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Abstract 

The approach to accurate and fast calculating model physics using neural network 

emulations was previously developed by the authors for both long-wave and short-wave 

radiation parameterizations, or for the full model radiation, the most time-consuming 

component of model physics.  It was successfully tested for a moderate resolution 

uncoupled NCAR CAM (Community Atmospheric Model) driven by climatological SST 

for a decadal climate simulation mode (Krasnopolsky et al. 2008a).  In this study, the 

approach has been further developed and implemented into the NCEP coupled CFS 

(Climate Forecast System) with significantly higher resolution and time dependent CO2. 

The higher complexity of NCEP CFS required introducing further adjustments to the 

neural network emulation methodology.  Validation of the approach for the NCEP CFS 

has been done through a decadal climate simulation and seasonal predictions.  The 

developed highly accurate neural network emulations of long-wave and short-wave 

radiation parameterizations are on average 16 and 60 times faster than the original/control 

long-wave and short-wave radiation parameterizations, respectively.  A detailed 

comparison of parallel decadal climate simulations and seasonal predictions performed 

with the original NCEP model radiation parameterizations and with their neural network 

emulations is presented.  Almost identical or close results for model prognostic and 

diagnostic fields have been obtained for the parallel decadal simulations and seasonal 

prediction that justifies the practical use of efficient neural network emulations of full 

model radiation for climate simulations and seasonal predictions.   
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1. Introduction 

Calculation of model physics in a GCM (General Circulation Model) usually takes a very 

significant part of the total model computations.  Evidently, this percentage is model 

dependent but full model radiation is the most time-consuming component of GCMs 

(e.g., Morcrette et al. 2007, 2008, Manners et al. 2009).   In both climate modeling and 

NWP, the calculation of radiative transfer is necessarily a trade-off between accuracy and 

computational efficiency.  There exist very accurate methods such as line-by-line 

procedures that could be employed ideally to calculate radiative fluxes for every grid-

point at every time-step.  If the radiation transfer were to be computed for every grid 

point and at all time steps, it would generally require as much CPU time or more than the 

rest of the model components, i.e., model dynamics and other physical parameterizations 

(Morcrette et al. 2008).  Therefore a number of simplifications are usually made to reduce 

this cost to manageable levels.   

 

For example, in the majority of modern radiative schemes, the correlated-k method (Lacis 

and Oinas 1991) is typically used to reduce the integration over wavelength by 

effectively binning wavelengths with similar absorption coefficients (k-terms).  This 

simplification reduces greatly the number of monochromatic radiative transfer 

calculations required.  The number of k-terms can be adjusted, which provides a trade-off 

between the accuracy and efficiency required for a given application.  However, the 

correlated-k methods cannot be made sufficiently computationally efficient to allow 

calculations for every grid-point at every time-step.   
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To reduce the cost further, calculations are usually made at lower temporal and/or spatial 

resolutions.  Quite drastic reductions in temporal resolution are often made (e.g., 

radiation calculations are made every one or three hours for the climate and global 

forecast models at NCEP and UKMO (Manners et al. 2008)).  Between radiative transfer 

calculations major changes may occur in the radiative profiles (caused primarily by two 

factors: changes in clouds and changes in the angle of incident solar radiation) that are 

not represented.  A reduced horizontal resolution approach (the radiative calculations are 

performed on a coarser grid with a following interpolation of the results to an original 

finer grid) is used to speed up radiation calculations at ECMWF (Morcrette et al. 2007, 

2008).  A reduced vertical resolution approach (the full radiation is calculated at every 

other vertical level and interpolated on the intermediate levels) is used in the Canadian 

operational Global Environmental Multiscale model (e. g. Coˆte´ et al. 1998a, 1998b).  

Such approaches reduce horizontal or vertical variability of radiation fields.  Thus, these 

approaches may reduce the accuracy of a model’s radiation calculation and its spatial 

or/and temporal consistency with other parts of model physics and with model dynamics, 

which may, in turn, affect negatively the accuracy of climate simulations and weather 

predictions.   

 

Such a situation is an important motivation for developing new alternative numerical 

algorithms that provide faster calculations of model physics while carefully preserving 

their accuracy.  Two techniques have been proposed to improve temporal and spatial 

resolution of radiation calculations: (1) the technique that improves interpolation of the 

radiative calculations from the coarse grid to the fine one (Morcrette et al. 2008) or 
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improve radiative calculations between the time steps for which full radiative calculations 

are performed (Venema 2007, Manners et al. 2008), and (2) the technique that introduces 

either new fast radiation parameterizations (Chevallier et al. 1998, 2000) or accurate and 

fast emulations of existing radiation schemes and parameterizations (Krasnopolsky 1997, 

Krasnopolsky et al. 2005a, 2008a) that can be used in a model at each grid point and at 

each time step instead of original slow radiative calculations.    

