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Abstract

A subgrid moveable-bed bottom friction model is developed for use in large-scale wind wave
models. This model defines a representative bottom roughness based on the local application of a
discontinuous roughness model and a statistical description of depth, sediment and wave parameters
for a finite area within the model (i.e., a grid box ). The model reproduces the discontinuous attenuation
behavior of swell in conditions of initial ripple formation as predicted by a small-scale model. It
furthermore suppresses non-physical oscillations of swell energy and unrealistically strong depend-
encies of depth-limited wave heights on sediment parameters. An alternative interpretation of the
model explains the (continuous) transition between the no-ripple and ripple regimes as sometimes
observed in nature.

1. Introduction

In the modeling of wind-waves in shallow water, bottom-friction plays an important role
(e.g., Shemdin et al., 1978; swiM Group, 1985). The hydrodynamics of bottom friction for
wind waves are fairly well understood (e.g., Weber, 1991). Modeling bottom friction,
however, is complicated by interactions between waves and sediment. Wave-sediment
interactions manifest as ripple formation and as apparent roughness related to sheet flow of
sediment in the wave boundary layer. Ripple formation can have a dramatic effect on the
bottom roughness length scale &, (Nikuradse equivalent sand grain roughness); the rough-
ness can range from skin friction with ky=0(10"* m), to well developed ripples with
ky=0(10"" m). This large range of possible roughnesses qualitatively explains the large
range of decay scales and friction factors observed for swell (Shemdin et al., 1978). A
moveable-bed roughness model has been available for over a decade (Grant and Madsen,
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1982). Although this model appears to be well established in the sediment transport com-
munity, its has been implemented ( to the knowledge of the present author) in a wave model
only once (Graber and Madsen, 1988).

Recently, Tolman (1994) assessed the potential effects of moveable-bed roughness for
wind waves using a modified version of the Grant and Madsen roughness model. By
analyzing spatial decay scales of the wave field, Tolman has shown that moveable-bed
roughness and initial ripple formation are potentially important for swell propagation in
shelf seas away from the shore [that is, where horizontal scales of the bathymetry are O( 10
km) or larger]. In such conditions, the roughness is governed by the decay rate of the wave
field, as will be illustrated in section 2. Moveable-bed effects are not expected to dominate
severely depth-limited wind seas, because such wave conditions usually result in vigorous
near-bottom wave motion. Bed forms then are washed out and roughnesses are generally
small and exhibit limited variability.

Tolman (1994) advocates a subgrid approach when a moveable-bed roughness model is
implemented in a large-scale wave model because (i) the spatial decay scales for swell in
conditions of initial ripple formation are generally not resolved by wave models, and because
(ii) a single roughness might not be representative for an entire grid box in conditions of
initial ripple formation. Note that subgrid modeling is not expected to be relevant for severely
depth-limited wind seas, as the corresponding roughness regimes are generally far removed
from the discontinuity of the roughness model. However, initial ripple formation does result
in large changes of the roughness for mildly depth-limited wind seas, where subgrid mod-
eling might influence model behavior.

The present paper addresses subgrid modeling of moveable-bed bottom friction. The
starting point is the hydrodynamic model of Madsen et al. (1988) and a modified version
of the roughness model of Grant and Madsen (1982) as used by Tolman (1994) (see
section 2). This model is shown to result in quasi-random behavior in space, if the required
depth and sediment parameters are described with minimal random variability. In section 3
and in the Appendix a statistical subgrid model is derived. In section 4 this model is applied
successfully to an idealized swell case and to an idealized case of depth-limited wave
growth. The latter case indicates that a subgrid approach is necessary to avoid nonphysical
behavior of a wave model for mildly depth-limited wind seas. In section 5 the application
of the present subgrid approach to other moveable-bed roughness parameterizations, and
the smooth transition between the no-ripple and ripple regimes as observed by Amos et al.
(1988) are discussed.

