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ABSTRACT

Limitations in making SSM/I wind speed retrievals at higher wind speeds (w > 15 m/sec)
are investigated and the primary sources of error identified. Whitecaps and foam give rise to
systematic changes in the empirical transfer functions which are used in making SSM/I wind
speed retrievals at higher wind speeds. The addition of the 85GHz(V) channel is shown to
improve retrievals at higher wind speeds from the SSM/I. A new hybrid retrieval approach has
been developed which combines a modified neural network (NN) architecture (including 85GHz
channel) and modified training procedures with an independent correction for a residual
systematic error in the transfer function which occurs at higher wind speeds. This hybrid
approach has resulted in a weighted, bias-corrected NN algorithm with five inputs ( the “OMB”
algorithm). Applied to matchup data used in deriving previous SSM/I wind speed algorithms,
this algorithm yields a bias < 0.2 m/sec and an rms difference < 1.75 m/sec for all wind speeds
and weather conditions encountered in the matchup database, and a bias of ~0.7 m/sec and an
rms difference of ~2.8 m/sec for wind speeds > 15 m/sec. The OMB algorithm is capable of
generating wind speeds up to 25- 27 m/sec. It also yields an average gain in coverage of ~15%,
and significantly higher gains in coverage for individual synoptic events. This algorithm also
reveals detailed structure in the patterns of surface wind speed not produced by other retrieval
algorithms. It has been preliminarily validated using data from both the F10 and F13 SSM/I
instruments. Finally, the application of surface winds retrieved using the OMB algorithm to

atmospheric and oceanic forecast models is discussed.



1. INTRODUCTION

Ocean surface winds are required by operational marine forecasters to produce accurate
surface weather analyses over the global oceans, and by atmospheric modelers for assimilation
into global and regional weather forecast models. Since the late 1970's, both active and passive
microwave radiometers aboard polar-orbiting satellites have been used to infer wind speed and,
in some cases, wind direction over the ocean. Algorithms which have been developed to infer
surface wind speed for these instruments such as the SMMR and the SSM/I, however, have
been seriously limited in their ability to infer wind speeds under conditions of high atmospheric
moisture or for wind speeds greater than ~15m/sec. Because active synoptic weather systems,
which are usually characterized by relatively high levels of moisture and higher-than-average
wind speeds, are of primary interest to the operational forecasting community, it is important to
develop wind retrieval algorithms which are “robust” both with respect to atmospheric moisture
and wind speed.

Neural networks (NNs) have recently been used to develop wind speed retrieval
algorithms based on brightness temperatures (TBs) received from the SSM/I flown aboard the
DMSP satellites [Stogryn et al., 1994; Krasnopolsky et al. 1994, 1995]. Krasnopolsky et al.
[1995; referred to as KBG, hereafter] developed a single, extended-range NN algorithm (SER
NN) together with a wind speed retrieval flag based on cloud liquid water path (LWP) which
retrieved wind speeds up to ~17 m/sec for moisture levels up to ~0.5 kg/m* with a small bias

and an rms error of less than 1.7 m/sec.



Based on our previous work in establishing an acceptable rain flag criterion for the SER
NN, we are approaching the upper limit for making SSM/I wind speed retrievals at higher levels
of atmospheric moisture. However, itis likely that further refinements to the threshold value of
0.5 kg/m” can still be made when a more extensive database is created which includes
significantly more matchups under high moisture conditions.

Another limitation of existing SSM/I wind speed retrieval algorithms is that they are
primarily restricted to retrieving wind speeds with acceptable accuracy only up to 15 - 20 m/sec.
Often, high wind speed events are accompanied by high levels of moisture (e.g., hurricanes),
which preclude the possibility of making successful retrievals because the moisture threshold is
exceeded. For lower levels of moisture, however, processes at the ocean surface which directly
affect the emissivity of the air-water interface establish an upper limit for retrieving surface wind
speed. In particular, as wind speed increases, wave breaking occurs which produces whitecaps
and foam. Eventually, when the ocean surface becomes completely obscured by foam,
microwave emissions from the surface no longer change as wind speed increases. Therefore, an
additional physical limitation in retrieving SSM/I wind speeds, based on the wind speed itself
exists, which limits the range of SSM/I wind speed retrievals to the interval (0, w,,,). Itis
difficult to estimate the value of w,,,, from theoretical considerations alone; however,
observational estimates indicate that this threshold occurs in the vicinity of 30 m/sec
[Bortkovskii, 1987; Monahan and Mac Niocaill, 1986; Swift, 1990]. Clearly, based on these
estimates, significant improvements can still be made to existing NN algorithms by extending
their range of applicability from (0,16-17) m/sec, to (0,25-30) m/sec. In what follows, we

describe a new NN algorithm with extended wind speed retrieval capabilities.



The SSM/I is a seven-channel passive microwave radiometer. This instrument receives
vertically-polarized (V) radiation at 22.2GHz and vertically- and horizontally-polarized (H)
radiation at 19.3, 37.0, and 85.5GHz. The SSM/I has a nominal spatial resolution of 12.5 km at
85.5GHz and a resolution of 25 km at 19.3, 22.2 and 37.0GHz. For additional information
concerning the SSM/I, see Hollinger et al. [1990].

