slopes (regression coefficients). The effect of random errors 
can be estimated by normalizing b, with B, using (7) and (9) 

The regression coefficient b, thus systematically underestimates its error-free value B, 
if the expected random observation error (SA,) is not negligible (see also, for example, 
Draper and Smith (1981), section 2.14). 

An alternative regression of u, on u, (denoted here as the inverse regression) is 
determined by considering the differences between the regression line and the observations 
only. Using the suffix ‘m’, the standard results and the normalized regression coefficient 
become, using (8) and (9), 

- Smm 

So, 
a , = ~ ,  -b,ii, , b, = - , 

The regression coefficient b, thus is systematically overestimated due to the occurrence 
of a random model error (S,/,,,). Note that it is assumed that B, x B,, which is valid for 
quasi-linear relations. 

More advanced linear regression techniques generally require that the ratio of random 
model and observation errors is known (e.g. Lindley 1947; Jolliffe 1990). The regressions 
(17) and (20) represent the limiting cases for the slope in the case of dominant random 
model or observation errors, respectively. As a representative of more advanced techniques, 
the geometric mean regression b,, is considered 

which implies that the normalized random model and observation errors are identical, and 
which is also known as the ‘symmetric slope’. Its normalized regression coefficient follows 
from Eq. (18) as 

The geometric mean regression thus corresponds to the true functional regression B, for 
(SA,>/(Sk,) = Smm/Soo. If the random observation error is larger (smaller) b, underesti- 

Apart from the functional relation a, random model errors (S;,) x s’,, are assessed 
mates (overestimates) B,. - 

in validation studies. In the conventional regression (17) the model error is estimated as 
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so0 

Generally, the model error is estimated from any regression coefficient b as 
- 
s’m, = s,, - b so, . (25) 

Thus the model error is overestimated (underestimated) if b underestimates (overestimates) 
B,. For the limiting cases the entire observation error is erroneously attributed to the model 
(bo), or the model error is by definition negligible (b,). In the geometric mean regression 
the error is equally distributed over the model and the observations. 

(c )  Bin-average (BA) analysis 
Determining statistics per class of observed speeds u, corresponds to calculating 

nth-order moments mn (u,) from a continuous pdf 

for given data intervals or ‘bins’ 6uo. For the moment, effects of a finite bin size will be 
ignored. The moments mo through m2 yield the marginal pdf of the observed speed po(uo) ,  
the mean modelled speed Zm(u,), and the error variance s6,IU, 

For convenience, the explicit dependence on u, will henceforth be dropped from the 
notation. Substitution of (1) in (26) and rearranging the order of integration yields 

00 
where 

Mn(u) = uk P ( U >  P d ( u m l  u)  durn 9 (31) 

represents the true moments of the model wind speed. The moments A40 through M2 yield 
the distribution P ,  mean model speed U, and model error S;, as in Eqs. (27) to (29). 
Equation (30) shows that the observed moments are a convolution of the observation error 
pb(u,( U )  and the true moments. 

To assess the magnitude of errors introduced by a BA analysis, Eq. (30) has been 
evaluated for a ‘perfect’ model (U, = U, = U ) .  Following common practice, errors are 
described as a standard deviation CT; = etc., rather than as a variance. Arbitrarily, 
the model errors are set to be CL = 1.5 m s-l (z 0.17(U)), and the observation error is 
assumed to be a fraction of the wind speed, XA = aU.  The resulting normalized errors in 
the wind speed distribution ( p ,  - P ) / P ,  the functional behaviour (Ti, - U,) / (U) ,  and 
the random model error (0; - X,!,,)/ Xk are presented as a function of the normalized wind 
speed U , / ( U )  in Fig. 3. 