2. Moveable-bed bottom friction

The (local) bottom-friction source term used in the present study consists of the hydro-
dynamic model of Madsen et al. (1988) and a modified version of the roughness model of
Grant and Madsen (1982} as defined by Tolman (1994).

The hydrodynamic model relates a bottom-friction source term S, to the corresponding
two-dimensional spectrum F. This spectrum can be either the wavenumber spectrum F(k),
the wavenumber-direction spectrum F(k,8), or the frequency-direction spectrum F(f,6).

1107

2107 F

=
5

10°

Fig. 1. The friction fact
function of the relative

= — wr
b St 28
N ——
Ker2(2\/;
|

Gg=——r—
21.2xvf,
( 2w )

u —!
" \sinhkd

where w=27fis tl
the Nikuradse roug
functions of the ze
roughness ky/a, or
representative near

Wave-sediment
to move sediment.
number s

B Foty?

lI’_Z(J* Deg

where s is the relat
D is a representatiy




5) 57-75

in the sediment transport com-
resent author) in a wave model

' >f moveable-bed roughness for
Madsen roughness model. By
has shown that moveable-bed
srtant for swell propagation in
les of the bathymetry are O( 10
«d by the decay rate of the wave
ts are not expected to dominate
tions usually result in vigorous
and roughnesses are generally

veable-bed roughness model is
patial decay scales for swell in
:d by wave models, and because
ntire grid box in conditions of
ected to be relevant for severely
imes are generally far removed
tial ripple formation does result
vind seas, where subgrid mod-

:able-bed bottom friction. The
"1988) and a modified version
used by Tolman (1994) (see
thavior in space, if the required
andom variability. In section 3
section 4 this model is applied
d case of depth-limited wave
lecessary to avoid nonphysical
as. In section 5 the application
ghness parameterizations, and
1es as observed by Amos et al.

nt study consists of the hydro-
sion of the roughness model of

> term Sy, to the corresponding
: wavenumber spectrum F(k),
y-direction spectrum F(f,6).

H.L. Tolman / Coastal Engineering 26 (1995) 57-75 59
210"
f
w
110"
5107
210”
=
1107 e
5107
L 1 I L 1
0.0
10” 10" 10” 10° 10" 1
k Nla &
Fig. 1. The friction factor f,, (Egs. 2 and 3, solid line) and its normalized derivtive @ (Eq. 17, dotted line) as a
function of the relative roughness ky/a,.
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where w=2f is the radian frequency, d is the depth, f,, is the wave friction factor, ky is
the Nikuradse roughness length, « is the Von Karman constant and Ker and Kei are Kelvin
functions of the zeroth order. The friction factor f,, (Fig. 1) is a function of the relative
roughness ky/a, only and f,, is constant for ky/a,>1 (f,,=0.236). Finally, u, and g, are a
representative near-bottom orbital velocity and amplitude, respectively.

Wave-sediment interaction occurs if the near-bottom wave motion is sufficiently strong
to move sediment. The ability of the waves to move sediment is governed by the Shields
number s

¥ 2
= _fw (5)
2(s—1)gD
where s is the relative density of the sediment compared to water (2.65 for quartz sands),
D is a representative grain diameter and the prime in f,,’ indicates that the friction factor is
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Fig. 2. The friction factor £, as a function of the normalized Shields number t;, = i/, for the moveable-bed

roughness model (Eqs. 6. 2 and 3) for various grain diameters D, ), =0.05, ky,=0.01 m and swell with f/=0.1
Hz.

based on skin friction ( that is, using ky = D in Eq. 3). Sediment motion occurs if the Shields
number becomes larger than its critical value for initial motion i, (usually determined for
monochromatic waves). The critical Shields number ranges from 0.04 to 0.06 for clean,
well-sorted sands, to 0.20 or larger for bioturbated or multimodal sands (e.g., Madsen and
Grant, 1976; Glenn and Grant, 1987; Drake and Cacchione, 1986; Cacchione et al., 1987,
Gross et al., 1992).