In Section 2, we discuss why both empirically- and theoretically-derived algorithms
encounter problems in reproducing high wind speeds. In Section 3, it is shown that TBs at
85GHz(V) are sensitive to changes in wind speed, and an improved training approach is
introduced which extends the high wind speed limit of the NN algorithm which we develop. A
new, weighted NN algorithm is introduced which uses five channels from the SSM/I (four
previous channels plus 85GHz(V)). We then examine the bias of the new algorithm as a
function of wind speed and introduce a simple bias correction which further improves the high
wind speed retrieval capability of the weighted NN (WNN). In Section 4, we introduce a new
matchup database based on TBs acquired from the F10 SSM/I instrument. We use this new
database to compare the current operational algorithm [Goodberlet, Swift and Wilkerson, 1989;
hereafter referred to as GSW] with the new WNN and the bias-corrected WINN algorithms.
Finally, we examine the dependence of retrieval accuracy for the GSW and the NN algorithms

on the spatial and temporal resolution of the data. Section 5 contains our conclusions.



2, OBTAINING RETRIEVALS AT HIGHER WIND SPEEDS

Several sources of error affect the accuracy of SSM/I retrieval algorithms. First, there
are errors due to the buoy measurements themselves. Second, errors arise because wind speeds
are not uniformly distributed. A third source of error is due to the lack of coincidence in space
and time between the ground-truth and the satellite observations in creating the wind speed
matchups. Also, the matchups consist of inherently different types of observations. On the one
hand, buoy wind speeds correspond to point measurements averaged over time; on the other, the
satellite measurements are acquired instantaneously but are essentially area-averaged. A fourth
source of error arises from the physical limitations of microwave remote sensing of winq speed
when the ocean surface becomes whitecap foam covered. This error manifests itself as a
systematic change in the empirical transfer function that defines the wind speed -SSM/I

brightness temperature (TB) relationship at higher wind speeds.

2.1  Buoy data accuracy

All SSM/I wind speed retrieval algorithms to date have used observations from ocean
data buoys for algorithm development and validation. Empirically-derived algorithms
approximate empirical transfer functions, i.e. the relationship between the SSM/I TBs and the
buoy wind speeds [e.g., GSW; Goodberlet and Swift, 1992; Stogryn et al., 1994; KBG].
Theoretical algorithms based on the radiative transfer equations also use buoy data for certain
model parameterizations [e.g., Petty and Katsaros, 1994] and validation [e.g., Wentz et al.,

1991]. Thus, any problems associated with the buoy observations themselves, directly affect the



accuracy of the algorithms which are derived, especially at high wind speeds. According to
Gilhousen [1986], wind speed accuracy for the anemometers deployed on National Data Buoy
Center (NDBC) buoys is 0.5 m/sec for winds less than 10 m/sec and £5% of the wind speed for
winds greater than 10 m/sec. Thus, there are significant uncertainties associated with buoy
measurements of wind speed and they become particularly important at high (w > 15 m/sec)
wind speeds. Also, because these errors are essentially random, they contribute primarily to the
scatter.

Buoy wind speed observations at higher wind speeds are limited because high wind
speeds are a relatively infrequent occurrence, and additionally because many of the fixed buoys
(upon which the matchups are based) are located in partially-sheltered coastal arreas. These
problems have been recognized and discussed elsewhere [e.g., Pierson andVSylvester, 1903 In
the SSM/I/F8 matchup database, the maximum buoy wind speed is 21.2 m/sec. In the
SSM/I/F10 database which we have recently assembled, the maximum wind speed is 21.4 m/sec
(Section 4). In the SSM/I/F8 matchup database (3958 matchups), there are very few
measurements of wind speed higher than 17-18 m/sec, and only 44 matchups (~1%) at wind
speeds higher than 15 m/sec. The observed wind speed distribution (Fig. 5) is clearly
nonuniform, and based on theoretical considerations, wind speed data are generally expected to
follow a Rayleigh distribution [e.g., Breckling, 1989].

Nonuniform wind speed distributions create significant problems for algorithm
development because they imply fewer observations at the tails of the distribution. The
nonuniformity of wind speed distributions creates an additional problem for algorithm validation

due to the interaction of random errors in buoy wind speed data with a nonuniform wind speed



distribution [Tolman, 1995]. This interaction may produce an additional nonrandom error which

increases with the wind speed and introduces an additional positive bias at high wind speeds.

2.2 Matchup errors

Both the training and the test data consist of matchups which compare two inherently
different types of observations, (i), buoy wind speeds acquired from anemometers which are
point measurements at a fixed elevation above the ocean surface averaged over intefvals of 8.5
minutes, and (ii), instantaneous satellite observations that cover an approximate 25 km x 25 km
footprint on the ocean surface (at the four lowest SSM/I frequencies). Even for perfect
matchups (where the center of the SSM/I footprint coincides precisely with the buoy location,
and the time of the buoy measurement coincides precisely with the time of the satellite
measurement), an additional error is introduced because of the differences in the space-time
windows which must be employed. Thus, the inherent variability of wind speed within the
satellite footprint over an 8.5 minute period (t) may be an additional source of error that enters
into the matchup. If this variability is truly random, no bias is expected; however, fora 25 km
x 25 km footprint, we may expect an additional contribution to the observed scatter on the order
of 0.5 m/sec [Overland and Gemmill,1977; Monaldo, 1988]. Additionally, because most of the
NDBC buoys are located in coastal regions where small-scale, transient high wind speed events
frequently occur (vs. over the open ocean far-removed from land and boundary currents), there
may be higher natural variability in wind speed and, thus, higher matchup errors at the higher

wind speeds.