 

A fast neural network (NN) based long wave radiation parameterization NeuroFlux 

(Chevallier et al. 1998, 2000) has been developed and tested in the ECMWF model.  The 

NeuroFlux approach has a limited application (as discussed in Krasnopolsky et al. 2005b) 

because it has been developed for a particular formulation (Washington and Williamson 

1977) of the long wave radiation physics only.  Also, because of NeuroFlux’s suboptimal 

design (as discussed in Krasnopolsky et al. 2005b), at vertical resolution of 60 layers and 

more, both accuracy and rapidity of NeuroFlux cannot be achieved simultaneously 

(Morcrette et al. 2008). Consequently, the NeuroFlux is used only for the 4D-Var 

linearized physics (Janiskova et al., 2002) for which the accuracy requirements are less 

stringent.   

 

In our previous studies (Krasnopolsky et al. 2005a, 2008a, Krasnopolsky and Fox-

Rabinovitz 2006a, b) we demonstrated that the neural network emulation approach can be 

successfully used to speed up significantly (by one to two orders of magnitude) the 

calculations of model radiation while providing a sufficient accuracy of decadal (50-year) 

climate simulations.  We also demonstrated that this approach is a generic one; namely it 
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can be used not only for emulating any formulation of the long wave radiation physics 

but also for emulating any formulation of short wave radiation physics.    

 

In the previous studies (Krasnopolsky et al. 2005a, 2008a), we used a moderate resolution 

NCAR (National Center for Atmospheric Research) CAM (Community Atmospheric 

Model), coupled with a land model, with the T42 (~3 degree) horizontal resolution and 

26 vertical levels (T42L26).  In that study, CAM was driven by the climatological sea 

surface temperature (SST) forcing (with no ocean model coupled).   

 

It this study we apply the NN emulation approach to the higher complexity NCEP CFS 

(Climate Forecasting System) (Saha et al. 2006), which required further development of 

the neural network emulation methodology.  We demonstrate that the NN emulation 

approach for model radiation can be successfully applied to the significantly higher 

resolution coupled ocean-atmosphere-land-ice model with time dependent CO2. The 

atmospheric part of CFS has spectral T126 horizontal resolution and 64 vertical levels 

(T126L64); it is coupled with the 40-level interactive MOM4 ocean model, with a state-

of-the-art 3D land model, and with an ice model. 

 

In Section 2, we briefly describe the coupled NCEP CFS.  In Section 3, the extended NN 

emulation methodology and developed NN emulations for the NCEP CFS long-wave 

radiation (LWR) and short-wave radiation (SWR) are briefly described in terms of their 

design, accuracy, and computational performance.  In Section 4, the results of the parallel 

decadal model simulations and seasonal predictions, one using both LWR and SWR NN 
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emulations for calculation of full model radiation (the NN run) and the other using the 

original model radiation (the control run) are compared in terms of similarity of their 

spatial and temporal variability characteristics.  Section 5 contains conclusions. 

 

   2.  The NCEP Climate Forecast System 

The operational NCEP CFS is described in detail in Saha et al. (2006) and the references 

therein.  The coupled NCEP CFS version (being tested for the operational use) used in 

our study incorporates: the NCEP GFS (Global Forecast System) 64-level atmospheric 

model, the 40-level interactive MOM4 ocean model, the interactive Noah land model 

with four soil levels with improved treatment of snow and frozen soil, an interactive sea 

ice model with fractional ice cover and depth allowed, a sub-grid scale mountain 

blocking, a new seasonal climatological aerosol treatment, a historical CO2 database from 

global observations collected by the World Meteorological Organization, a variable solar 

constant database, and historical stratospheric volcanic aerosol distributions (Sato et al., 

1993).   

 

The NCEP GFS model is a mature, state-of-the-art spectral atmospheric GCM (AGCM) 

used in operational medium-range weather forecasts.  The operational GFS version has a 

variable horizontal spectral resolution of up to T382 or ~ 38 km.  The hybrid sigma-

pressure coordinate and a conservative finite-difference scheme are used in the vertical 

domain. The operational model is run with 64-layer vertical resolution between the 

surface and 0.27 hPa (about 60 km).  The current version is implemented in the Message 

Passing Interface parallel environment. The GFS incorporates parameterizations of a 
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variety of physical processes important in the troposphere and stratosphere and 

implemented in a “plug compatibility” format that facilitates model development.  Its 

radiation components contain a GCM version (v2.3) of the Rapid Radiative Transfer 

Model (RRTM) for LWR (hereafter referred to as RRTMG-LW) developed at AER Inc. 