If the wave motion is too weak to cause sediment motion (defined here as /i, < 1.2),
the roughness is set to a pre-defined base roughness kno, which represents bioturbation,
current-induced roughnesses and relict ripples. This roughness is typically of the order of
0.0 m or smaller (Tolman, 1994). If the wave motion is sufficiently strong to generate
sediment motion (/. > 1.2), the relative roughness ky/a, becomes

=25 2 1.4
By 1.5(£) +0.0655(-—”‘—) (6)
a. l;‘ (Si 1 )gar

This equation represents a modified version of the model of Grant and Madsen ( 1982).
The first term on the right represents ripple roughness, and is based on observations of
Madsen and Rosengaus (1988) and Madsen et al. (1990). The second term represents
sheet-flow roughness, and is based on the model of Wilson ( 1989). Note that this roughness
model differs significantly from the original Grant and Madsen model (see Tolman, 1994,
Fig. 2), and that this model is representative for irregular waves and therefore cannot be
expected to describe observations for regular waves accurately (see Tolman, 1994, section
3). Furthermore, the model is based on limited laboratory data and requires additional
verification. Finally, currents are disregarded in the model, and for simplicity will also be
disregarded throughout this paper.

For a given wave frequency £, the relative roughness ( Eq. 6) and hence the friction factor
becomes a function of the normalized Shields number i, =/, only (Fig. 2). If no
sediment motion occurs (4, <1.2) the bed is relatively smooth with fairly small friction
factors [f,,=0(0.05)]. In conditions of initial ripple formation (i, =1.2) the roughness
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discontinuously increases to ky/a.= 1 with f,, = 0.23 (dotted line). For increasing Shields
numbers ripples are washed out, resulting in a decrease of f,,. For > 10” friction factors
increase moderately due to an increasing sheet-flow roughness. Note that both the *‘smooth
bed’” roughness ky o and the sheet flow roughness are independent of the grain diameter D
(see Eq. 6). The apparent dependency the friction factor on D for the corresponding flow
regimes in Fig. 2 is solely due to the dependency of ¢yon D (Eq. 5).

The discontinuous behavior of the roughness model is realistic if the time scale of ripple
generation is much smaller than the time scale of evolution of the wave field (as is generally
assumed). Even then, the roughness can take any value in the discontinuous range, in
particular when the spatial decay scale of the wave field is comparable to the dominant
bathymetric scales (Tolman, 1994). This is illustrated below for steady, one-dimensional
swell propagation, for which the governing equation is

%E=Si= _Z_Igfwu:r‘ (7)
where E ( = [[F) is the total energy, c, is the group velocity and S, is the bottom friction
source term integrated over the spectrum (from Eqs. 1 and 4). ““Exact’ solutions for this
equation are calculated using the one-dimensional swell propagation model of Tolman
(1994, Appendix), with a spatial resolution of 1 km. In this model, roughnesses within the
discontinuous range are calculated from the overall energy balance (Tolman, 1994, Eqs.
A2 through A4).

Fig. 3 shows results for a large-scale shoal (chain line in panel a). Sediment and wave
conditions are chosen to assure ripple formation on the forward face of the shoal (D=0.2
mm, .= 0.05ky o =0.01 m, T=12 s and, at the input boundary, H=4\/E= 1.75:m).

The solid lines in Fig. 3 represent results for a bottom with a ‘‘smooth’” bathymetry,
describing the shoal with minimum variability (but obviously still allowing for ripples in
the roughness model). In areas where no ripple formation occurs (i, <1.2 in Fig. 3c), the
friction factor is nearly constant and approximately 0.03 (Fig. 3b). Larger friction factors
correspond to ripple roughness in conditions of initial ripple formation (y,=1.2 in Fig.
3¢). Full ripple formation does not occurs as i, does not exceed 1.2 and as f,, does not
reach the maximum value corresponding to full ripple formation (f,, <0.23, see Fig. 2).
This implies that the spatial decay scale related to full ripple development is smaller than
the dominant bathymetric scale.

