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Recent trends in ensemble-related research
Impact of improved initial conditions
Accounting for model uncertainty
Calibration and post processing
Multi-model ensemble issues and questions
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Research in ensemble
forecasting and ensemble
data assimilation has
been climbing steadily
since the 1990s.
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Research in Model
Uncertainty grows rapidly
in the last three years.

Interest in calibration and
post-processing also
substantially larger than
in the early 2000s.



Integrating DA and Ensembles:
Impact of Improved Initial Conditions

Main changes to the analysis component (EnKF)
. ensemble size: 192 — 256 members

horizontal resolution: 66 — 50 km

time step: 20 — 15 min

data assimilation:

20

. RTTOV-10
4D assimilation of radiosondes
. new bias correction method " 2
. GPS-RO from 1km &
. (@]

further perturbations to the physics (e.g. orographic blocking
bulk drag coefficient, thermal roughness length over oceans)
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Main changes to the forecast component

horizontal resolution: 66 — 50 km

time step: 20 — 15 min

new method to evolve SST and sea-ice fields

further perturbations to the physics (e.g. orographic blocking bulk drag coefficient,
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Verification against radiosondes,
850hPa Temp, Aug 2014
old versus new

thermal roughness length over oceans)

* Material kindly provided by Peter Houtekamer and Normand Gagnon

Overall 6-h improvement in forecast skill for atmospheric variables.

CPTEC Ensemble Prediction System

Crosses = NCEP EPS; Triangles = KMA EPS; Diamonds =
CPTEC EPS (operational) ; Circles = CPTEC EPS-MB09
(two additional variables, surface pressure and

CRPSS

specific humidity, and extended analysis region);
Squares = CPTEC EPS-MBO09 BC (includes bias
correction)

GROUP ON DATA ASSIMILATION DEVELOPMENT / MODELING AND DEVELOPMENT DIVISION

Contrib: Camila Cossetin (camila.ferreira@cptec.inpe.br)

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

CRPSS T850 NH
B

hY
<H. .
\‘3"“6-*
- HA+
‘ \E A, +
Improve e\rﬁ x i
after MBO9'BC ""‘ T ¥ .
‘\.\I = Eﬁ-ﬂﬂ.é
o000 "™
2 3 456 7 8 9 1011 12 13 14

+
+

+

1 15

Lead Time (days)




Integrating DA and Ensembles:
Impact of Improved Initial Conditions

2m temperature

10m wind gu ts
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Use of IC from the Kilometer

scale ENsemble Data
Assimilation (KENDA) based

on the LETKF scheme (Hunt
et al., 2007)
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Hybrid Ensemble 4DVAR D.A System (in operation since ‘13 in KMA) benefits global
EPS system as well as global deterministic forecast through high quality initial conditions

NH T850 RMSE & CRPS for summer NH T850 RMSE & CRPS for winter
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Growing Interest in Accounting for Model Uncertainty

PHILOSOpPH _—
Strategic Goals for NWP Centres: Minimising RMS ltA"'5‘“31'!0!%!5?5 o
error or maximising forecast reliability, T. Palmer, U. ;-l-ﬁ(;{%? § :
Oxford, WWOSC, August 2014 sociEry )\ B |

Palmer T.N., 2012: Towards the probabilistic earth-

CO n C | u Si O n S system simulator: a vision for the future of weather
and climate prediction. Quart J R Met Soc, 138, 841-
861 ( Royal Met Soc Presidential Address)

Stochastic mc odelling
ar:d .'rm(:t predrcl‘ro

nlswd and exdited by Tim Paimer, Peter DX B 1, Hugh McHma

and energy- dﬁcrent computmg fnr weather

Stochastic parametrisation improves probabilistic scores and
can reduce systematic errors. It does not (necessarily) reduce
the rms error of deterministic forecasts.

Primary headline metrics should measure the usefulness of
weather forecasts for real-world decision making. RMS
error/ACC of Z500 does not measure this; CRPSS does.

If RMS Error and Anomaly Correlation Coefficient remain the
primary headline metrics to evaluate an NWP Centre’s
performance, the development of parametrisations with
(e.g.stochastic) representations of their own uncertainty will

not be given first priority by model development teams. fwm Saciety Publishing 28 June 2014

The world's first sclence journal

Recommendations from EUMETNET Joint PHY-EPS Workshop 2013:
e Introduce stochasticity only where appropriate (maintain physical meaning).
e Sensitivity studies and process studies, in addition to predictability studies,
are necessary to understand impacts.
 Parameter perturbations useful diagnostic to understand spatio-temporal
characteristics of uncertainty. 6




Parameterization of Moist Processes for Next-

Generation Weather Prediction

NOAA Center for Weather & Climate Prediction, College Park, Maryland
January 27-29, 2015

Probability distributions are useful in two distinct contexts: 1) for representing
variability at scales below or approaching the model resolution, and 2) to describe
uncertainty and improve spread-skill relationships in probabilistic ensemble forecasts.
It is natural to expect that model uncertainty could be estimated directly by
parameterizations and expressed by, for example, drawing the parameterization
tendency from a distribution of expected outcomes.

However, the parameterization community is not yet ready to provide estimates of
state-dependent parameterization error to replace current ad-hoc estimates of model
error to increase ensemble spread. Data assimilation, sensitivity assessment, and
parameter estimation are the most useful current approaches for developing
understanding of the response of model output to changes in parameters, how this
response maps onto the resolved scales, and how the local and grid scale response
changes with environment, flow, etc. Nonetheless, ad hoc perturbations to physical
tendencies remain the most effective solution for maintaining the dispersion of
ensembles through the duration of a forecast.



