Technical Procedures Bulletin

Series No.
\qquad 494

Subject: Ocean Waves

This bulletin, prepared by H. S. Chen, L. D. Burroughs, and H. L. Tolman of the Marine Modeling and Analysis Branch (MMAB), Environmental Modeling Center (EMC), National Centers for Environmental Prediction (NCEP), describes automated global ocean wave guidance provided in alphanumeric and GRIB formats.

The NOAA WAVEWATCH III (NWW3) was implemented in March 2000. It is a third generation model which accounts for wave dispersion within discrete spectral bins by adding diffusion terms to the propagation equation (Booij and Holthuijsen 1987); it uses the Chalikov and Belevich (1993) formulation for wave generation and the Tolman and Chalikov (1996) formulation for wave dissipation; it employs a third order finite difference method by utilizing a split-mode scheme with a Total Variance Diminishing limiter to solve wave propagation; its computer code has been optimized to fully utilize the MPP structure of the IBM mainframe computer and all the power of FORTRAN 90; it uses a spatial resolution of $1.25^{\circ} \times 1.00^{\circ}$ on a lon./lat. grid, a domain from $78^{\circ} \mathrm{N}$ to $78^{\circ} \mathrm{S}$, and a directional resolution of 24 directions.

The bulletins and graphics of the new guidance follow the same formats shown in TPB No. 453 (Chen et al., 2000), except for changes to the spectral text bulletins now being sent to AWIPS and the following model improvements :

The model has been re-coded in FORTRAN 90 to utilize modular concepts and allocatable data structures. No noticeable changes have resulted in the guidance.
(2)

Improved source term integration schemes have been used with no perceptible changes to the guidance.
(3)
(4)
(5)

A new propagation scheme to eliminate the Garden Sprinkler Effect more efficiently and to account for unresolved islands and sea ice.
4) Re-tuning to eliminate model biases induced by changes above.

Spectral text bulletins for the NWW3 are available at
http://polar.wwb.noaa.gov/waves.
These files are in ASCII and are available by anonymous at

ftp://polar.wwb.noaa.gov/pub/waves/date.cycle,

where date represents the date in yyyymmdd format and cycle represents the run cycle identifier (t 00 z or t 12 z , respectively). These bulletins have been implemented on AWIPS, but with a condensed format necessitated by the capabilities of the communications gateway and display capabilities of AWIPS.

The ocean wave guidance is generated four times daily out to 168 hours based on the 0000, 0600, 1200 and 1800 UTC cycles of the Global Forecast System.

Technical Procedures Bulletin No. 453 is now operationally obsolete.

LeRoy Spayd
Chief, Training and Professional
Development Core

OCEAN SURFACE WAVES ${ }^{(1)}$

by H. S. Chen, L. D. Burroughs, and H. L. Tolman ${ }^{(2)}$

1. INTRODUCTION

During the last five decades, wind wave forecasts have improved significantly from the empirical approaches based on Sverdrup and Munk (1947) and Bretschneider (1958) to the spectral approaches based on the radiative transport equation (e.g. SW AMP Group 1985). At present, the most advanced spectral model for research and forecast is the so-called third generation wave ${ }^{(3)}$ model (WAMDI Group 1988) of which the NWW3 is an example (Tolman 2002). The Marine Modeling and Analysis Branch (MMAB) has made systematic efforts to test and develop models based on prediction accuracy, computational efficiency and sound wave dynamics and to employ them to produce operational forecasts.

The NWW3, as noted above, is a third generation model; it accounts for wave dispersion within a discrete spectral bin by adding diffusion terms to the propagation equation (Booij and Holthuijsen 1987); it uses the Chalikov and Belevich (1993) formulation for wave generation and the Tolman and Chalikov (1996) formulation for wave dissipation; it employs a third order finite difference method by utilizing a split-mode scheme with a Total Variance Diminishing limiter to solve wave propagation; its computer code has been optimized to fully utilize the Massively Parallel Processing (MPP) structure of the IBM mainframe computer; it uses a spacial resolution of $1.25^{\circ} \times 1.00^{\circ}$ lon./lat. grid, a domain north-south from $78^{\circ} \mathrm{N}$ to $78^{\circ} \mathrm{S}$, and a directional resolution of 24 directions.

This TPB briefly describes the NWW 3 and the wave guidance products which are being disseminated. This guidance consists of significant wave height $\left(H_{s}\right)$, which combines sea and swell; mean wave direction (D_{m}); mean wave period (T_{m}); and directional wave spectra at selected grid points. Guidance is available in alphanumeric and GRIB formats. Note that other wave and wind parameters are also available in GRIB format, i.e., peak wave period and direction, wind sea peak wave period and direction, wind speed and direction, and u and v wind components, and are posted at http://polar.wwb.noaa.gov/waves on the web. The reader is referred to World Meteorological Organization (WMO) Report No. 702 (second edition; 1998) for wave definitions, measurements and modeling.