The dotted lines in Fig. 3 represent results for a bathymetry and sediment data with
random variability added. This variability has a normal distribution, and has no spatial
correlation at the grid scale of the “‘exact’” model (1 km). The standard deviation of the
grain diameter D and critical Shields number ¢, are o,=0,.= 5%, respectively, and the
added variability of the depth ¢, 4ndom=0.25 m. The corresponding friction factor (Fig.
3b) and Shields number (Fig. 3c) show quasi-random behavior on the scale of the model
resolution. The local roughness no longer remains within the discontinuous range of the
roughness model as generally s, # 1.2 (Fig. 3¢). The wave height (Fig. 3a) follows the
results for the smooth bathymetry (solid line) closely. This was expected, because the
spatial decay scale corresponding to ripple formation is similar to the dominant bathymetric
scales, and therefore much larger than the spatial scale of the added variability.
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The prime in @' indicates skin friction (ky=D) as in Eq. (5).

The factors X represent amplification factors between the relative variance of components
of x (ie., 0,/x;,,) and the relative spread of the normalized Shields number (o g/ Yo m).
Negative values indicate that an increase of x; corresponds to a decrease of .

The factors X are a function of the relative depth k,d and the normalized derivative of
the friction factor for skin friction @'. Water depths are generally considered depth-limited
for k,d < 3. A representative range of @’ can be estimated from Fig. 1. For sediment motion
to occur, g, is typically O(0.1 m) or larger. With ky=D O(1 mm) or smaller, kn/a, is
O(10™*)or smaller and @' is in the range of 0.2 to 0.4 (see dotted line in Fig. 1).

The behavior of X for the above range of k,d and @ is illustrated in Fig. 4. This figure
shows that the dependency of X on @' is negligible, both with respect to an intercomparison
of components of X, and with respect to the dependency of X, and X; on the relative depth
kpd. For D, i, and H, X is independent of the relative depth. The (absolute) amplifition
factors are approximately 0.7, 1 and 1.7, respectively. The amplification factors for the
depth & and the wave period T strongly depend on the relative depth k,d. For large relative
depths (k,d>2), the relative variability of d and T is strongly amplified ( |X,| >3 and
| X7| >4). For extremely shallow water, however (kd > 1), the spread of the Shields number
is similar to that of the depth ( | X,| = 1), whereas it is fairly insensitive to variability of the
period T (| X;| <0.5).

‘The central limit theorem predicts that the pdf of 4, can be described using a normal
distribution,

l —_ !}7_’ tlt f!llﬂl
p(P)=—=¢ 03¥ 10 Thm (19)
r

i Ty
for a wide range of pdf’s of components of x. This is easily confirmed with Monte Carlo
experiments (figures not presented here). Given this (or any other) pdf of i, the repre-
sentative source term S, , =E(S,) follows from Bayes’ theorem as:

Sb.r:PIE(SbI¢n<l2)+PIIE(Sb|¢’n212) (20)
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kd

Fig. 4. Amplification factors X of Eqs. (15) as a tunction of the relative depth k.d. Lines for @' =0.3, shaded
areas for @' ranging from 0.2 to 0.4.

where Py=P(is, < 1.2) and Py;= P( i, < 1.2) represent the probability of occurrence of the
no-ripple and ripple regimes, respectively. E(..) represent the corresponding (conditional )
expected values of S,,. Note that within this model Py, is by definition a fractional ripple
coverage for the grid box considered. Explicit approximations for Py corresponding to
(19) can be found in, for instance, Abramowitz and Stegun (1973, pp. 923-933).