(e.g. Mlawer et al., 1997; Iacono et al., 2000), and a SWR based on Chou’s 

parameterization scheme (Hou et al., 2002; Chou and Suarez, 1999).  In the new coupled 

CFS used in this study the SWR of the operational GFS has been replaced by a GCM 

version (v2.3) of the AER’s RRTM SWR (hereafter referred to as RRTMG-SW) (e.g. 

Clough et al., 2005) to improve the accuracy of SWR calculation.   

 

   3.  NN emulations for the NCEP CFS radiation  

3.1 Background Information on NCEP CFS LWR and SWR      

Radiation (LWR and SWR) parameterizations in an atmospheric model calculate 

radiation fluxes and heating rates in the earth-atmospheric system.  The RRTMG-LW in 

the new CFS model employs a computationally efficient correlated-k method for 

radiative transfer calculations.  It contains 16 spectral bands with various number of 

quadrature points (g-points) in each of the bands that sums up to a total of 140 g-points 

(e.g., Mlawer et al., 1997, Iacono et al., 2000).  Active gas absorbers include H2O, O3, 

CO2, CH4, N2O, O2, and four types of halocarbons (CFCs).  A maximum-random cloud 

overlapping scheme is used for cloudy sky radiative transfer, and a climatological aerosol 

scheme provides the global distribution of aerosol optical depth.   In this study, a one-

hour frequency of radiation calculation is applied to both SWR and LWR. In the current 

version of the LWR parameterization the level of atmospheric CO2 and its time 
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dependence is presented by its global mean value that increased from 350 to 380 ppmv 

during the period of model integration used in this study (1990 to 2006).   

 

Beside the RRTMG-LW, which is a faster member of the RRTM LWR family, we have 

also experimented with another version of the RRTM LWR (hereafter as RRTMF-LW) in 

this study.  The RRTMF-LW is based on AER’s RRTM-LW v3.0.  It uses a full 16 g-

points in each of the 16 spectral bands that add to a total of 256 vs. the reduced total of 

140 in the faster RRTMG-LW.  Unlike the diffusivity approach (one zenith angle of 

about 53°) in the faster RRTMG-LW, the RRTMF-LW uses multi-angle radiance 

integration over a hemisphere to yield better accuracy (we set it at 3 angles in the study).  

As a result, the RRTMF-LW is about five times slower than the RRTMG-LW in 

exchange for improved accuracy (Mlawer et al., 1997). 

 

The SWR parameterization used in the new CFS is a modified version of AER’s 

RRTMG-SW (v2.3) (Clough et al., 2005).  It contains 14 spectral bands with various 

numbers of g-points in each of the bands to a total of 112.  RRTMG-SW uses a fast two-

stream radiative transfer scheme, and supports sophisticated absorption and scattering 

processes by clouds, aerosols, and absorbing gases (H2O, O3, CO2, CH4, N2O, O2).  Thus, 

in the current version of the SWR parameterization the level of atmospheric CO2 and its 

time dependence is presented by the entire 3-D CO2 field that changes with time in 

accordance with the change of the mean CO2 level that increased from 350 to 380 ppmv 

during the period of model integration used in this study (1990 to 2006). 
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Although both RRTMG-LW and RRTMG-SW are built with fast computation schemes 

designed for GCM applications, they still represent the most time-consuming physics in 

the NCEP CFS model.  The percentage of the total model computation time used by 

model physics and by radiation (LWR and SWR) vary depending largely on the model 

horizontal and vertical resolution, the time step, the frequency of radiative calculations, 

and the computing environment (e.g. the number of processors and threads).  For 

example, in the new CFS configuration at the T126L64 resolution, with the new 

RRTMG-LW and RRTMG-SW both called every hour, the portion of the radiation 

computation time is about 57% of the total AGCM model computation time.  

 

 3.2 Background Information on the NN emulation approach  

As we showed in our previous works (e.g., Krasnoposky et al. 2005a, Krasnopolsky 

2007a) any parameterization of model physics can be emulated using NNs.  NN is an 

analytical approximation that uses a family of functions like: 

 

     (1) 

where xi and yq are components of the input and output vectors X and Y, respectively, a 

and b are fitting parameters, and 



n

i
ijij xbb

1
0 )(  is a “neuron”.  The activation function 

  is usually a hyperbolic tangent, n and m are the numbers of inputs and outputs 

respectively, and k is the number of neurons in (1).  Definitions of NN terminology can 

be found in many places, for example in the book by Bishop (2006) and in the review 

paper by Krasnopolsky (2007a); however, eq. (1) is sufficient to understand the subject of 
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this paper.  The numerical complexity of NN (1) can be well approximated by the number 

of NN weights, a’s and b’s in (1)  (Krasnopolsky 2007a): 

NC = k · (n + m + 1) + m                       (2) 

The time, TNN, required for estimating the NN (1) is directly proportional to the NN 

numerical complexity NC, 

    TNN  = c · NC  

with the coefficient of proportionality c depending mainly on a hardware and software 

environment of the computer used. 