The BA analysis reproduces the expected results if no observation errors are present 
(a = 0). Note that the latter results in panels (b) and (c) incorporate effects of the skewed 
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error distribution for small wind speeds (cf. Fig. 2). Systematic errors of the BA analysis 
are identified as the difference between results for a! # 0 and a! = 0. Figure 3(a) shows 
that the BA analysis predicts the distribution P accurately, except for extreme wind speeds 
( U / ( U )  > 2.5), where P is severely overestimated. Figure 3(b) shows similar results for 
the estimated model wind speed U,, which is systematically underestimated for high wind 
speeds ( U o / ( U )  > 2). Figure 3(c) shows the BA analysis systematically overestimates the 
model error EL. This could be expected as the observation error is erroneously attributed 
to the model. Unlike in panels (a) and (b), this analysis error also depends on the random 
model error, as the second moment (29) includes the model error. The results of Fig. 3 are 
obviously sensitive to the choice of the observation error. In particular, if the observation 
error is finite for U -+ 0, errors in po, ti, and 0; will become larger for small wind speeds. 
However, they generally remain much smaller than the present errors for large U / ( U )  
(figures not presented here). 

As mentioned above, moments (26) are estimated from practical data for a finite bin 
width 6uo 

Errors introduced by this averaging are illustrated in Fig. 4 for several bin sizes 6uo = 
( U ) .  Errors are identified as the deviation of results for finite bin sizes ( p  7 0, symbols) 

from the 'exact' results (B = 0, solid lines). 
If the bin size becomes too large to describe the data distribution adequately, the 

averaging over the bin is bound to result in noticeable errors. This explains the occurrence 
of errors in all panels of Fig. 4 for the largest values of j3. Note that many meteorological 
studies use such large bin sizes by considering a very small number of bins (for instance, 
low, medium and high wind speeds only). If the bin size is sufficiently small to resolve the 
distribution of the data, pn,  Em and sLm in Eqs. (27) to (29) can be linearized in the integral 
(32). It is then easily shown that po  and Em are not influenced by the finite bin size, but that 
approximately ASu; is added to the estimate of the model variance sim. This will only be 
relevant if the bin size 6uo becomes larger than the local model error EL. 

3. ERROR CORRECTION 

The previous section shows that conventional linear regression and BA analyses 
incorporate systematic errors if the observation error is not negligible. If the observation 
error 0; = C i  is known or can be estimated, it is possible to estimate and correct such 
errors. 

Using Eqs. (18), (9) and (7) the exact regression coefficient Bo can be estimated as 

which can be interpreted as an error-corrected version of the conventional regression (17). 
The corresponding corrected estimate of the model error Fmm is obtained from Eq. (25). 
Approximating the true wind speed U and distribution P with its estimates uo and po ,  the 
mean observation error 7m in (33) can be estimated as 

where n is the number of observations and uo,L represents individual observations. 
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Figure 3. Normalized results of a bin-averaged analysis as a function of the normalized wind speed U J ( U )  for 
several observation errors CL = (YU.  (a) Wind speed distributions po, (b) mean model wind speeds Urn, and (c) 
random model error uk. A 'perfect' model (U = U, = Urn) with a random error Ck = 1.5 m sc1  = 0.17(U). See 

text for further explanation. 
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Figure 4. Like Fig. 3 but for a bin size 6u, = /4 (U). No observation error (a = 0). Dotted line in (c): A S u ;  
added to true model error variance. 



906 H. L. TOLMAN 

The results of a BA analysis (denoted as t im,ba  = ha and o&a, respectively) incorpo- 
rate analysis errors due to the observation error (Fig. 3) and the finite bin size (Fig. 4). For 
the analysis to be useful, the bin size 6u, has to be sufficiently small to describe the data 
distribution accurately. The bin size then does not effect ha, but systematically increases 
a;,ba. A corrected estimate o;,hc can be obtained as 

1 
ok,hc = /('t!n,ba)2 - ,": (35) 

Estimating effects of observation errors requires evaluation of the moments (26) or 
(30) of the joint pdf. Again approximating U and P with u, and p, ,  estimates GO, GI  and 
G2 for the moments mo, m l  and m2 can be calculated as 

where $ and 5; are estimates of the mean model behaviour and the random model er- 
ror, respectively (evaluated at u,,;). The corresponding errors A$ and Az,/,, then can be 
estimated as 