A related problem associated with matching the buoy and satellite data arises because
perfect matchups occur infrequently and, as a result, the time interval R, and the distance R,
between the buoy and satellite measurements must be expanded in order to obtain statistically-
meaningful sample sizes. Because of the finite satellite footprint dimension r,, the minimum
uncertainty in distance is equal to 0.5 r, (~6.25 km at 85GHz and ~12.5 km at the four lower
SSM/I frequencies). In the general case, the uncertainty in distance is equal to R, > 0.5 r,, and
the uncertainty in time is equal to R, > T. Both of these uncertainties introduce additional errors
which are due to the natural variability in wind speed over the scales R, and R,. Because these

errors are essentially random, they contribute primarily to the scatter.

2.3  Physical limitations of microwave retrievals at higher wind speeds

At low wind speeds, the increase in ocean surface roughness with increasing wind speed
produces a TB dependence on wind speed. At higher wind speeds, waves begin to break
producing whitecaps and foam (called whitecap foam from hereon). At wind speeds of ~10
m/sec [Swift, 1990] or less [Monahan and O’Muircheartaigh, 1986], whitecap foam starts to
contribute significantly to TB at microwave frequencies. The surface area covered by whitecap
foam increases rapidly with increasing wind speed at higher wind speeds. At some limiting
value of wind speed, w,,.,, when the surface area covered by whitecap foam becomes
appreciable, the TB dependence on wind speed breaks down. Although it is difficult to estimate
W, Precisely, Bortkovskii [1987], Monahan and MacNiocaill [1986] and Swift [1990] provide
estimates of the area covered by whitecap foam as a function of wind speed. Empirical

relationships have been developed from these observations that express the relationship between



whitecap foam coverage as a function of wind speed.! They usually follow a simple power law

relationship between whitecap foam coverage (S in percent) and wind speed, w,

S=aw" (1)

where a and « are the empirically-determined constants shown in Table 1. Fig. 1 shows four
different parameterizations (Table 1) extrapolated up to S = 100%. Despite the uncertainties
involved, these results provide at least rough estimates for w,,,.

For 10 m/sec < w < w,,,, surface emissions from the rough ocean surface and the foam-
covered areas both contribute to the _TB signals sensed by the SSM/I. Because whitecap foam
acts roughly as a black body radiator, TBs from the foam-covered areas far exceed those emitted
by the non-foam-covered areas. Thus, the physical mechanism which primarily contributes to
the signal received by the SSM/I at higher wind speeds is quite different. When the wind speed
is about 10 m/sec, less than 5% of the surface is covered by whitecap foam; thus, it may be
reasonable to assume that further retrievals become difficult, or perhaps impossible, when at
least 50% or more of the ocean surface is covered by whitecap foam. Table 1 shows estimates
for w,,, which fall between 25 and 32 m/sec for 50% coverage (Swift [1990] estimated a value
of 40 m/sec for 100% whitecap foam coverage). This threshold, although imprecise, represents

an upper limit for retrieving surface wind speeds using microwave radiometry.

"Monahan and O’Muircheartaigh(1986) have shown that although whitecap foam
coverage is primarily related to wind speed, it also depends on the air-water temperature
difference, the water temperature per se, and the effective wind duration.
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Previous empirical SSM/I wind speed retrieval algorithms have been based on the
assumption that the retrieved wind speed depends only on TB, or expressed in terms of the

SSM/I transfer function (see KBG),

w=f(T) (2)

where f is the transfer function, and T = {1,,..,#;} is a TB vector containing a maximum of 7
elements. At low wind speeds, surface roughness determines the wind speed dependence on TB.
At higher wind speeds, when whitecap foam formation becomes important, the functional
dependence between TB and wind speed changes, and retrievals based on (2) may become
ambiguous if the wind speed itself is not taken into account. The simple representation

expressed in (2) can be generalized for higher wind speeds, as

w=F(T,w) (3)

Therefore, at higher wind speeds, the SSM/I retrieval algorithm, based only on SSM/I TBs (i.e.,
the transfer function f, in (2)), may generate wind speeds with a systematic error due to the
difference between the correct transfer function, F, and the original transfer function, . This
systematic error (hereafter refer to as the 6-error), contributes to the bias (and thus the rms error)
at wind speeds > 10-15 m/sec and reflects the change in mechanisms at the ocean surface which

contribute to TBs at higher wind speeds. These errors (together with the lack of sufficient
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matchup data at high wind speeds) are primarily responsible for underestimating high wind

speeds in previous NN algorithms.

3. A NEURAL NETWORK ALGORITHM WITH IMPROVED HIGH WIND SPEED

RETRIEVAL CAPABILITY

To develop a new NN algorithm which is capable of generating higher wind speeds than
our previous NN algorithm, we have initially examined the sensitivity of the different SSM/I
channels to changes in wind speed, and then developed a new training strategy, followed by a
correction for the expected systematic residual error. As aresult, a new NN architecture has
been developed which differs significantly from that used previously by Stogryn et al. [1994],
or by KBG.