The bulletins and graphics of the new guidance follow the same formats shown in TPB No. 453(Chen et al., 2000), except for changes to the spectral text bulletins now being sent to AWIPS and the following model improvements:
(1) The model was originally coded in FORTRAN 77 to assure portability in the early 1990s. It has been re-coded in FORTRAN 90 to utilize modular concepts and allocatable data structures. The conversion greatly simplifies the maintenance of the NWW 3 family of wave models at NCEP. To simplify the code further, some minor changes of operations were adopted. No noticeable changes have resulted in the guidance.
(2) The source term integration scheme has been changed to forward in time since the time scales are comparable to the time step (Hargreaves and Annan 2001). This results in a smoother spectra with little impact on guidance. The parameters of dynamic time stepping have been reset to get slightly faster initial growth again with no noticeable changes in the guidance.
(3) A new cheaper propagation scheme has been included in the model to eliminate the Garden Sprinkler Effect (see figs. 1-5). A new way to account for unresolved islands and sea ice has also been included in the model (see figs. 6-8). Dramatic improvements in model guidance have occurred in the vicinity of island groups world wide (see figs. 9-12)
(4) Re-tuning to eliminate model biases induced by changes above has also been done.
(5) Spectral text bulletins for the NWW3 are available at
http://polar.wwb.noaa.gov/waves.
These files are in ASCII and are available by anonymous ftp at
ftp://polar.wwb.noaa.gov/pub/waves/date.cycle,
where date represents the date in yyyymmdd format and cycle represents the run cycle identifier ($\mathrm{t} 00 \mathrm{z}, \mathrm{t} 06 \mathrm{z}, \mathrm{t} 12 \mathrm{z}$ or t 18 z , respectively). These bulletins have been implemented on AWIPS, but with a condensed format necessitated by the capabilities of the communications gateway and display capabilities of AWIPS. See fig. 13 for a sample bulletin and Table 1 for the list of points having spectral wave bulletins, their locations, and their bulletin headers.

The ocean wave guidance is generated four times daily out to 168 hours based on the 0000, 0600, 1200 and 1800 UTC cycles of the Global Spectral Forecast System (GFS; Kanamitsu et al. 1991; Caplan et al. 1997).

2. NOAA WAVEWATCH III (NWW 3) OCEAN WAVE FORECAST MODEL

Global ocean wave forecasts are operationally generated at the NCEP by using the NWW 3 model. Fields of directional frequency spectra in 24 directions and 25 frequencies are generated at hourly intervals up to 168 hours. The 24 directions begin at 90 degrees to the east and have a directional resolution of 15 degrees. The 25 frequencies used by the NWW 3 are given by bin in Table 2.

Wave spectral data are computed on a 1.25 by 1.00 degree longitude/latitude grid for ocean points between latitude 78.0 degrees North to 78.0 degrees South. Wind fields are the only driving force used in the model. They are constructed from spectral coefficients of the lowest sigma layer winds from the NCEP analysis and forecasts of the GFS with no interpolation to the model grid required. The winds are then adjusted to a height of 10 m by using a logarithmic profile corrected for stability with air-sea temperature differences. Analyzed wind fields from the previous 12 hours at $3-\mathrm{h}$ intervals are used for a 12-h wave hindcast. Winds from the GFS at 3 -h intervals out to 168 hours are used to produce hourly wave forecasts out to 168 -h which are produced four times daily from the 0000, 0600, 1200 and 1800 UTC cycles.

3. AVAILABLE PRODUCTS AND DISSEMINATION

The ocean surface waves are calculated for grid points covering the whole globe, excluding land, the North and South pole areas, and inland water bodies, such as Great Lakes, Chesapeake Bay, Mediterranean Sea, etc. The calculated waves are disseminated in alphanumeric format via AWIPS in GRIB format via AWIPS.

