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ABSTRACT

Both sea ice forecast models and methods to measure their skill are needed for operational sea ice forecasting.
Two simple sea ice models are described and tested here. Four different measures of skill are also tested. The
forecasts from the newer sea ice model are found to perform better, regardless of the skill measure used. All
four skill measures show essentially the same behavior, in terms of having no dependence on season and being
roughly constant. All four measures also agree that there is no decline in skill with time through the 6-day
period of forecast.

1. Introduction

Since at least the time of Nansen (1902), it has been
common to think of sea ice drifting at some fraction
of the wind speed, and at some angle to the wind.
This is the drift rule. Nansen’s values, based on ob-
servation of ice floe drift during the cross-polar drift
of the Maud (1893–96) were 1.8% and 288 to the right
of the wind. This included about 949 floe-days of
observations (7 November 1893–27 June 1896) from
a single point.

1In the time since then, two things have changed for
drift models. It has become the convention to use geo-
strophic winds rather than surface winds in deriving the
drift law. And the number of observations has increased
dramatically. Thorndike and Colony (1982) analyzed
7937 buoy-days of observations. Their simple drift law
(0.8%, 88 to the right of the geostrophic wind) was able
to explain 70% of the variance in drift velocity in the
central Arctic basin. In the Antarctic, Martinson and
Wamser (1990) derived a drift law of 3%, 23.48 to the
left of the geostrophic wind, from three points observed
for 4–5 days each.

The United States has been running operationally
a drift law forecast model since about 1968 (Skiles
1968), first at the Naval Oceanographic Office, then
at the National Centers for Environmental Prediction
formerly the National Meteorological Center). This

* OMB Contribution Number 114.

Corresponding author address: Dr. Robert W. Grumbine, NCEP,
5200 Auth Road, Camp Springs, MD 20746.
E-mail: seaice@polar.wwb.noaa.gov

drift law was based on about 1080 buoy-days of ob-
servations. The forecast is used by the Anchorage
Weather Service Forecast Office and the National Ice
Center (NIC) in making their forecasts of ice edge
position. Their forecasts are then used by shipping
companies, fishermen, and oil companies. We present
evidence that suggests that the forecast has been im-
proved by using more recent drift laws, and by adding
the Southern Hemisphere (not forecast in the formerly
operational model, but forecast by the NIC).

The sea ice literature includes relatively little in the
way of quantitative model verification. For the most
part, this has been because visual inspection of model
output has been sufficiently unambiguous to determine
which model or parameterization was better. Skill mea-
surements that have been used have included ice drift
distance correlation between forecast and observation
(Ip 1991; Flato and Hibler 1992) and index of agreement
between forecast and observed ice drift (Preller and Po-
sey 1989). Neither of these is a vector measure, so that
forecasting the right distance in the wrong direction is
still credited as a good forecast. In addition to these two,
the vector correlation definition from Crosby et al.
(1993) and error radius (Flato and Hibler 1992) are test-
ed. These four measures of skill will be examined by
themselves, as well as used to determine which model
is better.

Also to be examined is the dependence of forecast
skill on length of forecast. Contrary to the more common
differential models (cf. weather, waves, sea surface tem-
perature) where instantaneous values of variables gov-
erned by (partial) differential equations are desired, ice
drift is an integral model. The forecast quantity is the
total drift (distance and direction) integrated over the
whole forecast period. Over the first 6 days of the fore-
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cast period (the maximum length run), there is no sys-
tematic decline of skill (by any of the four measures)
with respect to time. This counterintuitive point will be
discussed in some length in section 3.

2. Ice drift models

The models discussed are based on a virtual floe con-
cept. The prediction is how far and in what direction a
floe would drift, if there were a floe at a given point to
start with, and if it is assumed that it does not melt or
encounter coasts. Forecasters must then temper the mod-
el output with their knowledge of meteorological,
oceanographic, and coastal effects. For all the drift rules,
the two constants to be determined are the ice drift speed
and the drift direction relative to the geostrophic wind
speed and direction.