As in KBG, we use the same SSM/I TB/buoy wind speed matchup database that was
originally compiled by GSW. This database consists of matchups from the F8 SSM/I instrument
which has been used in previous algorithm development and validation by GSW, Wentz [1989],
Stogryn et al. [1994], and KBG. A complete description of this database can be found in GSW

or KBG.
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3.1  Channel sensitivity to wind speed

KBG previously examined the utility of the 85GHz channels to improve the accuracy of
SSM/I wind speed retrievals and showed that under cloudy conditions inclusion of the 85GHz
channels yielded a slight reduction (~ iO%) in rms error. We now examine the sensitivity of the
different channel outputs, including the 85GHz channels, to changes in wind speed. With
respect to the SSM/I channelization, wind speed may be considered to be a function of the seven
SSM/I TBs. These TBs, {T}",_;, which are contained in the training matchups, produce a
cluster of points that cover a finite connected domain in seven-dimensional space. The centroid

of this cluster is calculated as

N
T.
2T, (4)
The mean radius of this cluster is
1 &
R=ﬂ52 T ~TF) (5)
i=1

If a continuous transfer function f exists, then this domain is a connected domain and the TBs, T’
for wind speeds in any bin w, < w ’< w, create a connected subdomain or subcluster. The
centroid of this bin cluster T,', and its mean radius R , can be calculated using (4) and (5);
however, a summation over { must now be performed over the number of TB vectors in each bin
cluster, N . Similarly, the projection of the centroid of the bin cluster on the j-th axis,

corresponding to the j-th TB, 7, and the mean radius of this projection can be calculated.
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We examine these bin cluster characteristics as functions of wind speed (Fig. 2). Three
channels, 22GHz(V), 37GHz(H) and 85GHz(V), are highly sensitive to changes in wind speed.
In addition to the original four channels that have been used in most previous SSM/I wind speed
retrieval algorithms, the 85GHz(V) channel also depends on wind speed and, consequently, has
been included in the development of a new retrieval algorithm. Fig. 2 also shows a distinct
change in the functional dependence at higher wind speeds (w > 15 m/sec) for all channels
which may be due to significant contributions from whitecap foam (and/or the limited sample

sizes for these bins).

3.2 Training strategy

Because there are very few matchups available at higher wind speeds (w > 15 m/sec), the
distribution of wind speeds in the training set is highly nonuniform (Fig. 5). If we use the
standard cost function for NN training (e.g., Wasserman, 1989) where all of the data are equally
weighted, the few matchups that do exist at high wind speeds become completely obscured in
the training process. This problem can be reduced if a weighted cost function is used instead of

the standard cost function for training, where the weighted cost function can be expressed as
N
Yoo W -w ) (6)

Here, N is the number of matchups in the training set, the W, are the wind speeds obtained

during the training process, the w; are the observed buoy wind speeds, and the &; are the weights.

Because a uniform data distribution is clearly preferable for training (e.g., Cheng and
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Titterington, 1994), the distribution of the ¢ can be chosen to compensate for the inherent
nonuniformity of wind speeds in our training set. A distribution which is inversely proportional
to the square root of the wind speed distribution is an acceptable choice. For such a weighting
scheme, the highest wind speeds are emphasized and the NN is forced to learn more from these
few cases. The penalty, of course, is that any errors in these data will be amplified during the
process of training.

As mentioned in Section 2, both random and systematic errors in wind speed increase with
increasing wind speed. Fortunately, NNs are somewhat insensitive to random errors of high
amplitude when they are properly designed [Kerlirzin and Vallet, 1993]; however, they are
sensitive to systematic errors. NNs provide a valid model for the transfer function f in (2) for
low-to-medium wind speeds. At higher wind speeds, the transfer function F in (3) is valid.
The wind speeds generated by the weighted NN (WNN) at high wind speeds contain systematic

errors which are due to the differences between f and F (see Section 3.4).

3.3 Weighted NNs
Following the approach outlined in the previous sections, we have chosen a new
architecture for the SSM/I wind speed retrieval algorithm. This NN has one input layer with
five inputs, the four channels which have been used in previous algorithms (19V, 22V, 37V, and
37H) and the additional 85GHz(V) channel, one hidden layer with two nodes, and an output
layer containing one node. In preparation for training the NN, the weights & in the cost

function (6) were generated using the following formula,
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C @)
p(w,

g

where p(w) is the observed wind speed probability distribution and C is a normalization
constant. This choice of weights allows us to assign higher values to the tails of the distribution
and effectively produces a distribution which is approximately uniform. By introducing the
square root in the denominator of (7), we have restricted the rate of increase in the weights and
thus reducing any noise-like influences at the highest wind speeds.

Table 2 shows the summary statistics for four_different algorithms, the original GSW
algorithm, the SER NN (our original NN algorithm), the WNN4, the weighted NN algorithm
with four inputs, and finally, the WNNS, the weighted NN algorithm with five inputs. Only the
statistics for clear atmospheric conditions (i.e., for low levels of moisture) are included, i.e., the
case where the GSW algorithm performs best. Table 2 shows that (1) the weighted NNs are
capable of generating higher wind speeds, (2) appropriate weighting of the cost function at high
wind speeds amplifies the noise (as expected), producing slightly less favorable statistics
compared to the SER NN, (3) the weighted NN with five inputs (WNNS5) outperforms the
weighted NN with four inputs (WNN4) both in terms of extended high wind speed generation
capability plus improved statistics (in this case, similar to those obtained using the SER NN),
and (4) all NN algorithms outperform GSW.