a. Spectral text bulletins on the web

Spectral text bulletins are presented for numerous points of NWW3. These bulletins are in ASCII and are available on the INTERNET at present. The line length of the table is 130 characters by 160 lines (see Fig. 14). The header of the table identifies the output location, the generating model and the run date and cycle of the data presented. At the bottom of the table, a legend is printed. The table consists of 8 columns. The first column gives the time of the model results with a day and hour (the corresponding month and year can be deduced from the header information). The second column presents the overall significant wave height $\left(H_{s}\right.$, the number of individual wave fields identified with a wave height greater that $0.05 \mathrm{~m}(\mathrm{n})$, and the number of such fields with a wave height over 0.15 m that could not be tracked in the remainder of the table (x). Individual wave fields in the spectrum are identified using a partitioning scheme similar to that of Gerling (1992). In the remaining six columns individual wave fields are tracked with their height $\left(\mathrm{H}_{\mathrm{s}}\right)$, peak wave period (T_{p}) and mean wave direction (dir, direction in which waves travel relative to North). Generally, each
separate wave field is tracked in its own column. Such tracking, however, is not guaranteed to work all the time. An asterisk in a column identifies that the wave field is at least partially under the influence of the local wind, and, therefore, most likely part of the local wind sea. All other individual wave fields are pure swell.

b. Spectral text bulletins for AWIPS

The format for the spectral text bulletins sent to AWIPS is generally the same as that for the web, except that the period is to the nearest second, the wave heights are to the nearest foot, the direction is from (meteorological, rather than oceanographic), the number of fields that couldn't be tracked is not given, and the asterisk indicating when a wave field is, at least, partially under the influence of the local wind is not shown. The bulletin width is 69 characters, which is a legacy of the teletype era and the display capability of AWIPS. A sample bulletin is shown in fig. 13, and the list of points for the NWW 3 is given in Table 1.

d. GRIB bulletins

GRIB bulletins are available for use in AWIPS. Table 3 gives the bulletin headers and the ir meaning. Bulletins are available at $6-\mathrm{h}$ intervals from $00-$ through $72-\mathrm{h}$ and at 12-h intervals from 72-through 168-h. Available parameters are H_{s}, m, T_{m}, peak wave direction and period, wind sea peak wave direction and period, and u and v components of the wind velocity. A $1.25^{\circ} \times 1.00^{\circ}$ Ion./lat. grid is used with a domain from $0^{\circ}-360^{\circ} \mathrm{E}$ and $78^{\circ} \mathrm{N}$ to $78^{\circ} \mathrm{S}$.

4. EVALUATION

Extensive evaluation of the NWW3 model has been carried out by comparing with buoy data and ERS2 altimeter data. These results are available at http://polar.wwb.noaa.gov/waves/.

5. REFERENCES

Booij, N. and L. H. Holthuijsen, 1987: Propagation of ocean waves in discrete spectral wave models. J. Comput. Phys., 68, 307-326.

Bretschneider, C. L., 1958: Revisions in wave forecasting: Deep and shallow water. Proc. 6th Int. Conf. Coastal Eng., ASCE, 30-67.

Caplan, P., J. Derber, W. Gemmill, S.-Y. Hong, H.-L. Pan and D. Parish, 1997: Changes to the NCEP operational medium-range forecast model analysis/forecast system. Wea. Forecasting, 12, 581-594.

Chalikov, D. V. and Belevich, M. Y., 1993: One-dimensional theory of the boundary layer. Boundary-Layer Meteor., 63, 65-96.

Chen, H. S., 1995: Ocean surface waves. NWS Technical Procedures Bulletin No. 426, NOAA, U.S. Department of Commerce, 17 pp . [OBSOLETE]

Gerling, T. W., 1992: Partitioning sequences and arrays of directional wave spectra into component wave systems. J. Atmos. Ocean. Techn., 9, 444-458.

Hargreaves, J. C. and J. D. Annan, 2001: Comments on Im provement of the short fetch behavior in the W AM model. J. Atmos. and Oceanic Tech., 18, 711-715.

Kanamitsu, M., J. C. Alpert, K. A. Campana, P. M. Caplan, D. G. Deaven, M. Iredell, B. Katz, H.-L. Pan, J. E. Sela and G. H. White, 1991: Recent changes implemented into the global forecast system at NMC. Wea. Forecasting, 6, 425-435.

Neumann, G. and W. J. Pierson, 1966: Principles of physical oceanography. Prentice-Hall, Inc., New York, 571 pp.

Sverdrup, H. U. and W. H. Munk, 1947: Wind, sea and swell: Theory of relations for forecasting. Publication 601, Hydrographic Office, U.S. Navy, 50 pp.

The SW AMP Group, 1985: Ocean Wave Modeling. Plenum Press, New York, 256 pp.
Tolman, H. L. and Chalikov, D., 1996: Source terms in a third-generation wind-wave model. J. Phys. Oceanogr., 26, 2497-2518.

Tolman, H. L., 2002: User manual and system documentation of WAVEW ATCH-III version 2.22. Technical Note No. 222, Ocean Modeling Branch, NCEP, National Weather Service, NOAA, Department of Commerce, 110 pp . [Available at http://polar.wwb.noaa.gov/mmab/papers/tn222/MMAB 222.pdf].