 

Obviously, the numerical complexity, NC, increases linearly with the increase of model 

vertical resolution (the number of the vertical layers, L) because both n and m depend 

linearly on L.  Thus as a result, the time required for estimating NN, TNN, increases 

linearly with the increase of model vertical resolution.  The time required for estimating 

the original parameterization, TO, also increases with the increase of vertical resolution.  

For the original parameterization, the dependence of the calculation time on vertical 

resolution is strongly conditioned by the numerical scheme implemented.  For example, 

calculation time increases for RRTMG-LW approximately linearly with the increase of L 

vs. an L2 relationship for most of other types of LWR used in many models.  

 

Thus, the dependence of the speedup, η, provided by a NN emulation on model vertical 

resolution is determined by the ratio of the two aforementioned calculation times:  

NN

O

T

T
  



 12

the time required for estimating the original parameterization, TO and the time required 

for estimating the NN emulation, TNN.   Therefore, the change of the speedup η with the 

increase of model vertical resolution will strongly depend on the physical complexity of 

the original parameterization and on the numerical scheme implemented (see also the 

discussion at the end of Section 3.6).    

 

The major goal for developing NN emulations for model physics is to obtain a 

sufficiently high accuracy for NN emulation with practically zero biases or systematic 

errors (calculated against the original model physics).  This is a necessary condition for 

obtaining non-accumulating errors during long-term climate simulations which use 

developed NN emulations.  The choice of an optimal version of NN emulation is based on 

the accuracy, not on a speed-up of computation.  All the NN emulations obtained provide 

a significant speed-up η anyway. The most efficient and convenient way of developing 

NN emulations for model physics components is to develop a single NN for a model 

physics parameterization.  Such an approach has been introduced, discussed, and applied 

in our research (e.g. Krasnopolsky et al. 2005a, b, 2008a). 

 

3.3 NN Emulations for Full Model Radiation 

The LWR and SWR parameterizations together comprise the full model radiation.  The 

LWR and SWR parameterizations or the full model radiation for the NCEP CFS have 

been emulated using two NNs, one for LWR and another for SWR.   
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The input and output vectors for NNs, emulating the LWR or SWR parameterizations, 

include the same parameters as those of the input and output vectors for the original 

LWR or SWR parameterizations, respectively.  For the LWR NN emulation, these input 

parameters are the following nine profiles: atmospheric pressure, temperature, specific 

humidity, ozone mixing ratio, total cloud fraction, cloud liquid water path, mean effective 

radius for liquid cloud, cloud ice water path, and mean effective radius for ice cloud.  The 

time dependent CO2 is presented, as in the original LWR parameterization, by its 

changing with time global mean.  The LWR parameterization (and LWR NN emulation) 

output vectors consist of the profile of heating rates (HRs) and five radiation fluxes: the 

total sky outgoing LW radiation flux from the top layer of the model atmosphere (the 

outgoing LWR or OLR), the clear sky upward flux at the top of the model atmosphere, 

the total sky upward flux at the surface, the total sky downward flux at the surface, and 

the clear sky downward flux at the surface.   

 

The NN emulation of the LWR parameterization includes all non-constant inputs of the 

original LWR (total 556 inputs; n = 556 in eq. (1)).  It has the same outputs (total 69 

outputs; m = 69 in eq. (1)) as the original LWR parameterization.  We have developed 

several NNs, all of which have the same aforementioned inputs and outputs, with the 

number k changing from 50 to 200 in eq. (1).  Varying k, the number of terms (or 

neurons) in eq. (1), allows us to demonstrate the dependence of the accuracy of 

approximation on this parameter as well as its convergence, and as a result, to provide a 

sufficient accuracy of approximation for the model (e. g. Krasnopolsky et al. 2005a).   
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The input vectors for the SWR parameterization include 55 vertical profiles: atmospheric 

pressure, temperature, specific humidity, ozone, CO2, N2O, O2, and CH4 volume mixing 

ratios, total cloud fraction, cloud liquid water path, mean effective radius for liquid cloud, 

cloud ice water path, mean effective radius for ice cloud, and three profiles (optical 

depth, single scattering albedo, and asymmetry parameter) for each of 14 different 

species of aerosols.  The input vectors include also the solar zenith angle, the solar 

constant and the surface albedo for four different bands. The SWR parameterization 

output vectors consist of a vertical profile of heating rates (HRs) and nine radiation 

fluxes: three fluxes at the top layer of the model atmosphere (the total sky outgoing SW 

radiation flux, the total sky downward flux, the clear sky upward flux), four radiation 

fluxes at the surface (the total sky upward and downward fluxes and the clear sky upward 

and downward fluxes), and the downward (the total and clear sky) fluxes in the UV-B 

spectral band.   