Table 3 shows the same information as Table 2 but for the clear plus cloudy case. In

addition, the statistics for high wind speeds only (w > 15 m/sec) are included (these statistics are
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not presented in Table 2 because of insufficient sample size for the clear case). Because of buoy
data inaccuracies and the matchup problems indicated earlier at high wind speeds, the statistics
for high wind speeds should be treated with caution. We conclude that the WNNS35 algorithm
demonstrates the best overall performance for the clear plus cloudy case. Finally, for high wind
speeds the table shows that although the GSW algorithm has the ability to generate high wind
speeds, the standard deviation in this case is much higher than the standard deviation for the
observed wind speeds.

An additional characteristic of NN algorithms can be introduced which is important for
evaluating their ability to generate high wind speeds. This characteristic corresponds to a well-
defined maximum output value which, by virtue of the weights which are derived during
training, can be generated by a particular NN. For any input TBs, the output wind speed cannot
exceed this value, a value referred to here as W, The equations for calculating W are given in
the Appendix. Table 4 shows W for the SER NN, WNN4, and WNN35 algorithms and clearly
demonstrates significant improvement in high wind speed generation capability, progressing

from the SER NN to the WNN3 algorithms.

3.4  Bias correction

From Section 2.3, we expect the systematic d-error to increase with 'increasing wind.
speed at higher wind speeds. In terms of the transfer function, f, (2) is valid only for low-to-
moderate wind speeds. To include higher wind speeds, f should be generalized as shown in (3)
where the generalized transfer function F now depends on the wind speed itself, as well as the

TBs. We can, in principle, use the NN approach to develop a NN model for the transfer function
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expressed in (3); however, the corresponding NN architecture will be more complicated and will
require the addition of a feedback loop (i.e., recurrence) . As a practical alternative, we
consider a simpler approach based on our expectation that the systematic wind speed-dependent
&-error will give rise to a wind speed-dependent bias. Fig. 3 shows the binned bias as a function
of wind speed (calculated as the difference between the buoy and the WNN-generated wind
speeds) for the training set (dashed line). This bias has a systematic trend which we approximate

by the following expression,

bw)=a+b(w-c)(I-exp(-dw)) (8)

where a = 0.5 m/sec, b=0.004 sec’/m?, ¢ =10 m/sec, and d = 0.5 sec/m. This approximation
is represented by the solid line. The bias correction (8) increases rapidly at wind speeds > 10
m/sec and is apparently related to the change in the dominant mechanism generating the TB
wind speed signature which occurs in the vicinity of 10 m/sec when whitecap foam, rather than
surface roughness, constitutes the major emission from the ocean surface. Fig. 2 also shows the
bias for the test set (dash-dotted line). Equation (8) yields a satisfactory approximation for these
data as well. The existence of such a well-defined wind speed-dependent bias may be
interpreted in terms of the transfer function as follows. By decomposing the transfer function

expressed in (3) into the sum of two terms, it may now be approximated as,

F(T,w) = fiT) + b(w) )
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where fis the transfer function given in (2) which depends only on TB, and b(w) is the wind
speed-dependent bias given by (8).
We now use our weighted NN (i.e., WNNS5) as a model for the transfer function f in (9)

to retrieve the wind speed w corresponding to the TBs, T, where

w= f{T)= WNN5(T) (10)

By applying the bias correction b(w) to this wind speed we obtain the wind speed w, which is
now corrected for the systematic error,

w,= w + b(w) (11)
In these calculations, the same training set has been used for developing the WNN algorithm
and for calculating the bias correction, b(w).

Equations (10) and (11) together constitute an algorithm which we call the bias-corrected
WNNS5 or OMB? algorithm. Table 5 shows summary statistics for the WNNS, the OMB, and the
BWNN4 (WNN4 with four inputs including the bias correction (8)) algorithms, and separate
high wind speed statistics for the GSW, OMB and BWNN4 algorithms. The OMB algorithm

clearly outperforms the other algorithms. Fig. 4 shows a binned (bin size = 2 m/sec) scatter plot

for the three NN algorithms. We see successive improvements in high wind speed performance,

20cean Modelin g Branch (OMB), Environmental Modeling Center of the National
Centers for Environmental Prediction.
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with no degradation at the lower wind speeds in progressing from the SER NN to the WNN35,
and eventually to the OMB algorithm. Both BWNN4 and OMB produce high wind speed
statistics which are significantly better than those produced by GSW. That the bias correction is
compatible with both the WNN5 and WNN4 algorithms indicates that this correction is
independent of the NN architecture and is consistent with our assumption that it is due to a
systematic error in the original transfer function. Fig. 5 shows the observed wind speed
distribution together with the SER NN- and OMB-generated wind speed distributions. The wind
speed distribution generated by the OMB algorithm is much closer to the observed, reproducing

both the high and low wind speed tails of the distribution.