The WAMDI Group, 1988: The WAM model - A third generation ocean wave prediction model. J. Phys. Oceanogr., 18, 1775-1810.

World Meteorological Organization, 1998: Guide to wave analysis and forecasting (second edition). WMO No. 702, Secretariat of the World Meteorological Organization, Geneva, Switzerland, 224 pp.

1. ${ }^{1}$ OMB Contribution No. 217
2. ${ }^{2}$ H. L. Tolman is a contractor with SAIC.
3. ${ }^{3} \mathrm{~A}$ third generation wave model solves the radiative transfer equation by direct integration of all its components without pre-assumed constraints to the spectral shape. Previous models rely (partially) on assumed spectral shapes and parameterizations of the integral effects of the physics of wave growth and decay.

Table 1. Name, location, and header inform ation for spectral text bulletins associated with the NWW 3 global wave model.

Station Name	Position (N and W , except where indicated)		AWIPS and WMO Header
	Latitude	Longitude	
Points for Wave Spectra from the NOAA WAVEWATCH III (NWW3) Global Wave Model			
Northwest Atlantic Points			
44004	38.50	70.70	AGNT41 KWBJ OSBN01
44008	40.50	69.40	AGNT41 KWBJ OSBN02
44011	41.10	66.60	AGNT41 KWBJ OSBN03
44138	44.23	53.63	AGNT41 KWBJ OSBN04
44141	42.06	56.15	AGNT41 KWBJ OSBN05
44142	42.47	62.25	AGNT41 KWBJ OSBN06
Southwest Atlantic Points			
41001	34.70 N	72.60W	AGNT42 KWBJ OSBN01
41002	32.30	75.20	AGNT42 KWBJ OSBN02
Gulf of Mexico Points			
42001	25.92	89.68	$\begin{aligned} & \text { AGGX44 KWBJ } \\ & \text { OSBN01 } \end{aligned}$
42002	25.17	94.42	$\begin{aligned} & \text { AGGX44 KWBJ } \\ & \text { OSBN02 } \end{aligned}$
42003	25.95	85.88	AGGX44 KWBJ OSBN03
Eastern Pacific Points			
46002	42.50	130.30	AGPZ46 KWBJ OSBN01
46005	46.10	131.00	AGPZ46 KWBJ OSBN02
46006	40.90	137.50	AGPZ46 KWBJ OSBN03
46059	38.00	130.00	AGPZ46 KWBJ OSBN04
Canadian Points			
46036	48.35	133.92	AGPZ47 KWBJ OSBN01
Eastem Gulf of Alaska Points			
46184	53.90	138.87	AGGA47 KWBJ OSBN02
46004	50.97	135.80	AGGA47 KWBJ OSBN03
Western Gulf of Alaska and Bering Sea Points			
46001	56.30	148.30	AGGA48 KWBJ OSBN01
46066	52.65	155.00	AGGA48 KWBJ OSBN02
Bering Sea Points			
46035	57.00	177.70	AGPN48 KWBJ OSBN01