The formerly operational model was developed by
Skiles (1968) for the Naval Oceanographic Office. The
drift rule, based on an examination of buoy data (Skiles
1968), is

24 23U 5 (5.36 3 10 1 7.72 3 10 |U |) (1)i a

23u 5 u 1 31.3 exp(23.60 3 10 |U |), (2)i a a

where U i is the ice velocity, Ua is the geostrophic wind
velocity, velocities are in meters per second, ua is the
wind direction, and ui represents the iced drift direction.
The operational implementation of the Skiles model also
included a process to ‘‘roughen’’ the pressure field prior
to determining the geostrophic wind. No reason for do-
ing this was documented in the model code, and the
process is not part of the description given by Skiles
(1968). The procedure is

j j j j j11 j21P9 5 D P 2 D (P 1 P 1 P 1 P )i 0 i 1 i11 i21 i i

j11 j21 j11 j211 D (P 1 P 1 P 1 P ), (3)2 i11 i21 i21 i11

where i, j are model grid points, are the roughenedjP9 i

pressures, are the model-derived pressures, and D 0 ,jPi

D1 , D 2 are assigned 16/9, 2/9, and 1/36, respectively.
This is not, strictly speaking, a Laplacean operation
as the metric terms of the polar stereographic grid are
ignored in this step. The operational Skiles model
used the 2.58 gridded forecast pressure fields.

The newer model is based on the drift rule of Thorn-
dike and Colony (1982) for the Northern Hemisphere,
and Martinson and Wamser (1990) for the Southern. In
the Northern Hemisphere,

Ui 5 0.008R(u)Ua, (4)

where R is the two-dimensional rotation matrix:

cos(u) 2sin(u) (5)

sin(u) cos(u) (6)

and u is 88.
In the Southern Hemisphere, the rule is

Ui 5 0.03R(u)Ua, (7)

where u is 2238. The ice drifts more rapidly and at a
greater angle because Antarctic ice is generally thinner
than Arctic. The newer model computes the geostrophic
winds in the spectral domain then interpolates them to
a 18 mesh. No roughening procedure is used.

3. Model intercomparison

The results of the two models’ forecasts were com-
pared by objective verification against observed buoy
drifts in the Arctic, and subjectively by the Anchorage
forecast office and the NIC. The Anchorage office (C.
Bauer 1994, personal communication; R. Page 1995,
personal communication) states that the revised model
is indeed superior to the Skiles model. The differences
were said to be particularly notable for low drift con-
ditions (an observation the objective verification sec-
onds). The NIC (D. Helms 1995, personal communi-
cation) finds the Thorndike and Colony implementation
to be superior in the Arctic generally. For the Antarctic
this implementation is the only one available and is
considered helpful (D. Helms 1995, personal commu-
nication).

We take correct forecasting of the drift distance
(and potentially, direction) integrated through the
length of the forecast as the measure of success. This
is the term that operational forecasters are concerned
with. We also consider the skill as a function of time
in the forecast model. In scoring the models, we also
want to look for scoring measures that differentiate
most strongly between the models. Previous measures
suffer from the problem that even large model dif-
ferences can result in small forecast score differences
(Ip et al. 1991; Flato and Hibler 1992; Preller and
Posey 1989).

The forecast ice drifts are verified against the ob-
served buoy drift for each forecast day. The compar-
ison point was the virtual floe point closest to the
starting location of the buoy each day during the fore-
cast period. The floe point and buoy were required to
be within 55 km initially for comparisons to be made.
No interpolation was done. The initial time (at which
the forecast is started and the time that the buoy po-
sition is checked) is 0000 UTC. The position of a
virtual floe starting from a given location is made for
final times every 12 h to 6 days. Forecast values are
the location after N hours of a floe that had started at
the given location. If there were multiple buoy reports
within 3 h of 0000 UTC, the average location was
assigned to 0000 UTC.

The four measures of skill are the correlation of dis-
tance, the index of agreement in distance (Willmott et
al. 1985), error radius (position location error between
forecast and observed location), and vector correlation
in drift after Crosby et al. (1993). Correlation varies
from 21 to 1, index of agreement from 0 to 1, and
vector correlation from 0 to 2.

Scalar correlation, the correlation between a fore-
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TABLE 1. Index of agreement (IA) for forecast drift distance, correlation of forecast and observed drift distance R, vector correlation of
observed and forecast drift (VCC), and t statistic for error radius as a function of forecast length (day). Here, N is the number of buoy-days
of observations available for verification. The formerly operational Skiles model is listed first in each pair. The t statistic is given in the
sense that the new model is better (smaller errors) when negative, and asterisked when it is significant at the 95% level.