- - ml - 
A$=,-$. 

m0 
(39) 

Obvious first guesses for $ and G& would be to assume that the mean model behaviour 
is perfect, and that the random model error can be estimated using Eq. (35) 

where ok,hc needs to be described with a polynomial (or other) fit to extend it over the 
entire data range. Because both first guesses (41) and (42) potentially include significant 
errors, it is prudent to repeat the estimation of the analysis errors with estimates of the 
model behavior that include the error estimates (41) and (42). This estimate of the analysis 
error will be denoted as the second guess. Although additional iterations are easily made, 
they are expected generally to have a limited impact on the final results. 

An additional error occurs in this analysis because the observed distribution p,(u,)  
will be broader than the true distribution P ( U )  because of its convolution with the ob- 
servation error. This effectively stretches the u, axis, and can be corrected by statistically 
adjusting the observed wind speeds. The necessary shift of the observed wind speed is the 
difference between the true and the expected observed wind speeds, which approximately 
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Figure 5. Monte Carlo realization of measured and modelled wind speeds uo and u,, respectively. + (simulated 
data); solid line (true model behaviour Urn = @ ( U ) ) ;  dashed line (conventional regression (Eq. (17))); dotted 
line (inverse regression (Eq. (20))); chain line (Error-corrected regression (Eqs. (33) and (34))); o (bin-averaged 
analysis for a bin width of 1 m s-' and requiring a minimum of 10 observations per bin); and (corresponding 

error-corrected bin-averaged analysis). 

equals the above first-guess correction A$. This error correction is thus most elegantly 
included in the second-guess correction, and automatically accounts for pseudo biases in 
the observations for low wind speeds as shown in Fig. 2. 

Henceforth, the error corrected BA method will be denoted as the ECBA method. 
Second-guess corrections and third-order polynomial descriptions of ha and 0; hc are 
used unless specified differently. 

4. MONTE CARLO EXPERIMENTS 

To illustrate the analysis errors and the potential of the correction techniques, Monte 
Carlo experiments have been performed. The observations are assumed to be free of bias 
(Uo = U ) ,  and the random observation error = max(1, 0.1U) is assumed to be known. 
This error corresponds to the required system accuracy of wind observations from buoys 
(Gilhausen 1987) (actual observation errors are discussed in the following section). To 
simulate nonlinear model behaviour the model wind speed is defined as Urn = 1.117 - 
0.01U2. Arbitrarily, the random model error is defined as Ck = max(l.5, 0.2U), with 
a smooth transition between the two branches. The sample size is set to 2000, which 
corresponds to three months of hourly observations at a single location. A complete Monte 
Carlo experiment consists of many realizations of this model. However, as it is used here 
only as an illustration, the discussion will focus on a single realization of this model 
(Fig. 5). Deviations from other realizations will be mentioned where necessary. To avoid 
unnecessary complications, the pseudo bias for low model wind speeds (solid line in Figs. 2 
and 3(b)) is included in Urn (as is generally the case in practical studies). 
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TABLE 1. REGRESSION COEFFICIENTS (b)  CALCULATED FROM 

THE EQUATIONS INDICATED, AND MODEL ERRORS (gm , (ck) 
EQ. (25)) FOR THE MONTE CARLO EXPERIMENT OF FIG. 5 

- 
Equation dm , (EL} 

b number (ms-') 

Conventional 0.806 (17) 2.32 
Corrected conventional 0.860 (33) 2.11 
Exact 0.891 (18) 2.12 