South Pacific Points			
TPC01	15.00 S	85.00	$\begin{aligned} & \text { AGPS40 KWBJ } \\ & \text { OSBN01 } \end{aligned}$
TPC02	15.00 S	110.00	AGPS40 KWBJ 0SBN02
TPC03	15.00 S	135.00	$\begin{aligned} & \text { AGPS40 KWBJ } \\ & \text { OSBN03 } \end{aligned}$
Pago_Pago	15.00 S	168.75	$\begin{aligned} & \text { AGPS40 KWBJ } \\ & \text { OSBN07 } \end{aligned}$
Papeete	19.00S	149.60	$\begin{aligned} & \text { AGPS40 KWBJ } \\ & \text { OSBN08 } \end{aligned}$
Rarotonga	21.20 S	159.80	$\begin{aligned} & \text { AGPS40 KWBJ } \\ & \text { OSBN09 } \end{aligned}$
Niue	19.10S	169.90	$\begin{aligned} & \text { AGPS40 KWBJ } \\ & \text { OSBN10 } \end{aligned}$
Nukunono	9.20S	171.90	$\begin{aligned} & \text { AGPS40 KWBJ } \\ & \text { OSBN11 } \end{aligned}$
Tongatapu	22.00 S	175.00	$\begin{aligned} & \text { AGPS40 KWBJ } \\ & \text { OSBN12 } \end{aligned}$
Funafuti	8.50S	179.20E	AGPS40 KWBJ OSBN13
maintain Nadi	18.00S	176.25E	$\begin{aligned} & \text { AGPS40 KWBJ } \\ & \text { OSBN14 } \end{aligned}$
Port_Vila	18.00S	167.50E	$\begin{aligned} & \text { AGPS40 KWBJ } \\ & \text { OSBN15 } \end{aligned}$
Noumea	24.00S	167.50E	AGPS40 KWBJ OSBN16
Nauru	00.50S	167.00E	AGPS40 KWBJ OSBN17
Equatorial Points			
TPC04	00.00	93.75	AGXT40 KWBJ OSBN01
51028	00.00	153.88	$\begin{aligned} & \text { AGXT40 KWBJ } \\ & \text { OSBN02 } \end{aligned}$
Hawaiian Points			
51001	23.40	162.30	$\begin{aligned} & \hline \text { AGHW40 KWBJ } \\ & \text { OSBN01 } \end{aligned}$
51002	17.20	157.80	$\begin{aligned} & \text { AGHW40 KWBJ } \\ & \text { OSBN02 } \end{aligned}$
51003	19.10	160.80	$\begin{aligned} & \text { AGHW40 KWBJ } \\ & \text { OSBN03 } \end{aligned}$
51004	17.40	152.50	$\begin{aligned} & \text { AGHW40 KWBJ } \\ & \text { OSBN04 } \end{aligned}$
Midway	28.20	177.4	$\begin{aligned} & \text { AGHW40 KWBJ } \\ & \text { OSBN06 } \end{aligned}$
FF_Shoals	23.90	166.30	AGHW40 KWBJ OSBN07
Johnston	16.70	169.50	AGHW40 KWBJ OSBN08
Western Pacific Points			
Saipan	16.00	147.50E	$\begin{aligned} & \hline \text { AGPW40 KWBJ } \\ & \text { OSBN01 } \end{aligned}$
Guam	12.00	143.75E	$\begin{aligned} & \text { AGPW40 KWBJ } \\ & \text { OSBN02 } \end{aligned}$
Wake	19.50	166.50E	$\begin{aligned} & \text { AGPW40 KWBJ } \\ & \text { OSBN03 } \\ & \hline \end{aligned}$

Palau	9.00	136.25 E	AGPW40 KWBJ OSBN04
Yap	9.60	138.00 E	AGPW40 KWBJ OSBN05
Chuuk	8.00	152.50 E	AGPW40 KWBJ OSBN06
Pohnpei	7.00	157.50 E	AGPW40 KWBJ OSBN07
Kosrae	5.10	163.00 E	AGPW40 KWBJ OSBN08
Majuro	8.00	171.25 E	AGPW40 KWBJ OSBN09
Enewetak	13.00	163.75 E	AGPW40 KWBJ OSBN10
Tarawa	1.00	174.00 E	AGPW40 KWBJ OSBN11

Notes:

1. The WMO/AWIPS headers follow the form given for oceanographic data, i.e., $A G A_{1} A_{2} i_{1} \mathrm{i}_{2}$, where i_{1} is 4 and always means spectral wave data.
2. i_{2} is the geographic location, where:

0 - means Pacific Ocean, particularly in proximity to U.S. held islands (Hawaii and Guam's areas of responsibility)
1 - means proximity to NE Atlantic States from Virginia northward
2 - means proximity to SE Atlantic States from North Carolina southward and Puerto Rico
4 - means proximity to southem Gulf of Mexico states
6 - means proximity to Pacific States and southern British Columbia
7 - means proximity to Panhandle of Alaska and northern British Columbia (Juneau's areas of responsibility)
8 - means proximity to southem and southwestem Alaska (Anchorage's areas of responsibility)
3. $A_{1} A_{2}$ is used by the originating office (NCEP/NCO) to identify the oceanic area of the point, where:

NT - Western Atlantic
GX - Gulf of Mexico
CA - Caribbean Sea
PZ - Eastern Pacific
GA - Gulf of Alaska
PN - North Pacific including Bering Sea
AC - Arctic Ocean
HW - Hawaiian Waters
PW - Western Pacific
XT - Tropical Belt
PS - South Pacific
4. The AWIPS identifier form is NNN $x x x$: where NNN is OSB - Oceanographic Spectral Bulletin, and xxx takes the form: mnn - where m is the wave model and nn is the number of the point in a given geographic location according to note 2 above. nn can range from 01-99.
5. m is the wave model where:

N is the NOAA WAVEWATCH III global wave model
A is the Alaska Waters regional wave model
W is the Western North Atlantic regional wave model
H is the North Atlantic Hurricane regional wave model
E is the Eastem North Pacific regional wave model
P is the North Pacific Hurricane regional wave model
X is the Western North Pacific regional wave model
T is the Western Pacific Typhoon regional wave model

Table 2. The center frequencies and corresponding band widths with center period by frequency bin.