 

The NN emulations of the SWR parameterization have 562 inputs and 73 outputs.  We 

have developed several NNs, with the number k changing from 50 to 200 in eq. (1).  It is 

noteworthy that, as in the case of the NN emulation of LWR, the number of NN inputs is 

less than the number of input profiles multiplied by the number of vertical layers plus the 

number of relevant single level characteristics.  Many input variables (e.g., almost all 

gases) have zero or constant values for the upper vertical layers, and for some gases the 

entire volume mixing ratio profile is a constant (obtained from climatological data).   
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To improve the accuracy of the approximation, these constant inputs were not used for 

NN training.  Constant inputs (zero or nonzero) do not contribute to the functional 

input/output relationship and should not be used for development of NN emulations.  

Moreover, if they were used, they would introduce an additional noise (an approximation 

error).   In addition, for SWR, 2688 inputs describing the optical depth, the single 

scattering albedo, and asymmetry parameters of 14 aerosol species were substituted by 

five inputs: )cos( , )sin( , )cos(lon , )sin(lon , and lat, where lon is the longitude, lat is 

the latitude, and q
T
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, where q is the month of the year, and T = 12.  Such a 

substitution is possible because in NCEP CFS aerosols are calculated using the specific 

humidity profiles and 3-D lookup tables composed of climatological monthly data, 

different for different months of the year.  It means that the aerosol inputs are actually 

highly correlated, and, in terms of functional input/output dependences, the aerosol 

characteristics are the functions of lat, lon, τ, and the profile of specific humidity only.  

Since the profile of the specific humidity has been already included in NN SWR inputs, 

only the five aforementioned additional variables have to be included to allow NN to 

completely emulate the contribution of aerosols into SWR.   

 

We would like to stress that not including the constant profiles as inputs into the NN 

emulation or reducing the number of highly correlated profiles (as in the case of aerosols) 

does not in any way diminish the accuracy of the NN emulation (it is demonstrated in 

Section 3.5 and 4.).  All changing/non-constant inputs are included into the NN 

emulation.  All constant inputs are included in the original parameterization when NCEP 

CFS has been used to generate the NN training data sets (see the next Section), and the 
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NN emulation receives information about them from the training data during the NN 

training process.  From the practical point of view, if the values of constant inputs are 

changed or are made variable in the future, the NN emulation inputs will be adjusted 

correspondingly and NN will be retrained.  

 

It was mentioned above that radiation parameterizations have two kinds of outputs: the 

heating rates and the radiative fluxes.  They are not completely independent; there is a 

balance relationship between them (see Appendix 1).  The outputs of original radiation 

parameterizations satisfy the balance relationship with high accuracy because the 

relationship is explicitly (or implicitly) included into the parameterizations.  Obviously, 

the outputs of the NN emulations satisfy it only approximately but with high accuracy.  A 

balancing procedure has been developed to balance NN outputs exactly.  Table 1 shows 

that the balancing procedure does not practically affect the overall accuracy of LWR NN 

and only marginally improves the overall accuracy of SWR NN.  

 

3.4 Generating data sets for NN training and validation 

The NCEP CFS (T126L64) has been run for seventeen years to generate representative 

training data sets.  The representative data set samples the atmospheric state variability 

adequately, i.e., it represents all possible states produced by the model as fully as possible 

(including the states introduced due to time dependent CO2 concentration).  All inputs 

and outputs of original LWR and SWR parameterizations have been saved for two days 

per month, i.e., for one day at the beginning and one day in the middle of the month, 

every three hours (eight times per day) to cover the annual and diurnal cycles.  From each 
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of the three hourly global data set three hundred events (the set of input and output 

profiles) have been randomly selected.  The obtained data set has been divided into three 

independent parts, each containing about 200,000 input/output vector combinations.  The 

first part has been used for training, the second one for tests (control of overfitting, 

control of NN architecture, etc.), and the third part (an independent validation data set) 

has been used for validation of trained NN only.  All approximation statistics presented in 

this section are calculated using this independent validation data set.  The accuracy of the 

NN emulation, i.e., biases, rmse, etc., are calculated against the control (the original 

parameterization). 