4, VALIDATION AND MATCHUP UNCERTAINTIES

All of the results described in the previous section have been obtained using the matchup
database created by GSW which only contains SSM/I data from the F8 instrument. This
database contains a limited number of SSM/I TB/buoy wind speed matchups with a spatial
uncertainty R, < 25 km and a temporal uncertainty R, < 0.5 hrs. To validate the OMB algorithm
with data from different SSM/I instruments, and to investigate the dependence of retrieval
accuracy on matchup uncertainty, we have created a new matchup database containing
approximately 27,000 SSM/I BT/buoy wind speed matchups from the F10 SSM/I instrument
with a spatial matchup uncertainty 25 < R, < 100 km, and a temporal matchup uncertainty 0.5 <

R, < 3.0 hour. Because the buoy data have been preprocessed with a roundoff error of ~0.5
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m/sec, an additional random error of approximately 0.3 m/sec rms has been introduced.
Although the SSM/T instrument on the F10 DMSP satellite has certain problems related to the
ellipticity of the orbit which effects the scanning geometry and thus reduces retrieval accuracy
for all algorithms, we have nonetheless used the data from this instrument to compare the
performance of the various algorithms.

These data have been used to create 24 subsets with different spatial and temporal
matchup uncertainties. For the spatial matchup uncertainty, we use the following four values,
R,= {25, 50,75, 100} km, and for temporal matchup uncertainty the following six values, R, =
{0.5, 1, 1.5, 2, 2.5, 3} hours. For each subset we have calculated total and high wind speed (w >
15 m/sec) statistics (biases and rms errors) for the GSW, WNN35 and OMB algorithms. These
statistics are shown in Fig. 6 as functions of R, and R,. Figs. 6a,b show the biases and rms errors
for clear atmospheric conditions, Figs. 6¢,d, for clear plus cloudy conditions, and Figs. Ge,f
show the high wind speed (wind speed > 15 m/sec) statistics. We summarize the information
contained in these figures below:

. For all weather conditions, both NN algorithms outperform the GSW algorithm. The
total statistics for the OMB algorithm are similar to those for WNNS5. Under clear plus cloudy
conditions, the biases and rms errors are unacceptably high for GSW, whereas both the WNN35
and OMB algorithms yield biases and rms errors whiéh are acceptable for operational use.
Additionally, the NN-based algorithms produce an expanded retrieval domain from clear, to
clear plus cloudy, conditions yielding an increase in retrieval coverage of ~15%. This result is

particularly significant for obtaining more complete coverage of synoptic-scale weather systems
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such as extratropical cyclones which typically have higher levels of moisture and higher wind
speeds.

. At high wind speeds, the OMB algorithm performs significantly better than WNNS5 or
GSW. This demonstrates that the bias correction which was derived using the F8 data performs
satisfactorily using the data from F10 as well, and thus tends to be instrument-independent.

. Both NN algorithms display a gradual degradation in performance with increasing
temporal and spatial matchup uncertainty. They perform best on data with the lowest matchup
errors. Thus, the NN algorithms provide an accurate approximation for the transfer function f;
they are also robust with respect to random errors in the matchups.

. GSW demonstrates an opposite trend with respect to increasing matchup uncertainties in
both time and space. The biases and rms errors decrease with increasing matchup uncertainty
(the standard deviation increases, however). Thus, the GSW algorithm only approximates the
transfer function, f, in a mean sense. As a result, this algorithm performs optimally when the
retrievals are averaged over relatively large space and time intervals.

. The last two conclusions have direct implications for the assimilation of SSM/I wind
speeds into atmospheric and ocean forecast models. For matchup uncertainties of the order of
100 km and 3 hours (typical resolutions for global models), the GSW and NN algorithms yield
the smallest differences in bias and rms error. The primary advantage of the NN-based
algorithms in this case is the gain in coverage due to the inclusion of cloudy (i.e., high moisture)
data in the retrieval process. The NN-based algorithms display greater benefits for low matchup
uncertainties (which correspond to higher model resolutions) where they provide significant

improvements both in terms of accuracy and coverage.
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Although the gain in coverage due to the inclusion of cloudy data in the retrieval process
is estimated to be roughly 15%, this value is based on global estimates for an extended period of
time. Local and short-term increases in coverage may be much more impressive and may reach
30% in some cases. Moreover, from a synoptic standpoint, when high levels of moisture are
accompanied by high winds, the NN-based algorithms (especially the OMB algorithm) may
reveal detailed structure in surface wind fields which could be completely missed using the
GSW algorithm. In this regard, Fig. 7 shows an intense storm which occurred over the south
Australian Basin on 24 August 1995 centered at 47.5°S and 122°E with an analyzed central
pressure of 982 mb. The storm created winds in the 25 m/sec (50 kt) range over an extended
area. Figs. 7a,b,c show the event as it was seen by the F10 instrument, and Figs. 7d,e,f, by the
F13 instrument. 7Figs. 7a and d show the surface wind speeds retrieved using GSW, Figs. 7b
and e, using SER NN, and Figs. 7c and f, using the OMB algorithm. The transition from GSW
to SER NN, and then to the OMB algorithm, clearly shows the increase in coverage just
described. In addition, the OMB algorithm reveals a rich and detailed structure in this synoptic
field which is completely missed by the GSW algorithm and significantly smoothed by SER NN

algorithm.

5 CONCLUSIONS

We have presented a new NN-based algorithm for SSM/I wind speed retrievals

which demonstrates high retrieval accuracy together with the ability to generate high wind
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speeds with acceptable accuracy. The 85GHz(V) channel, which has not been used in previous
SSM/I wind speed retrieval algorithm development, was shown to be sensitive to changes in
wind speed and thus has been incorporated in the new algorithm. This sensitivity at 85GHz
may be related to the higher spatial resolution of the SSM/I at this frequency.