Substituting (1) in (20) and subsequent linearization and elimination of small terms
(see Appendix A) results in the following subgrid roughness

k 2 1.4
@:Pl —m‘—ﬂ+P|1[1-5¢;1%'5+0'0655(L) ] oY
a, a. (5_ ] )gar
L2~ l,b'" Cr'w’-"
e 2
lL’n‘ll lpn P( UW ) P” ( )

The subscripts m are dropped as these equations contain averaged parameter values only
(that is, no realizations of stochastic parameters). Substituted in Eqgs. (2) and (3), this
roughness results in a representative friction factor f,, . and a source term equivalent to Eq.

(1.

2

(2]
Se=fottom— 3 F 23

br =t 2g sinh® kd (23)

Egs. (21)—(23), (13)—-(19) and (2)—(4) result in a fairly simple subgrid model. The most

complicated part of this model is the calculation of the spread of the normalized Shields

number (Egs. 13—18). This part of the model could be simplified further, particularly

because the statistical data required to evaluate these equations are generally not available.
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The simplest approach possible defines a single universal relative spread of the normalized
Shields number. This, however, ignores the potentially strong dependency of o,/ s, on k,d,
which is related to the relative spread of the depth and the wave period (Fig. 4). The spread
of the depth is generally expected to dominate the spread of the wave period because (i)
the differences of the depth between neighbouring grid points around shoals (see, for
instance, Fig. 3a) implies a significant subgrid variability of the depth, and (ii) wave
periods generally vary slowly in space and time (for swell without currents, the variability
of T is generally negligible). The spread of the depth can be divided into two parts. The
first is the spread in depth related to the large-scale depth variations resolved by the grid
(04g). This variability can be estimated from the difference in depth between the grid point
considered and adjacent grid points. The second component of the spread of the depth d is
some universal subgrid spread o, . Finally combining the relative spread of D, s, and H in
a single relative spread o, , the following simplified expression is found

291/2
T I:cr?;.r +X3(——U"'g & U"-”) ] (24)
o d

Obviously, X, can be replace by other (similar) functions of k,d without loss of generality.
The necessity of accurate estimates of o,/ s, will be discussed in the following sections,
where several simplified expressions for o,/ ¢, will be used.

4. Applications

The subgrid moveable-bed roughness model defined by Eqs. (21)—(23), (2)—(4), (19)
and estimates for o,/ 4, and Py, is applied to the swell propagation case of Fig. 3 and to
an idealized case of depth-limited wave growth. Calculations have been performed with
third-generation wave model WAVEWATCH (Tolman, 1991, 1992), in which this source
term has been introduced. The appropriate (reduced) equations of WAVEWATCH will be
presented below. This model features an integration method for source terms with dynam-
ically adjusted time steps and a second order accurate propagation scheme. To simulate a
typical shelf sea model, the grid and time increments are chosen as Ax=25 kmand Ar=15
min. Note that wave models like WAVEWATCH by definition consider the evolution of the
wave field in time. Steady solutions have been obtained by continuing the calculation over
a sufficiently long time, keeping boundary conditions constant where necessary.

4.1. Swell propagation

The first application of the present model considers the idealized swell propagation case
of Fig. 3. In such conditions the governing equation of WAVEWATCH reduces to

oF (f,6) = dc, F'(f,0)
ot ox

=S (f.0) (25)

and swell is simulated by considering energy in a single discrete component of the spectrum
only. Excellent results are obtained with the correct sediment data (D=0.2 mm, . =0.05
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Fig. 5. Evolution in time of the wave height at point A in Fig. 3 for the discontinuous model (dotted line) and the
subgrid model (solid line, corresponding to @ in Fig. 3).