 

3.5 Bulk Approximation Error Statistics 

To ensure a high quality of representation of the LWR and SWR processes, the accuracy 

of their NN emulations has been carefully investigated.  The NN emulations have been 

validated against the original NCEP CFS LWR and SWR parameterizations.  To 

calculate the error statistics presented in Tables 1 and 2 and in Fig.1, the original 

parameterizations and their NN emulations have been applied to the validation data set.   

Two sets of the corresponding HR profiles have been generated for both LWR and SWR.  

Total and level bias (or a mean error), total and level RMSE, profile RMSE or PRMSE, 

and PRMSE have been calculated (see Appendix 2 and Krasnopolsky 2007a for the 

definition of these statistics).   

 

< Table 1 > 
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Table 1 shows bulk validation statistics for the accuracy of approximation of heating 

rates (HR). It also shows the average computational performance or the speedup, which 

depends significantly on cloud situations as shown in Table 2, obtained for a single 

processer configuration for the best, in terms of both the accuracy and performance, 

developed NN emulations for the NCEP CFS LWR and SWR.  For comparison, the 

information on the NN emulations for NCAR CAM LWR and SWR (Krasnopolsky et al. 

2008a) is also presented in Table 1.   Total statistics show the bias, RMSE (see eq. A2.1 

in Appendix 2), PRMSE, and σPRMSE (A2.4) for the entire 3-D HR fields.  Also, layer 

statistics (A2.2) for the top and bottom atmospheric layers are included to illustrate the 

accuracy of NN emulations in the areas of the increased non-linearity (Morcrette et al. 

2008).  Although the two models as well as their embedded radiation parameterizations 

are different, comparisons between NCAR CAM (with 26 vertical layers) and NCEP CFS 

(with 64 vertical layers) allow us to observe a general dependence of the NN accuracy on 

the model vertical resolution (see also error profiles shown in Fig.1).   

 

< Figure 1 > 

 

As can be concluded from Table 1 and Fig.1, NN emulations for both LWR and SWR 

handle very well the nonlinearity at the top of the atmosphere where biases and RMSEs 

are very small with RMSEs being even smaller than the total RMSE.  At the bottom 

layer, the non-linearity does not cause significant increases in biases; the RMSEs increase 

about two times, but as compared with the total RMSE, remain sufficiently small.   



 19

It is noteworthy that the approximation errors are identified as being “sufficiently small” 

if they are of such a small magnitude that they have almost negligible impacts on model 

behavior as demonstrated in Section 4 for NCEP CFS and by Krasnopolsky et al. (2008a) 

for NCAR CAM.  Only validation of NN emulations in parallel model runs allows us to 

make final conclusion about the sufficient smallness of the approximation errors.  

 

It terms of the presented accuracy statistics, there are practically no differences between 

NCAR CAM with 26 vertical layers and NCEP CFS with 64 vertical layers.  As shown in 

Fig.1, the entire vertical distributions of errors (for both LWR and SWR) are similar for 

these two models.  Thus, the accuracy of our NN emulation approach does not depend 

significantly on vertical resolution of the model.  It does depend on the vertical location 

of the atmospheric layer.  The layer RMSE increases near the surface for both models.    

 

Also, the NN complexity NC (2) and average speedup η (how many times NN emulation 

is faster than the original parameterization) are shown in Table 1 (see the further 

discussion of the speedup η in Section 3.6 below).  These characteristics complement our 

discussion on the dependence of the speedup on vertical resolution (see the end of 

Section 3.2).  For the LWR parameterization, we see a significant decrease of the 

speedup for NCEP CFS with 64 vertical layers vs. NCAR CAM with 26 vertical layers 

although the LWR NN emulation for NCEP CFS is still 16 times faster than the original 

parameterization.  For the SWR parameterization the opposite tendency is observed; that 

is, the speedup for NCEP CFS SWR NN is more than two times higher than that of 

NCAR CAM SWR NN.  
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These seemingly contradictory speedups for LWR and SWR emulations can be explained 

(as was mentioned above in Section 3.2) by the interplay of the two main contributing 

factors: the physical complexity of the radiation calculation itself (the number of treated 

species, spectral bands, parameterization schemes, etc.), and the dependence of the 

particular numerical scheme implemented in the radiative transfer on the number of 

vertical model layers.  The results presented in Table 1 illustrate the fact that the 

numerical scheme implemented in the NCEP CFS RRTMG-LW parameterization is 

significantly more efficient (linear with respect to the number of vertical levels L) than 

that of the original NCAR CAM LWR parameterization (quadratic with respect to L).  

Thus, a smaller speedup factor is produced by the NN emulation for NCEP CFS LWR 

than that of NCAR CAM LWR. 