bin number	center frequency (Hz)	frequency band width (Hz)	center period (s)
1	. 0418	. 00399	23.94
2	. 0459	. 00439	21.76
3	. 0505	. 00482	19.79
4	. 0556	. 00531	17.99
5	. 0612	. 00584	16.35
6	. 0673	. 00642	14.87
7	. 0740	. 00706	13.51
8	. 0814	. 00777	12.29
9	. 0895	. 00855	11.17
10	. 0985	. 00940	10.15
11	. 1083	. 01034	9.23
12	. 1192	. 01138	8.39
13	. 1311	. 01251	7.63
14	. 1442	. 01376	6.93
15	. 1586	. 01514	6.30
16	. 1745	. 01666	5.73
17	. 1919	. 01832	5.21
18	. 2111	. 02015	4.74
19	. 2322	. 02217	4.31
20	. 2555	. 02438	3.91
21	. 2810	. 02682	3.56
22	. 3091	. 02951	3.24
23	. 3400	. 03246	2.94
24	. 3740	. 03570	2.67
25	. 4114	. 03927	2.43

Table 3. WMO GRIB bulletin header descriptors.

T_{1}	$\mathrm{T}_{2}{ }^{1}$	$\mathrm{A}_{1}{ }^{2}$	A_{2}	dd	Station id
O	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{~J} \\ & \mathrm{~K} \\ & \mathrm{M} \\ & \mathrm{~N} \\ & \mathrm{P} \\ & \mathrm{Y} \end{aligned}$	J		88	KWBJ

Where:
T_{1} is the bulletin type descriptor: O - oceanographic.
T_{2} is the parameter descriptor, see notes below.
A_{1} is the grid and domain descriptor: $\mathrm{J}-1.25^{\circ} \times 1.00^{\circ}$ lon/lat grid over domain from $0-360 \mathrm{E}$ and $78 \mathrm{~N}-78 \mathrm{~S}$. A_{2} is the forecast hour descriptor, see notes below. dd is the surface descriptor: 88 -ocean surface.

Notes:

1. Parameter descriptors

A - u-wind component
B - v-wind component
C - Total significant wave height
J - Peak wave period
K - Peak wave direction
M - Peak wind sea period
N - peak wind sea direction
P-D
$\mathrm{Y}-\mathrm{T}_{\mathrm{m}}$
2. Forecast hour descriptors at 6-h intervals from 0- to 72-h and at 12-h intervals from 72- to 120-h.

Garden Sprinkler Effect

Exact solution: continuous dispersion of swell energy over a large area.
Tolman May 2002
Figure 1. Exact solution of dispersion of swell energy over a large area.

Garden Sprinkler Effect ${ }^{2}$

- Third order accurate Ultimate-Quickest scheme (Leonard) of WAVEWATCH III.
- Obvious garden sprinkler effect, spectral discretization results in disintegration of swell field.
- Essentially useless in this form.

Tolman May 2002
Figure 2. Disintegration of swell field due to spectral discretization of wave energy - the ' garden sprinkler' effect.

Garden Sprinkler Effect

- UQ scheme with Booij and Holthuijsen (1987) diffusive dispersion correction.
- Major improvement over plain UQ scheme, tunable.
- Due to explicit schemes, stability becomes a major issue at small grid steps (order 25 km).

PRESENT OPERATIONAL MODELS
Tolman May 2002
Figure 3. The Booij and Holthuijsen (1987) solution to the 'garden sprinkler' effect.

Garden Sprinkler Effect

- UQ scheme with simple pre- or postaveraging of fields.
- Virtually identical results as previous, tunable, cheap.

Tolman May 2002
Figure 4. New method for handling the 'garden sprinkler' effect.

Garden Sprinkler Effect

Peak periods from 7 to 10 s from hurricane Florence at 00z Sept. 13: 2000 from NAH model. Relative computational costs in red.

Tolman May 2002
CAFII
Figure 5. Comparison of methods to deal with the 'garden sprinkler' effect and the relative computational costs of each.

Figure 6. Model errors induced by unresolved islands.

Figure 7. To resolve this island group would be unrealistically expensive, computationally.

Tolman May 2002
Figure 8. The sub grid obstacle approach to unresolved islands.

Figure 9. Bias changes due to addition of sub grid islands.

Tolman May 2002
CAFII
Figure 10. Scatter index plots without and with sub grid islands.

Tolman May 2002
Figure 11. Differences in Scatter Index due to sub grid islands.

Tolman May 2002
Figure 12. Impact of sub grid islands on higher resolution models.

```
AGNT42 KWBJ 080418
```

OSBN02

```
LOCATION : 41002 (32.30N 75.20W)
MODEL : NWW3 GLOBAL 1X1.25 DEGR.
CYCLE : 20020508 T00Z
<
DDHH HS SS PP DDD SS PP DDD
```


. .