Inverse 1.119 (20) 0 
Geometric mean 0.950 (22) 1.70 

Results of several regression analyses are shown in Fig. 5 and Table 1. The conven- 
tional (b,) and inverse regression (b,) incorporate the largest errors, and establish upper 
and lower boundaries of analysis errors. The geometric mean regression (bgm, not in figure) 
also includes significant errors as the model error is much larger than the observation error. 
The best results are obtained with the error-corrected conventional regression (bo.c), which 
underestimates the regression coefficient by 3% and reproduces C,',, with a negligible er- 
ror. The error in b,,c is anomalously large compared with other Monte Carlo realizations, 
which generally show analysis errors of less than 1 %. The error-corrected conventional 
regression thus is virtually free of errors for most Monte Carlo realizations. It does not, 
however, describe the true nonlinear model behaviour accurately, in particular for extreme 
wind speeds (compare chain and solid lines in Fig. 5.) 

A BA analysis requires the choice of a bin width and a required minimum number of 
data per bin. In the present experiment a small bin width (1 m s-l) and a small minimum 
number of observations per bin (10 for U, = 4 and 20 for 0;) are chosen to illustrate both 
effects of sampling errors and the potential of the (corrected) BA method. For wind speeds 
below 15 m s-l the results show little effects of sampling variability due to the relatively 
large number of data per bin (30 to 200). For wind speeds over 15 m s-l the number of 
data per bin drops quickly, and the corresponding results display an increasing sampling 
error. 

Mean model errors are isolated as residuals urn - U in Fig. 6(a). The BA analysis 
overestimates the true model wind speed for low winds, and underestimates it for high 
wind speeds. For high wind speeds this is somewhat obscured by the sampling errors, but 
it becomes evident if a third-order polynomial is fitted to the results. The ECBA results 
display much smaller analysis errors, and the deviation from the exact solution appears 
to be dominated by sampling errors. Estimated analysis errors are presented in Fig. 6(b). 
Both the first and second guess show some oscillations but give a fair representation of the 
expected error (calculated directly from the known joint distribution). The oscillations for 
u, > 20 m s-l appear to be related to the sparsity of the data in this wind regime, and were 
found to be significantly larger for other Monte Carlo realizations. As the analysis does 
not render results in this regime, these oscillations are not relevant for the error correction. 
Differences between the first and second guess are small, because effects of the improved 
estimate of the mean model behaviour and the correction of the observations mostly cancel. 
This is not generally the case. 

Estimated random model errors 0; are presented in Fig. 7(a). The results of the 
BA analysis overestimate the model error C,',, systematically. The ECBA analysis again 
shows a significant improvement. Results for the highest wind speeds tend to deviate 
more from the true model behaviour than 4, because the random error is more sensitive to 
sampling than the mean behaviour. In other Monte Carlo realizations, model errors CA for 
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Figure 6. (a) Residual wind speeds urn - U as a function of the observed wind speed uo corresponding to Fig. 5. 
Solid line, o and as in Fig. 5; dotted and dashed lines (third-order polynomial fit to o and o, respectively). (b) 
Expected analysis errors A+. Solid line (theoretical); dotted line (first guess from data); and dashed line (second 

guess from data). 

15 < u, < 20 m s-l where equally likely overestimated. The differences between first- and 
second-guess corrections are somewhat larger than for the mean wind speeds in Fig. 6(b). 
Large oscillations of the estimated analysis error again are outside the range in which the 
analysis renders results. Note that the correction for the bin width (35) is irrelevant here 
due to the large model error. 

5.  APPLICATIONS 

As a further illustration, results of two case-studies are presented. In the first study 
random anemometer errors are assessed. It is shown that previous studies seriously overes- 
timate the anemometer error owing to the finite bin width Au, and the implicit assumption 
of error-free observations. In the second study, systematic and random errors of ERS- 
1" scatterometer and SSMI/It wind speeds are estimated from collocations with buoy 
observations. The latter example illustrates difficulties in estimating observation errors. 

* ESA (European Space Agency) Remote-sensing Satellite. 
-f Special Sensor Microwave Imager. 
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Figure 7. Like Fig. 6 but for the model error u; and analysis error AuA. 