Previous algorithms have not performed well at high wind speeds. This problem may be
due to several factors including increased buoy wind speed errors at high wind speeds,
nonuniformity of the wind speed distribution, matchup uncertainties, and systematic errors
which occur at high wind speeds due to the presence of whitecaps and foam. A practical upper
limit for making SSM/I wind speed retrievals, based on physical considerations, may be as low
as ~30 m/sec.

A new NN training strategy which includes preferential weighting at high wind speeds
was introduced to compensate for the nonuniformity in the distribution of observed wind speeds.
A hybrid approach has been developed which combines a weighted NN and a wind speed-
dependent bias correction for systematic errors which occur at high wind speeds. This bias
correction increases rapidly at wind speeds > 10 m/sec and is apparently related to the change in
the dominant mechanism responsible for generating the TB wind speed signature which occurs
in the vicinity of 10 m/sec. A new algorithm (OMB) based on the hybrid approach was
developed for retrieving SSM/I wind speeds which produces operationally-useful retrievals up to
25 - 27 m/sec. Also, an important characteristic of NNs which determines their theoretical
maximum output has been introduced and applied to our particular problem.

The OMB algorithm was tested on matchup data for the F10 SSM/I instrument and

showed significant improvement both in the accuracy of the retrievals and in increased areal
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coverage. The NN algorithm demonstrates the greatest improvement in retrieval accuracy based
on accurate, high-resolution matchups (with low matchup uncertainty). Consequently, higher-
resolution atmospheric and ocean forecast models will benefit to a greater extent than lower-
resolution models from the inclusion of surface wind speed data produced using the OMB
algorithm.

The OMB algorithm was applied to an extratropical cyclone in the southern hemisphere
which contained both significant moisture and high wind speeds. Wind speeds from both the
F10 and F13 instruments were retrieved. These retrievals, based on the new algorithm, showed
major improvements in resolving details in the surface wind speed field.

Finally, the new algorithm (including both the weighted NN and the bias correction) has
been developed using only the SSM/I F§ database. This database has many limitations; it does
not have a sufficient number of matchups at high wind speeds, high latitudes are poorly
represented, and matchup uncertainties could be impfoved. Taking into account these
limitations, the OMB algorithm will be re-evaluated and improved following the hybrid
approach presented here when a more representative matchup database is produced. The

creation of such a database is presently underway.
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APPENDIX

The NN output can be expressed as [KBG],
k
W=0b+a tanh(¥ W z + B) (A.1)
5

where the w; are the weights and J is the bias in the output layer, @ and b are positive scaling
factors, k is the number of hidden nodes, and z; 18 the output of the j-th hidden node, which can

be expressed as

z; = tanh(X) (A.2)
where X is a linear combination of the inputs to the NN. For any combination of inputs the
absolute value of z; is always less than, or equal to, 1. By taking into account that tanh(X) is a

monotonically increasing function in the interval (-1,1), we can estimate the theoretical upper

bound W, for the NN output W as,

k
Ws<sWy=b+a tanh(g lof + B) (A3)
>
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TABLE 1.  Parameters of power law representing foam and whitecaps coverage as a function

of the wind speed. The threshold values w,,, are estimated for the coverage S =

50%.
Type of coverage a 174 W Reference
Foam & Whitecaps 6.78 x 107 2.76 252 Bortkovskii, 1987
Tropical regions m/sec
Foam & Whitecaps 1.7 % 107 4.43 28.8 Bortkovskii, 1987
Midlatitude regions m/sec
Foam & Whitecaps 7.751 % 10 3.231 30.8 Swift, 1990
m/sec
Whitecaps 3.84 x 10* 3.4 31.9 Monahan and Mac
m/sec Niocaill, 1986
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TABLE 2. Performance of GSW, SER NN, WNN4, and WNN5 algorithms for data under
CLEAR conditions. Columns 2 - 4 show statistics for the wind speeds per se, and
columns 5 - 7 for the difference between buoy and al gorithm-generated wind
speeds. Each cell in the table shows two numbers, one (above) for training and
second (below) for testing (F8 development set). CC denotes correlation
coefficient, and o, denotes standard deviation.

Max W | Mean W g, Bias RMS cC

Buoy 17.4 6.50 2.94 N/A N/A N/A
19.3 6.59 2.99

GSW 193 7.47 3.46 -0.97 1.99 0.86

22.0 7.65 3.65 -1.06 2.13 0.86

SER NN 14.5 6.46 2.58 0.04 1.38 0.88

16.1 6.59 2.69 -0.01 1.41 0.88

WNN4 16.4 6.31 3.00 0.18 1.44 0.88

18.3 6.46 315 G212 152 0.88

WNN5 16.6 6.43 273 0.07 1.38 0.88

18.8 6.55 2.85 0.03 1.44 0.88
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TABLE 3.  Performance of GSW, SER NN WNN4, and WNN5 algorithms for CLEAR plus
CLOUDY case. Columns 2 - 4 show statistics for the wind speeds per se
columns 5 - 7 for the difference between buoy and algorithm generated wind
speeds. Each cell in the table shows tWo numbers, one (above) for trainig g and
second (below) for testing (F§ development set). CC denotes correlation
coefficient, and o denotes standard deviation High wind speed statistics (for w
> 15 m/s) are shown in the lower part.