Day N IA R VCC t

1
2
3

2204
2069
2024

0.464 0.515
0.475 0.528
0.474 0.526

0.455 0.496
0.489 0.526
0.484 0.535

0.602 0.595
0.653 0.674
0.650 0.685

20.161
20.783
21.174

4
5
6

1875
1808
1709

0.463 0.516
0.474 0.530
0.472 0.528

0.464 0.520
0.463 0.533
0.455 0.528

0.636 0.688
0.643 0.702
0.613 0.685

21.651*
21.561
22.600*

cast and observed parameter (drift distance in our
case), is a standard measure of skill. It also has well-
known failings (cf. Brier and Allen 1950). For our
use, this includes that a consistent bias will be granted
a high correlation. Also, an error of a given magnitude
will be penalized the same, whether it is a 2-km error
relative to an observation of 2 km, or an observation
of 20 km.

The index of agreement may be interpreted as a rel-
ative average error (Willmott et al. 1985). It contrasts,
then, with scalar correlation in that index of agreement
will penalize a 2-km forecast error more if the obser-
vation is one of 2 km than if the observation is for 20
km. A bias will also be penalized. Mathematically, the
formulation is (Willmott et al. 1985)

2 2d 5 1 2 (Sv |e | )/[Sv (|p 2 o | 1 |o 2 o |) ], (8)2 j j j j j

where d 2 is the index of agreement, summations are
from 1 to N (the number of observations), ej is the
error in the jth forecast, v are weights to correct the
ej for being over- or underrepresentative, p is the pre-
diction, o is the observation, and o is the mean of the
observations weighted by v. In our case, the weights
are taken to be unity. The index of agreement will be
largest when the numerator is smallest (forecasts
agree with observations), and when the denominator
is largest (large natural variability—the oj vary great-
ly from o ).

The vector correlation defined by Crosby et al.
(1993) is a generalization of the scalar correlation.
As such, it involves terms like the covariance between
predictions and observations scaled by the standard
deviation of the predictions and the standard deviation
of the observations. It has the usual properties of sca-
lar correlation, including that if the predictions are a
linear function of the observations, the correlation
will be perfect (1 in a one-dimensional case, 2 in a
two-dimensional case). As for scalar correlation, a 2-
km forecast error will be considered equally bad re-
gardless of whether the observed drift is 2 km or 20
km. The definition for a sample is

r2 5 Tr[ S12 S21],21 21S S11 22 (9)

where Tr denotes the trace of the matrix and Sij is

c(u , u ) c(u , y ) (10)i j i j

c(y , u ) c(y , y ); (11)i j i j

c( ) is the sample covariance; i, j 5 1 represent the
observations, i, j 5 2 are the forecasts; and u is drift
distance in longitude, v is drift distance in latitude.

Model forecasts from 14 April 1993 to 31 January 1995
are scored. July 1994 is missing due to an archive failure.
Various other days are also missing due, typically, to a
computer queueing failure. The models’ skill as a function
of forecast length and skill measure is shown in Table 1
for all forecasts. For the error radius, the t statistic for the
improvement (negative sign means improvement, i.e., drift
location errors are smaller) is given. When significant at
95% level, it is starred. From Table 1, we clearly see that
there is no notable relation between forecast length and
skill, for any of the measures. The error radius shows an
increase in statistical significance with time, exceeding
95% level for days 4 and 6 forecasts, and 90% at day 5.
All other measures are essentially constants near the mid-
dle of their range. The new model appears to be consis-
tently better than the old at all forecast intervals and for
all scores (except day 1 in the vector correlation, where
it is very slightly worse).