(a) Anemometer errors 
Anemometer instrument errors are usually estimated from a side-by-side compari- 

son of identical instruments (Gilhausen 1987; Monaldo 1988). For the present study such 
anemometer data were provided by the National Data Buoy Center (NDBC) for five buoys 
for the period from December 1994 to February 1995 (Table 2). Because identical in- 
struments are intercompared, the ‘instrument’ and ‘model’ error are identical, and the 
geometric mean regression should be used. Furthermore, biases /? should be attributed 
to both anemometers (/? = i (U2  - GI), the suffices identify the two anemometers). The 
resulting biases, regression coefficients and random errors are presented in Table 2. For 
all buoys the biases are of the same order of magnitude as the random error or even larger. 
This implies that (for a single anemometer) calibration errors are of the same order of 
magnitude as the random error. In most studies results of many anemometers are used. 
Assuming that the calibration errors are uncorrelated, they then become part of the overall 
random instrument error (as in the last line of Table 2). 

In his Fig. 3, Gilhausen (1987) estimates random anemometer errors as a function of 
the wind speed using a BA analysis. Applying a similar analysis to the present data set 
reproduces his results closely (0  in Fig. 8). However, because the anemometers are very 
accurate, this analysis is contaminated by the bin width Suo, in particular for low wind 
speeds (compare + and o in Fig. 8). Furthermore, the BA analysis implicitly assumes that 
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TABLE 2. BIASES B, REGRESSION COEFPTCIENTS b p  
AND MEAN RANDOM ERRORS a ' z  % 2 1  FOR DUPLICATE 

ANEMOMETERS AT FIVE BUOYS 
- 

Number of B 0 ' 2  
Buoy observations (m s-l) bgm (m s-l) 

46035 1068 -0.10 0.944 0.20 
46001 1333 0.20 1.046 0.11 
51001 2147 0.10 1.027 0.09 
42001 2132 -0.08 0.970 0.18 
44008 249 -0.03 0.993 0.04 

All 6929 0.03 0.992 0.24 

0.6 

W S )  

0.4 
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0 0  
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u ( d s )  
15 

Figure 8. Estimates of random anemometer errors (T' as a function of the wind speed u for the anemometer data 
of Table 2. o (BA analysis); + (BA analysis with bin-width correction); (ECBA analysis, iteratively applied until 

0; = 0;); and dotted line (6' = 0.03~) .  

one anemometer is free of errors, and hence assigns all errors to the second anemometer. 
It is more reasonable to assume that both anemometers have identical errors (D; = ni). 
Itteratively applying an ECBA analysis to satisfy this equality reduces the estimate of 
the random anemometer error by another 30% (compare a and + in Fig. 8), close to the 
expected reduction by a factor &%. The resulting instrument error is approximately 3% 
of the wind speed. Such a linear relation might be expected because the error is dominated 
by calibration differences of individual anemometers. 

(b) Wind speeds from satellites 
As a second illustration biases of wind speed retrievals from satellites are estimated. 

Considered are fast delivery ERS-1 scatterometer wind speeds (Offiler 1994) and SSM/I 
F13 wind speeds according to Goodberlet et al. (1990). These wind speed retrievals have 
been collocated with deep-ocean buoy observations for the period from December 1994 
to February 1995 using a collocation radius of 50 km and 30 min. This resulted in 454 and 
1202 collocations, respectively*. 
* These collocations were performed as part of the validation study of a new wind-wave forecast system at the 
National Centers for Environmental Prediction. More details will be presented elsewhere. 
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TABLE 3. ESTIMATES OF BUOY OBSERVATION ERRORS IN PERCENT FOR SATELLITE WIND 
SPEED RETRIEVALS 

Total relative 
Collocation error yo 

Scale 
space time representativeness low best high 

ERS-1 scatterometer 5-6 3 3.5-6.5 7.7 8.8 9.9 
SSM/I F13 8-11 3 5-8 10.5 12.3 14.3 

The total relative error yo is based on a global mean wind speed of 8 m s-l, and represents 
a low, best and high estimate, respectively. yo includes a 3.5% instrument and round-off 
error. 