and kyo=0.01 m) and the best possible estimate of o,/ s, based on Eq. (24) (@ in Fig.
3). The latter implies that o, =0.07 and that (o, +0,,)/d is calculated directly from
the irregular bottom. The corresponding normalized spread of the Shields number o,/ ¢,
ranges from 0.05 to 0.15. Similarly good results are obtained for a small constant spread
o,/ P,=0.05 (O in Fig. 3). Small errors are introduced if the spread is systematically
overestimated (o /¥, =0.30, A in Fig. 3). The friction factor then is systematically over-
estimated in the no-ripple regime (A in Fig. 3b) resulting in a slight overestimation of the
corresponding decay rate of the wave height ( A in Fig. 3a), and the discontinuous behavior
of the attenuation rate is obscured. The model, however, is more sensitive (o its mean
sediment parameters. If the grain diameter is overestimated by 50% (D =0.3 mm, U in Fig.
3), the transmitted wave height over and beyond the shoal is significantly overestimated. If
ripple formation is neglected altogether (kn=kyo, * in Fig. 3) errors in the transmitted
swell height become even larger.

Note that for the case considered here, a subgrid approach proved necessary to obtain a
steady solution. If Eqs. (1)—(6) are used directly, the ‘‘steady’” solution on the shoal
contains systematic modulations of H of up to 20% due to roughnesses alternating between
smooth beds and steep ripples (dotted line in Fig. 5).

4.2. Depth-limited wind seas

In this section the subgrid moveable-bed roughness model is applied to depth-limited
wave growth, to assess the sensitivity of depth-limited wave heights to sediment conditions,
in particular for conditions of initial ripple formation. Depth-limited wave heights are
estimated for quasi-homogeneous conditions, for which the governing equation of WAVE-
WATCH reduces to:

AF(f,0)

=S8 (£.0) +Su(£.0) +84,(f,0) +5,,.(f.0) (26)

at

The source terms other than Sy, are identical to those of cycle 4 of the WAM model (WAMDIG,
1988; for cycle 4 see, e.g. Mastenbroek et al., 1993). Wind input and dissipation (S;, and
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roughness model. This has two implications. First, it is confirmed that moveable-bed effects
are generally not important for the modeling of depth-limited wind seas. Secondly, a subgrid
approach is needed to avoid unrealistic sensitivities of depth-limited wind seas to sediment
parameters if a moveable-bed model is implemented (for instance to accurately describe
swell attenuation). The large spread of the normalized Shields number as occurs for large
relative depths are essential to remove the above unrealistic behavior.

The present subgrid model has two potential shortcomings. First, the discontinuous
roughness model (6) on which the subgrid model is based is not yet satisfactorily validated
and is open for improvements (see Tolman, 1994). Secondly, the local applicability of the
discontinuous model can be questioned.

The discontinuous roughness model (6) is based on limited laboratory data, and does
not include any data in which a mean current is present. Although from a hydrodynamic
point of view wave-current interactions are not expected to influence the bottom friction
source term significantly (see Tolman, 1994, page 1006), currents can be expected to
modify bed forms, and hence influence the roughnesses. In particular in near-shore areas,
were currents can be strong, the applicability of the present model therefore is potentially
limited. In general, more data is necessary to validate this and other roughness model. In
particular field observations and observations including waves and currents would be useful.

The best documented part of the roughness model (6) is its discontinuous behavior as a
function of the Shields number (Tolman, 1994). This discontinuous behavior in turn results
in the need for a subgrid approach. New parameterizations of moveable-bed roughnesses
in different wave-sediment interaction regimes can easily be implemented in Eq. (21).
Thus, additional observations might significantly change behavior of moveable-bed rough-
ness models, but are not expected to have an impact on the present subgrid approach, as
long as the roughness parameterizations can be expressed in terms of a Shields number.

The present subgrid model assumes the local applicability of the roughness model Eq.
(6). This results in extreme changes of the roughness on small scales (Fig. 3b), suggesting
the present statistical approach. Such behavior is in qualitative agreement with the obser-
vation of small ripple patches in nature (e.g., Cacchione and Drake, 1982), but it is not in
agreement with the observations of a transition regime of undeveloped ripples for near-
critical Shields numbers as reported by Amos et al. (1988). Amos et al. attribute this
transition to a balance between ripple formation by waves and ripple degradation due to
bioturbation. This suggests a different approach to modeling a continuous transition between
the ripple and no-ripple regimes, using a local ripple evolution model instead of spatial
statistics.