 

The NCEP CFS’s RRTMG-SW includes more spectral bands and g-points and uses more 

complex treatment for a larger variety of absorbing/scattering species; thus NN emulation 

shows a larger speedup value η than that of NCAR CAM SWR.   In any case, our NN 

emulation approach is significantly less dependent (in terms of both the accuracy and 

speedup) on the increase of vertical resolution than the NN based LWR parameterization 

NeuroFlux for which at vertical resolution of 60 layers and more, both accuracy and 

speedup could not be achieved simultaneously (Morcrette et al. 2008).  For our NN 

emulation approach, for the model with 64 vertical layers, the desired accuracy of the NN 

emulation could be achieved simultaneously with a significant speedup of ~ 16 times for 

the LWR and of ~ 60 times for the SWR parameterizations.   
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3.6 Estimation of Speedup 

The radiatve transfer calculations take different time under different cloud conditions 

because of the different complexity of cloud-radiation interaction.  We performed more 

accurate estimations of speedup separately for three different types of cloudiness: clear 

sky, three layer clouds, and a more complex cloud condition of deep convection.  3,000 

profiles have been used for each test.  The results for the calculation time and speedup are 

presented in Table 2.  For a more complex cloud-radiation interaction (deep convection) 

the calculation of the original LWR and SWR parameterizations takes ~22% and ~57% 

more time respectively than for clear sky conditions. Obviously, the time of the NN 

radiation calculations does not depend on the cloud conditions.  Thus, the speedup is 

significantly higher for the more complex cloud-radiation interaction. 

 

< Table 2 > 

 

As Table 2 shows, the average speedup presented in Table 1 is closer to the minimal 

speedup obtained under clear sky conditions.  The results presented in Tables 1 and 2 

were obtained in a sequential code-by-code comparison and represent adequately the 

situation when the model is run on a single processor.  However, if we compare the 

control model run using the original parameterizations with the NN run when both runs 

use multiple processors and threads, the actual speedup will be significantly higher and 

closer to the maximum value shown in Table 2 because it will be determined by the 

slowest calculation, which is the deep convection condition.  Radiation in the control run 
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for all other cloud conditions is calculated faster but the next integration time step will 

not start before the radiation calculations for the deep convection condition are 

completed; however, the time of the NN radiation calculations in the NN run does not 

depend on the cloud conditions.  Thus, in the case of parallel calculations utilizing 

multiple processors and threads, in addition to a significant speedup, the use of the NN 

emulations in the model provides an additional advantage, namely it helps to achieve a 

significantly better load balance.  

 

Using NN emulations simultaneously for LWR and SWR or for the full model radiation 

results in an overall significant, about 20 – 25% speedup of NCEP CFS climate 

simulations and seasonal predictions when both LWR and SWR are calculated every 

hour.  The speedup η provided by NN emulations (see Table 1) can be also used for more 

frequent calculations of model radiation.   

 

 4. Validation of parallel decadal model simulations and seasonal predictions 

In this section we present comparisons between two parallel 17-year NCEP CFS model 

runs: one using the original LWR and SWR parameterizations (the control run) and 

another one using their NN emulations.  Both spatial and temporal characteristics of 

prognostic and diagnostic fields are compared for the parallel runs.   

 

4.1 Measures for Assessment of the Impact of Using NN Emulations of Full Model 

Radiation 
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We show below the differences between the two parallel runs. To evaluate the NN 

induced changes, we compare them with such commonly used measures as observation 

errors or uncertainties of reanalysis.  We show that the differences are smaller than these 

quantitative measures.   

 

In order to emphasize how small the changes introduced by the use of NN emulations are, 

we also find it appropriate to use a measure derived from the model itself, namely, the 

model’s internal variability.  Because a GCM is an essentially nonlinear system, it may 

produce something like a “butterfly effect”, that is a significant reaction/response even to 

small perturbations in the model or in the model computational environment (e.g. routine 

changes in computer hardware, operational system, compilers, libraries, etc.). Any, even 

infinitesimal change in model formulation, initial conditions or computational 

environment makes two model integrations diverge, with the effect that after the 

deterministic predictability is lost (which takes just weeks for the atmosphere, although 

longer for the ocean), the timing and location of weather patterns becomes essentially 

independent for the two integrations. Hence the two control model runs produced with 

the aforementioned small changes provide, in essence, two independent samples of the 

model's climatology, and their difference represents the model's internal variability. 