Observation errors for marine wind speeds have been investigated by, for instance, 
Brown (1983), Pierson (1983), Gilhausen (1987) and Monaldo (1988). Several types of 
observation errors can be distinguished; for instance (i) instrument errors, (ii) round-off 
errors due to data transmission and archiving, and (iii) mismatch errors in collocation and 
in representative scales (known as the representativeness error in data assimilation (Lorenc 
1986)). An honest validation of a model or a retrieval algorithm considers observations 
which are representative for the validated parameter. Representativeness errors therefore 
should be considered as a part of the observation error. 

The instrument error of the buoy observation is estimated in the previous subsection 
as 3% of the wind speed. The buoy data used here were archived with an accuracy of 
0.5 m s-l, which corresponds to an additional random observation error of approximately 
0.15 m s-’. The minimum observation c&,in error of this buoy data is thus 

which corresponds to an error of 3.5% for a global mean wind speed of 8 m s-’. Repre- 
sentativeness errors arise due to collocation and scale mismatch errors in space or time. 
Estimates for such errors can be obtained from Pierson (1983), Gilhausen (1987) and Mon- 
aldo (1988). Estimates of collocation errors can be obtained directly from these papers, 
using calculated average collocation distances of 16 and 25 km for ERS-1 and SSMiI 
data, respectively. Scale representativeness errors are more difficult to estimate. A detailed 
discussion of such estimates will be presented elsewhere. For the present study it suffices 
to say estimates of observation errors almost always incorporate significant uncertainties. 

A tally of error estimates is presented in Table 3. These mean errors are sufficient 
to correct the linear regression. The ECBA analysis, however, requires an estimate of the 
observation error as a function of the wind speed. Scale errors increase (approximately 
linearly) with wind speeds (Pierson 1983; Monaldo 1988). Unfortunately, collocation 
errors have not been assessed as a function of wind speed. It appears natural to assume 
that the overall error increases approximately linearly for higher wind speeds, and is finite 
for small wind speeds. This suggest a shape of the observation error similar to Eq. (43) 

where 0 < a < 1. Furthermore requiring that the average error fraction yo is reproduced 
for the mean wind speed U,, the asymptotic error fraction y becomes 

y = y o J c 2 .  (45) 
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Figure 9. Estimates of biases B of wind speed retrievals from (a) ERS-1 fast delivery scatterometer and (b) 
SSM/I F13 (Goodberlet et al. 1990). Dashed lines (linear regression analysis (i) conventional, (ii) error-corrected 
conventional and (iii) geometric mean (symmetric slope); o (BA analysis); and 0 (ECBA analysis with best estimate 
yo from Table 3 and a = 0.7 in Eq. (44)). Shaded area is the ECBA analysis for yo ranging as in Table 3 and 

0.6 < a < 0.8. 

Somewhat arbitrarily, a = 0.7 is assumed, corresponding to y / y o  = 0.71. To assess uncer- 
tainties in this assumption, a range of 0.6 < a < 0.8 (0.8 > y / y o  > 0.6) will be considered 
in the calculations. 