A ripple evolution model requires parameterizations for ripple evolution in time. To the
knowledge of the present author, data required for such parameterizations is insufficient
and qualitative at best (e.g., Brebner, 1980; Amos et al., 1988; Drake and Cacchione, 1989:
Green et al., 1990). Such a model could furthermore include statistical information of the
local wave field, to estimate the fraction of individual waves which move sediment and
hence contribute to ripple formation. Without derivation of an actual model, it appears
evident that such a model could be expressed in a form similar to Eq. (21), where P,
represents fractional ripple development instead of a fractional ripple coverage (as in the
present model). From a wave modeling perspective both approaches are identical, as long
as they result in the same representative roughness.
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Finally, an alternative interpretation of Py; as a fractional ripple development can be used
to qualitatively explain the range of Shields numbers for which Amos et al. (1988) observed
undeveloped ripples. Assuming (arbitrarily) that undeveloped ripples correspond to
0.05 < P;;<0.95 and assuming a normal distribution for s, within the spectrum, the tran-
sition regime encompasses a range of mean Shields numbers A s, = 3.30,,. For o,/ ,=0.2,
this results in the ratio of 2 between the highest and lowest Shields number of the transition
zone as observed by Amos et al. (1988).

6. Conclusions

A statistical subgrid moveable-bed bottom friction model is developed for the application
in large-scale wind wave models. This model accounts for the spatial variability of bottom
roughness on subgrid scales. It reproduces the discontinuous attenuation behavior of swell
in conditions of initial ripple formation, as predicted by the “‘exact’” model. Application to
depth-limited wind seas indicates that a subgrid model is required to avoid an unrealistically
strong dependency of mildly depth-limited wind seas on sediment conditions and roughness
regimes. The present subgrid approach is easily applied to other (discontinuous) moveable-
bed roughness models. An alternative interpretation of the subgrid model can explain the
transition regime with undeveloped ripples as observed by Amos et al. (1988).
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Appendix A. Derivation of the subgrid model

Substitution of the discontinuous source term (1) in the general subgrid source term
(20) yields

v}

1 w
Sy===—Y. Pofygityg—=—F 1
b.r 28% s U . (A1)

where B=1, Il denotes the two ripple regimes as in Eqgs. (20) and (21). Assuming that the
subgrid model remains quasi-linear with respect to the near-bottom velocity spectrum, this
equation becomes
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This equation requires estimates of mean parameter values in both roughness regimes. For
an arbitrary parameter y(x), linearization gives the following estimate of yg.
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The mean normalized Shields numbers for both roughness regimes are calculated as (using
Abramowitz and Stegun, 1973, section 26.2.45)

Y= Vo T p(u) %y (A6)

oy, ) Pg

where the minus is used in the no-ripple regime (B=1) and where p( ...) is the standard
normal pdf (19). However, the corrections yg— yi, for u, and a, as given by Eq. (A3) are
generally small and their effects partially cancel. Thus Eq. (A2) can be approximated as

(02

Siy'= e T a7
= " 2g sinh® kd

B

Numerical experiments furthermore show that the representative friction factor P fup
can be replaced by a single representative friction factor f,, , calculated from the represen-
tative roughness given by Eqs. (21) and (22). Note that Eq. (22) still incorporates an
estimate of i, specific for the ripple regime. The correction of the normalized Shields
number for the ripple regime (right term in Eq. 22) has been maintained to ensure that the
corresponding part of the representative roughness remains within its range of validity.
Replacing ¥, ; by ¥, has a much bigger, impact than the above simplifications, and can
lead to differences of O(10%) in the source term.
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