TOTAL | Max W | Mean w | o, Bias RMS CC j

Buoy 21.2 6.78 i N/A N/A N/A
19.3 6.90 3.15

GSW 235 8.10 3.90 143 2.56 0.83

28.8 8.32 4.06 -1.42 2.69 0.83

SER NN 15.4 6.75 %79 0.03 1,53 0.87

16.1 6.91 2.81 -0.01 1.56 0.87

WNN4 18.0 6.68 3.22 0.10 1.62 0.87

18.3 6.86 3.62 0.04 1.70 0.86

WNN5 19.0 6.73 2.96 0.05 1.56 0.87

18.8 6.88 3.07 0.02 1.63 0.86

W>15 | Max W | Mean W o, Bias RMS CcC

Buoy 212 16.4 1.60 N/A N/A N/A
19.3 16.4 1.13

GSW 253 17.8 2.58 -1.50 2.84 0.38

23.3 177 3.39 -1.32 3.66 0.08

SER NN 16.6 13.8 1.35 3.08 3.52 0.27

15.5 129 2.10 3.51 4.13 0.16

WNN4 18.1 14.9 1.64 1.39 2.30 0.33

18.3 14,5 2.61 1.92 323 0.17

WNN5 19.0 14.8 1.83 142 2.30 043

l 18.8 14.2 2.59 222 3.40 0.18 J

32



TABLE 4.

Theoretical high wind speed upper limit W, for three NN algorithms.

Algorithm

SER NN

WNN4

WNNS5

W,in m/sec

19.4

24.5

26.5
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TABLE 5.  Total statistics for WNN5, BWNN4 and OMB algorithms and high wind speed
statistics for GSW, BWNN4, and OMB algorithms for CLEAR plus CLOUDY
conditions. Columns 2 - 4 show statistics for the wind speeds per se, and columns
5 - 7 for the difference between buoy and algorithm- generated wind speeds. Each
cell in the table shows two numbers, one (above) for trainin g and second (below)
for testing (F8 development set). CC denotes correlation coefficient, and g,
denotes standard deviation.

TOTAL | MaxW | Mean W g, Bias RMS CC

Buoy 21.2 6.78 3.11 N/A N/A N/A
19.3 6.90 3.15

WNNS 19.0 6.73 2.96 0.05 1.56 0.87

18.8 6.88 3.07 0.02 1,63 0.86

BWNN4 20.6 6.99 3.50 -0.21 1.74 0.87

20.5 7.19 3.62 -0.29 1.83 0.86

OMB 22.3 6.91 3.34 -0.13 1.66 0.87

22.0 7.07 3.44 0.17 1.74 0.86

W>15 | Max W | Mean W o] Bias RMS cC

Buoy 21.2 16.4 1.60 N/A N/A N/A
193 16.4 1S

GSW 25.3 17.8 2.58 -1.50 2.84 0.38

(w>15) 23.3 17.7 3.39 -1.32 3.66 0.08

BWNN4 20.6 15.8 211 0.43 2.14 0.36

(w>15) 20.5 15.4 295 0.98 3.04 0.20

OMB 22.3 16.0 2.48 0.28 2.27 0.43

(w>15) 22.0 15.2 3.10 1.19 3.21 0.22
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FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Fig. 3,

Fig. 4.

Fig. 5.

Fig. 6.

Fig.7.

Four parameterizations that express whitecap foam coverage versus the wind speed (see
Table 1 also). All measurements are concentrated at the coverage between 0 and 30%.
Extrapolations up to 100% coverage are shown. Solid line shows parameterization 1,

dashed line - 2, dash-dotted line - 3, and dash-triple dotted line - 4.

TB cluster centroid (see (4) in text) as a function of wind speed (a) and its projection on
seven TB axes (b-h) - solid lines. Dashed lines show centroid plus (upper dashed line)

minus (lower dashed line) the mean radius of the cluster (see (5) in the text).

Binned bias versus wind speed (bin size = 1 m/sec). Dashed line shows the bias for the
training set , dash-dotted line - for the test set, and the solid line is the bias correction

derived from the training set (see (8) in tﬁe text).

Binned scatter plot (bin size = 2 m/sec) of SSM/I wind speed versus buoy wind speed.
Diamonds refer to the SER NN algorithm, crosses - WNN35, and asterisks - OMB

algorithm.

Distribution of the wind speed derived from the F8 matchup data base. Solid line refers
to the observed buoy wind speed distribution, dotted line - distribution generated by SER
NN algorithm, dashed - by WNNS, and dash-dotted - by OMB algorithm.

Bias and rms error statistics for F10 matchup data base as functions of spatial (R, in km)
and temporal (R, in hours) matchup uncertainties. (a, b) show statistics for clear
conditions, (c, d) - for clear plus cloudy conditions, and (e, f) - for high wind speeds (w >

15 m/sec).

A synoptic event which occurred SW of Australia on 24 August 1995 as observed
by the F10 (upper row) and F13 (lower row) SSM/I instruments. (a, d) show the
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wind speed field retrieved by the GSW algorithm, (b, €) - by the SER NN, and (c,
f) - by the OMB algorithm.
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