The absence of skill degradation with time is puz-
zling at first glance, since the atmospheric model that
is used does become less skilled with time. The fore-
cast variable is net drift over time. To be correct in
forecasting this, it is only necessary to be correct in
inferring the average velocity over the period of in-
tegration. The atmospheric model error can be con-
sidered composed of a bias and a random component.
An atmospheric bias contributes to drift forecast error
uniformly through time. The random component,
however, can be expected to average out. It may be
too high one day, but too low the next. This com-
ponent contributes an error that will tend to decline
with time. The process is that by which averaging
many observations can lead to a more precise estimate
of the mean that was obtainable from any single ob-
servation. The lack of a trend in skill with respect to
forecast lead suggests that the loss of skill due to
biases in the atmospheric model is approximately bal-
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TABLE 2. Index of agreement (IA) for forecast drift distance, correlation of forecast and observed drift distance (R), vector correlation of
observed and forecast drift (VCC), and t statistic of the difference in error radius between the two models for each month from April 1993
to January 1995 and asterisked when it is significant at the 95% level. Here, N is the number of buoy-days of observations available for
verification. The operational Skiles model is listed first in each pair. The newer model is listed second.

Month/Year N IA R VCC t

Apr 1993
May 1993
Jun 1993
Jul 1993

Aug 1993

16
23
13
66
96

0.580 0.640
0.498 0.506
0.552 0.523
0.689 0.597
0.454 0.513

0.522 0.652
20.068 0.013
0.313 0.082
0.451 0.345
0.148 0.288

0.598 0.683
0.456 0.439
0.502 0.557
0.812 0.779
0.683 0.732

21.819*
21.992*

0.129
21.281
22.529*

Sep 1993
Oct 1993
Nov 1993
Dec 1993
Jan 1994

57
129
216
120

64

0.473 0.501
0.447 0.475
0.533 0.583
0.471 0.479
0.523 0.645

0.474 0.476
0.316 0.372
0.464 0.556
0.254 0.236
0.644 0.749

0.747 0.738
0.603 0.652
0.538 0.564
0.589 0.464
0.636 0.743

0.639
0.410
0.437
2.110*

23.643*
Feb 1994
Mar 1994
Apr 1994
May 1994
Jun 1994

19
88
75
71
49

0.533 0.595
0.379 0.430
0.563 0.590
0.493 0.505
0.463 0.528

0.833 0.874
20.004 0.218
0.616 0.581
0.211 0.359
0.375 0.419

1.026 1.573
0.378 0.485
0.958 0.910
1.013 1.111
0.524 0.589

24.510*
25.162*

0.491
0.737

22.264*
Jul 1994

Aug 1994
Sep 1994
Oct 1994
Nov 1994

No
36
59
93

158

data
0.433 0.464
0.437 0.454
0.578 0.522
0.509 0.576

20.045 0.275
0.243 0.389
0.612 0.462
0.623 0.650

0.572 0.872
0.597 0.602
0.632 0.525
0.604 0.662

22.009*
21.889*
21.433

0.754
Dec 1994
Jan 1995

185
73

0.484 0.511
0.533 0.561

0.482 0.527
0.444 0.534

0.804 0.816
0.937 0.974

0.213
1.588

anced by an improvement due to averaging out the
random errors.

The model skills, for each of the four measures at
day 6, per month from April 1993 through January 1995,
is given in Table 2. The number of buoy-days available
for verification is given, then each of the three skill
measures (Skiles model then new model), and finally
the t statistic for the error radius. Again, there is little
difference in character between the scoring methods.
All are nonseasonal, though the vector correlation and
linear correlation have substantial scatter. Often the error
radius shows no statistically significant (at 95% level)
difference between the models. Of the 10 months when
the difference is significant, the new model is better in
9. The magnitude of the difference in mean error radius
is only a few tenths of a kilometer in most months,
versus magnitudes of drifts that are on the order of 40
km.

4. Conclusions

We have shown that the revised virtual floe model,
based on the Thorndike and Colony (1982) model, is
superior to the Skiles (1968) drift law forecast model.
We find no dependence of skill, by any measure, on
forecast length out to day 6. All four measures of skill
give essentially the same impression of model perfor-
mance, so that ice modelers may continue to use which-
ever measure they prefer. Skill scores given previously
(Thorndike and Colony 1982; Flato and Hibler 1992)
are higher than those seen here, very likely because this
model is working with forecast rather than analyzed

fields. This model was implemented in operations in
October 1997. It is available on the World Wide Web
at ftp://polar.wwb.noaa.gov/ice/drift.out and http://po-
lar.wwb.noaa.gov/seaice/, and via GTS under headers
FZXX41 KWNO (Alaska subregion output) and
FZAK41 KWNO (global).
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