.-..
$1413 \quad 3 \quad 1 \quad 09 \quad 089 \quad 206019 \quad 1 \quad 09 \quad 064 \quad 1 \quad 02 \quad 221 \quad 2 \quad 06137$
$\begin{array}{llllllllllllll}1414 & 3 & 1 & 09 & 080 & 2 & 06 & 019 & 1 & 02 & 218 & 2 & 06 & 137\end{array}$
$\begin{array}{llllllllllllll}1415 & 3 & 1 & 09 & 080 & 2 & 06 & 019 & 1 & 02 & 222 & 2 & 06 & 137\end{array}$
$\begin{array}{lllllllllllllllll}1416 & 3 & 1 & 09 & 080 & 2 & 06 & 019 & 1 & 03 & 223 & 2 & 06 & 136\end{array}$
$\begin{array}{lllllllllllllllllll}1417 & 3 & 1 & 09 & 081 & 2 & 06 & 019 & 1 & 03 & 220 & 2 & 06 & 135\end{array}$
$\begin{array}{llllllllllllllll}1418 & 3 & 1 & 09 & 081 & 2 & 06 & 019 & 1 & 02 & 215 & 2 & 06 & 135\end{array}$
$1419 \quad 3 \quad 109082 \quad 106019 \quad 1 \quad 02 \quad 213 \quad 206136$
$\begin{array}{lllllllllllllllll}1420 & 3 & 1 & 09 & 082 & 1 & 06 & 019 & 1 & 02 & 213 & 2 & 06 & 135\end{array}$

$\begin{array}{llllllllllllllll}1422 & 3 & 1 & 09 & 083 & 1 & 06 & 018 & 1 & 03 & 219 & 2 & 06 & 135\end{array}$
$\begin{array}{lllllllllllllllllllll}1423 & 3 & 1 & 09 & 083 & 1 & 06 & 018 & 1 & 04 & 220 & 2 & 06 & 135\end{array}$
$15003109083106018 \quad 1 \quad 03232 \quad 2 \quad 06134$
DD = DAY OF MONTH
HH = HOUR OF DAY
HS = TOTAL SIGNIFICANT WAVE HEIGHT (FEET)
SS = SIGNIFICANT WAVE HEIGHT OF SEPARATE SYSTEM (FEET)
PP = PEAK PERIOD OF SEPARATE SYSTEM (WHOLE SECONDS)
DDD = MEAN DIRECTION OF SEPARATE SYSTEM (DEGREES/"FROM")

Figure 13. Sample wave spectra from the NWW3. These bulletins give a 12-h hindcast as well as a 168-h forecast at 1-h intervals. Only a portion of the bulletin is shown here.