Northern Hemisphere 500hPa Height
Ensemble Mean Anomaly Correlation

Accounting for Model Uncertainty [ R
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Different schemes address different issues, may be complementary



Accounting for Model Uncertainty

Interaction between EDA and surface perturbations

Ensemble perturbations from the AROME EDA (ensemble data assimilation) are
improved when simple random noise is used at the surface, instead.
l.e. a better surface perturbation scheme should be developed in EDA.

. _ T2m spread/skill ratio
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Calibration and Post Processing

<>= MOGREPS-UK
<>= MOGREPS-U

et Offce 2.2km ensemble

© Crown copyright Met Office

Undersampling leaves “holes”
of zero-probability where
showers could still occur
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Calibration and Post Processing
Neighbourhood methods for high precipitation forecasts

Ensemble scores improve when spatial tolerance is introduced in the forecast PDF
computation :

.improved reliability & ROC metrics

.negligible loss of sharpness

Jargest effect comes from improved membership

Performance is sensitive to details of the method used.
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Number of multi-model ensembles are growing

Mesoscale: TIGGE-LAM, NOAA SREF, AEMET-SREPS, SESAR, CAPS, HFIP
Global 1-2 weeks: NAEFS, NUOPC, TIGGE, HIWPP, ICAP
Subseasonal to seasonal: NMME, DEMETER, S2S

Why do multi-model ensemble often outperform single model ensembles? Is the
improvement in skill due to larger ensemble size or to combining signals? (extra slide)

International Conference on S2S prediction, 10-13 Feb 2014

Differences in Skill and Predictability in 1. Proposed an objective procedure for deciding if the skill of a
Multi-Model Ensembles combined forecast is significantly higher than a single forecast.

2. Skill of each model in NMME is significantly enhanced by combining
Timothy DelSole it with other models, at least for some lead time and target month.

George Mason University, Fairfax, Va and 3. The skill improvement comes from combining different signals, not
Center for Ocean-Land-Atmosphere Studies, Calverton, MD from ]ncreasing ensemble size.

How does one combine multi-model forecasts of unequal skill? Equal weights
competitive with more complex schemes (DelSole et al. 2012, Sansom et al. 2013, ...)

Tradeoffs between independence from multi-models vs. focusing resources on one
system.

Issues of latency, data transfer reliability, etc. "




MNautical miles

NOAA Hurricane Forecast Improvement Program Multi-Model Ensemble

HWREF EPS (27/9/3 km, 42 levels) — 20 members
GFDL EPS (55/18/6 km, 42 levels) — 10 members

COAMPS-TC EPS (27/9/3 km, 40 levels) — 10 members

Track: Retro sample
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MAE (kt, solid), ME (kt, dashed)
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Sample size

Hurricane Multi-Model Ensembles

NOAA Hurricane Forecast Improvement Program multi-model ensemble.

HWRF EPS (27/9/3 km, 42 levels) — 20 members
GFDL EPS (55/18/6 km, 42 levels) — 10 members

COAMPS-TC EPS (27/9/3 km, 40 levels) — 10 members

CTCX control
CTCX ensmean
HWRF control

m— HWRF ensmean | -

GFDL control

* GFDL ensmean
Combo control
Combo ensmean

Solid: Mean absolute error Dashed: Mean error’|

For individual model,
ensemble mean has improved
accuracy relative to the control

Combined ensemble mean has
accuracy similar to consensus
of three control members

Lead time (h)

Control forecasts:

COAMPS-TC: CO0C

HWREF: HWO0O0

GFDL: GP0O

Combo : Consensus of
C00C, HWO00, and GP0OO

Sample size

Lead time (h)

Ensemble mean requirements:
COAMPS-TC: 9 of 11 members
HWREF: 17 of 21 members
GFDL: 8 of 10 members
Combo: 34 of 42 members

16




NRL: Quantifying Model Inadequacy from Multi-model
Ensembles (E. Satterfield)
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-ensemble
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TV=TOTAL ERROR
VARIANCE

TVS=PORTION OF TV
THAT PROJECTS
ONTO THE SPACE OF
ENSEMBLE
PERTURBATIONS

VS=ENSEMBLE
VARIANCE

For a perfect ensemble
TV=TVS=VS. For an
ensemble that correctly
represents the second
moment of the
probability distribution of
the state, VS=TV would
hold.

Project explores aspects of multi-model ensemble prediction systems with the goal of improving single model ensemble forecasts
Improving the quality of the Navy ensemble will lead to improved probabilistic prediction and uncertainty estimation at longer lead

time

S

It will also improve the flow dependent error covariance estimates at shorter lead times used in Hybrid DA
schemes.



NRL Developed ICAP Global Multi-model
Aerosol Forecast Ensemble:

BSC, ECMWF, FNMOC/NRL, JMA, NASA, NOAA, UKMO

The International Cooperative for
Aerosol Prediction (ICAP) is a grass
roots organization of aerosol forecast
developers to share best practices and
speak with a common voice on aerosol
observation needs for DA.

Ensemble open to any consistent
guasi-operational global aerosol
model. Currently working on AOT and
surface concentrations for multi
species and dust only versions, but
looking towards 3 full dimensions.

Specific error metrics are kept by
centers, ensemble products
distributed via GODAE server.

As expected from a multi model
ensemble, the ICAP MME has the best
RMSE scores and a more consistent
bias distribution over the globe.

ICAP MME Dec-May 2012

1 I —
004 008 016 032 064 128
Ensemble Mean AOT (550 nm)
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