Bias estimates for satellite retrieved wind speeds are presented in Fig. 9. For both 
satellites significant biases are found. Whereas these results are interesting in their own 
right, the differences between analysis techniques are more interesting in the present con- 
text. Regression line (ii) represents the best linear estimate of the biases. The conventional 
linear regression lines (i) and the geometric mean regression (iii) both deviate significantly 
from this best guess, in particular for the SSM/I wind speed retrievals. The conventional 
regression by definition underestimates the regression coefficient, and therefore overesti- 
mates the dependence of the bias /3 on the wind speed u in both cases. The geometric mean 
regression (iii) underestimates the regression coefficient for both data sets, indicating that 
the random error of both retrieval algorithms is larger than the corresponding observation 
error. In particular for the SSMI/I wind speed retrievals, the geometric mean regression 
behaves poorly. It suggests that the bias is nearly independent of the wind speed, whereas 
the error-corrected regression shows a significant dependency. 
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For the ERS-1 data (Fig. 9(a)), effects of the error correction are relatively small, 
as was the case for the linear regression analyses. For the SSM/I data (Fig. 9(b)), the 
corrections are larger. For the latter data the BA analysis appears to suggest somewhat 
nonlinear bias behaviour for high wind speeds, which is less apparent in the ECBA analysis. 
The shaded areas in Fig. 9 represent the uncertainty in the ECBA analyses introduced by 
the uncertainty in the estimation of the observation errors. Whereas this uncertainty is 
appreciable, it does not influences the effects of the error correction qualitatively, nor does 
it appear to be relevant for the intercomparison of the separate analysis techniques. For the 
present data, the point-to-point variability of the results is larger than the error correction (0  

versus 0 )  and its uncertainty (shaded area). This variability represents the sampling error, 
which is significant for the small data sets considered here. For larger data sets the sampling 
error will become smaller, and in many cases the sampling error will become negligible 
compared with the analysis error (additional examples will be presented elsewhere). 

6. DISCUSSION 

The present study addresses effects of errors in observations on the results of validation 
studies, in particular where linear regression or BA analyses are used. Though it considers 
marine surface wind speeds its results are applicable to a wide range of validation studies 
in many fields of theoretical and applied research. 

Linear regression analyses have been used for decades in validation studies, and many 
text books on the subject can be found. It has long been known that a conventional regression 
analysis (17) is valid only if the error in the observation is negligible. Unfortunately, effects 
of observation errors are rarely discussed in text books or in validation studies. The linear 
estimate of the functional behaviour of a modelled wind speed Urn = @(U,,) is bounded by 
the conventional regression (17), and the ‘inverse’ regression (20). In special cases, where 
the ratio of observation and model errors can be estimated, more advanced regression 
techniques can be used. Often used is the geometric mean or symmetric slope regression, 
which implicitly assumes that model and observation errors are similar. Whereas this 
regression can be used successfully for selected studies (see section 5(a)), this regression 
is also prone to errors if applied indiscriminately (see Table 1 or, for example, Lindley 
(1947)). If the observation error can be estimated, the conventional regression can be 
corrected as in Eq. (33) to obtain a best possible linear estimate of the functional relation. 

A more advanced way to estimate the functional behaviour of a model is the BA 
analysis, which is intended to identify the functional behaviour and the random error of a 
model as a function of the wind speed. However, a BA analysis also incorporates systematic 
errors due to the convolution of the data with the observation error. Three major effects of 
observation errors are: 

(i) The BA analysis systematically underestimates extreme wind speeds; 
(ii) It systematically overestimates random model errors as observation errors are 
attributed to the model. If the model is accurate and the bin width large, the bin 
width also artificially increases the estimate of the random model error; and 
(iii) The analysis error is nonlinear, which can erroneously suggest or mask nonlinear 
model behaviour. 
If the observation error can be estimated, the BA analysis can be corrected, as is 
demonstrated in sections 4 and 5. 

Corrections of the regression and BA analyses stand or fall with a good estimate 
of the observation error. The observation error includes both the instrument error and a 
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representativeness error, as is discussed in section 5(b). This representativeness error is 
often much larger than the instrument error. For instance, Table 3 shows representativeness 
errors of two to four times the instrument error, and similar ratios can be found for other 
meteorological parameters (e.g. Kitchen 1989; Ingleby 1995). Ignoring this error can easily 
lead to the erroneous conclusion that a conventional analysis can be used because the 
instrument error (instead of the observation error) is much smaller than the model error. 
For practical studies the observation error will never be known exactly. It is therefore 
prudent to address the sensitivity of results to the assumed model error (as in Fig. 9). 
Furthermore, additional studies aimed at refining our knowledge of observation errors 
appear appropriate, both in the context of the present validation techniques and in the 
context of data assimilation. 