day \& hour	Hst n x (m) - -	$\begin{array}{ccc} \text { Hs } & \mathrm{Tp} & \operatorname{dir} \\ (\mathrm{~m}) & \text { (s) } & \text { (d) } \end{array}$	$\begin{array}{r} \mathrm{HS} \\ (\mathrm{~m}) \end{array}$	$\begin{aligned} & \mathrm{Tp} \operatorname{dir} \\ & (\mathrm{~s}) \\ & \text { (d) } \end{aligned}$		$\begin{aligned} & \mathrm{Hs} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{Tp} \operatorname{dir} \\ & \text { (s) (d) } \end{aligned}$		$\begin{gathered} \mathrm{Hs} \\ (\mathrm{~m}) \end{gathered}$	$\begin{aligned} & \text { Tp dir } \\ & \text { (s) (d) } \end{aligned}$	$\begin{array}{ccc} \text { Hs } & \text { Tp } & \text { dir } \\ (\mathrm{m}) & \text { (s) } & \text { (d) } \end{array}$	$\begin{aligned} & \mathrm{HS} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{Tp} \operatorname{dir} \\ & \text { (s) (d) } \end{aligned}$
200	2.85	2.512 .9130	1.1	8.4287		. 2	11.1359		. 2	11.8194			
201	2.85	2.512 .7130	1.1	8.4287		. 2	11.1359		. 2	11.8195			
202	2.75	2.512 .6129	1.1	8.4287		. 2	11.1359		. 2	11.7195			
203	2.75	2.512 .5129	1.1	8.4287		. 2	11.1359		. 2	11.7196			
204	2.76	2.512 .4129	1.1	8.3287		. 2	11.0359		. 2	11.6196			
205	2.76	2.412 .3128	1.1	8.3287		. 2	11.0359		. 2	11.5194			
206	2.76	2.412 .3128	1.1	8.3287		. 2	11.0359		. 2	11.4195			
207	2.76	2.412 .2128	1.1	8.3287		. 2	11.0359		. 2	11.4195			
208	2.76	2.512 .2128	1.1	8.3287		. 2	11.0359		. 2	11.3196			
209	2.75	2.512 .2128	1.0	8.3287		. 2	11.0358		. 2	11.3196			
2010	2.85	2.612 .2128	1.0	8.3287		. 2	10.9358		. 2	11.3196			
2011	2.95	2.612 .2129	1.0	8.3287		. 2	10.9358		. 2	11.3197			
2012	3.06	2.512 .2128	1.0	8.2287		. 2	10.93		. 2	11.3197	1.216 .2133		
2013	3.16	2.312 .0128	1.0	8.2287		. 2	10.93		. 2	11.3197	1.715 .5132		
2014	3.26	2.312 .0128	1.0	8.2287		. 2	10.83		. 2	11.3198	1.915 .6132		
2015	3.46	2.412 .1128	1.0	8.2287		. 2	10.63		. 2	11.3198	2.115 .7132		
2016	3.56	2.412 .1128	1.0	8.2287		. 2	10.53		. 2	11.3198	2.315 .7132		
2017	3.66		1.0	8.1287					. 2	11.3199	3.515 .7130		
2018	3.86		1.0	8.1287					. 2	11.3199	3.615 .7130		
2019	3.96		1.0	8.1287					. 2	11.3199	3.815 .7130		
2020	4.06		1.0	8.1287					. 2	11.3200	3.915 .6130		
2021	4.16		1.0	8.0287					. 2	11.3200	4.015 .4130		
2022	4.16		1.0	8.0288					. 2	11.3200	4.015 .3130		
2023	4.26		. 9	8.0288					. 2	11.3200	4.115 .1130		
210	4.26		. 9	7.9288					. 2	11.3200	4.115 .0129		
211	4.37		. 9	7.9288					. 2	11.2200	4.214 .9129		
212	4.37		. 9	7.8288					. 2	11.2201	4.214 .8129		
213	4.37		. 9	7.8288					. 2	11.2201	4.214 .8129		
214	4.37		. 9	7.8288					. 2	11.2201	4.214 .7128		
215	4.36	. 215.211	. 9	7.7288					. 2	11.2200	4.214 .7128		
216	4.36	. 215.211	. 9	7.7288					. 2	11.2200	4.214 .6128		
217	4.26	. 215.211	. 9	7.7288					. 2	11.1200	4.114 .6128		
218	4.26	. 215.211	. 9	7.7288					. 2	11.1199	4.114 .6128		
219	4.26	. 215.211	. 9	7.6288					. 2	11.1199	4.114 .5128		
2110	4.16	. 215.311	. 8	7.6288					. 2	11.1199	4.014 .5128		
2111	4.16	. 21515.311	. 8	7.6288					. 2	11.0198	4.014 .5128		
2112	4.07	$\begin{array}{ll}2 & 15.311\end{array}$. 8	7.6288	*	. 4	3.3245		. 2	11.0197	3.914 .4128		
2113	4.07	. 21515.411	. 8	7.6289	*	. 5	3.4248		. 2	11.0197	3.914 .4129		
2114	3.97	. 21515.411	. 8	7.6290	*	. 6	3.8250				3.814 .4129		
2115	3.97	. 21515.411	. 8	7.6289	*	. 7	4.0253		. 6	4.0201	3.714 .3128		
2116	3.97	. 215.511	. 8	7.6289	*	. 8	4.2255		. 7	4.2203	3.614 .3128		
2117	3.87	. 215.511	. 7	7.6290	*	. 9	4.4257		. 7	4.5205	3.614 .3129		
2118	3.87	. 215.511	. 7	7.5289	*	. 9	4.6266	*	. 9	4.9214	3.514 .3129		
2119	3.86	. 215.511	. 7	7.5290	*	1.0	4.8267	*	1.0	5.1214	3.414 .2129		
2120	3.75	. 215.58	. 7	7.5289	*	1.1	5.0268	*	1.1	5.5214	3.314 .2130		
2121	3.75	. 215.48	. 7	7.4288	*	1.1	5.2268		1.2	5.8211	3.214 .1129		
2122	3.75	. 215.48	. 7	7.4289	*	1.2	5.5268	*	1.2	5.9215	3.214 .1131		

Hst : Total significant wave height.
n : Number of fields with Hs > . 05 in 2-D spectrum.
x : Number of fields with Hs > .15 not in table.
Hs : Significant wave height of separate wave field.
Tp : Peak period of separate wave field.
dir : Mean direction of separate wave field.

* : Wave generation due to local wind probable.

Figure 14. Sample spectral text bulletin as it is found on the INTERNET