If the observation error can only be estimated crudely, the question arises if the present 
techniques should be used. Establishing the impact of the uncertainty of the observation 
error as discussed above then becomes crucial. For the ECBA analysis, which is sensitive to 
both the overall error and its distribution, this might well mean that no definite conclusions 
can be drawn. This in itself would be an important finding, as it implies that conventional 
BA techniques also cannot be trusted. The error-corrected regression analysis is more 
‘robust’, as it depends on a bulk error estimate only, and therefore generally will be more 
conclusive. 

The present error-corrected regression technique is particularly useful if forecast 
systems are validated. In such systems, model errors typically grow with forecast time, 
whereas observation errors remain constant. The normalized regression coefficient bgm/ B, 
of a geometric mean regression then systematically increases during the forecast (Eq. (23)). 
Such a systematically changing analysis error should obviously be avoided. The analysis 
errors of a conventional regression analysis are systematic and constant during the forecast 
(Eq. (19)). Such analysis errors are less detrimental in the validation of forecast systems. 
The present error-correction technique cannot remove the latter error completely if 
the observation error can only be estimated crudely. If the estimated error is defined as 
(1 + e ) ( S & ) ,  where c identifies the relative error in the estimation of the random observa- 
tion error, the normalized error-corrected regression coefficient bo,c becomes 

This implies a systematic error that does not change during the forecast, and is smaller 
than the error of the conventional regression as long as E < 1. Thus, the error-corrected 
regression is preferable for the validation of forecast systems as long as the observation 
error variance is not overestimated by more than a factor of 2. 

An interesting property of the ECBA analysis is that it can retrieve random model 
errors a; which are smaller than the observation error a:, This suggests that accurate 
validation results can be obtained from poor quality observations. However, two potential 
problems occur in this scenario. First, large observation errors imply a large correction of 
the ECBA analysis relative to the BA analysis, making effects of the uncertainty in the 
observation error potentially sizeable. Second, the error corrections suggested in section 3 
are based on a convolution of the observed distribution with an error pdf. This implies 
that the retrieved random model error corresponding to the estimated moments &, So, 
etc. is always positive, even if the observation error is grossly overestimated and provides 
more variability than supported by the data. This has two consequences: (i) if the model 
error is significantly smaller than the observation error, the ECBA method is expected to 
overestimate the random model error, and (ii) the validity of the estimated observation error 
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should be tested independently, to assure that the data support this observation error. The 
mean model error a’, of the corrected linear regression (Eqs. (33) and (25)) provides such 
a test. This error becomes 0 if all variability in the data is be explained by the observation 
error, and becomes undefined if the data cannot support the assumed observation error. 

7. CONCLUSIONS 

Conventional linear regression and bin-averaged validation techniques introduce sys- 
tematic analysis errors if observation errors are not negligible. A conventional regres- 
sion analysis then underestimates the regression coefficient and overestimates the random 
model error. More advanced regression techniques like the geometric mean (or symmet- 
ric slope) regression then also incorporate significant errors for many applications. A BA 
analysis then underestimates extreme (high) wind speeds, incorporates spurious nonlin- 
earity, and overestimates random model errors. Example calculations with synthetic and 
real data suggest that such errors are generally not negligible in detailed validation studies 
of marine wind speeds. If the observation error as a function of the wind speed can be esti- 
mated, it is possible to remove the systematic errors from the above validation techniques. 
Present knowledge of observation error is sufficient to apply the present error-correction 
techniques in many cases, but our understanding of observation error could be improved 
significantly. Finally, it is argued that the geometric mean (symmetric slope) regression 
should not be used to validate forecast systems, because its analysis errors are expected to 
be functions of the forecast time. 

Although this paper explicitly deals with wind speeds, its results are expected to be 
valid for a wide range of validation studies in many fields of research. 
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