 

Thus, we can state that the approximation error of NN emulation is negligible and, 

therefore, NN’s accuracy is sufficient for the use in the model if the differences/changes 

introduced in the model results by using the NN emulation are of the same order of 

magnitude as the aforementioned model’s internal variability.   
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To estimate the model’s internal variability, we produced two control runs with the 

original NCEP CFS model configuration, i.e., without NNs.  The first run was performed 

before and the second run after the routine changes (introduced quasi-regularly by system 

administrators) of the version of the FORTRAN compiler and libraries.  Small 

differences between these two runs (which are similar to those due to changes in a 

computer operation system and/or in hardware (Moorthi 2009)) are shown below together 

with the differences between the parallel NN and control runs for comparison purposes, 

as an additional measure of the NN emulation accuracy.  Presenting model’s internal 

variability helps us to better evaluate the differences in climate simulations and seasonal 

predictions caused by using NN emulations for model radiation and to emphasize how 

small these differences are.   

 

4.2 Comparison of Parallel Runs 

4.2.1 Climate simulations  

The results of 17-year (1990-2006) climate simulations performed with NN emulations 

for both LWR and SWR, i. e., for the full model radiation, have been validated against 

the parallel control NCEP CFS simulation using the original LWR and SWR.  We 

analyze the differences between the parallel runs in terms of spatial (global) means as 

well as temporal characteristics.  

 

< Figure 2 > 
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Let us discuss first the differences between the parallel simulations in terms of spatial and 

temporal radiation characteristics.  The differences between the NN radiation and control 

runs and the differences between two control runs for zonal and time mean LWR and 

SWR fluxes are presented in Fig. 2.  The upper row of Fig. 2 shows the differences for 

zonal and time mean top of atmosphere upward long (left panel) and short (right panel) 

wave fluxes (in W/m2) for winter.  The lower row of Fig. 2 shows the differences for 

zonal and time mean downward (left panel) and upward (right panel) surface long wave 

fluxes (in W/m2). For the fluxes presented in Fig. 2, both the differences between the NN 

radiation and control runs and the differences between two control runs are small and 

similar by magnitude. They do not exceed 2-3 W/m2, i.e., they are within observational 

errors and uncertainties of reanalysis (e.g. Kalnay et al. 1996, Kistler et al. 2001).  The 

similarity of the differences by magnitude means that both the differences between the 

NN radiation and control runs are comparable with the model’s internal variability.  The 

HR differences are also very close in magnitude to (and do not exceed) the model’s 

internal variability described in section 4.1.  

 

< Figure 3 > 

 

Let us discuss now prognostic and diagnostic fields such as SST, precipitation, different 

types of clouds, and time series that are potentially sensitive to changes in the model 

resulting from using NN emulations.  Close similarities have also been obtained for these 

results of the parallel runs in terms of time mean spatial fields presented in Figs. 3 to 7, 

which have the same design.  The figures contain two columns: the left column shows 
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results for winter (December-January-February or DJF) and the right column for summer 

(June-July-August or JJA). The upper raw panels (a) and (d) show fields produced by the 

full NN radiation NN run, the middle row panels (b) and (e) show mean errors/bias or the 

difference between the full radiation NN run and the control run (CTL), NN-CTL, and 

the lower row panels (c) and (f) show the differences between two control runs (i.e., 

model’s internal variability), CTL1-CTL, presented for comparison. Notice that spatial 

(global) and time mean errors/biases and RSMEs are shown in the panel titles for NN-

CTL and CTL1-CTL.   

 

The 17-year (1990-2006) time-mean SST distributions and bias/differences for the full 

radiation NN run vs. the control run and the differences between two control runs 

(model’s internal variability) are presented for summer and winter in Fig. 3.  The SST 

bias and RMSE for NN-CTL are very small; they are not larger than those of the model’s 

internal variability, CTL1-CTL. The time and global mean errors/biases are near zero and 

RMSEs are just a small fraction of 1 K. The results for other two seasons (spring and fall) 

are similar. 

 

< Figure 4 > 

 

Fig. 4 show the 17-year (1990-2006) time-mean distributions and bias/differences for 

total precipitation (PRATE) for the parallel full radiation NN and control runs for 

summer and winter, respectively.  The PRATE bias is quite limited and occurs mostly in 
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the tropics; it is also very close in magnitude (as well as RMSE) and pattern to the 

model’s internal variability.  The results for other seasons are similar. 

 Figs.5 to 7 show comparisons for the parallel full radiation NN and control runs for 

different types of clouds.  They present the 17-year (1990-2006) time-mean distributions 

and bias/differences of total could (Fig. 5), convective precipitation clouds (Fig. 6), and 

boundary layer clouds (Fig. 7) for summer and for winter. Clouds are very sensitive to 

any changes in the model and, therefore, provide a suitable and sensitive estimate of the 

accuracy of NN emulations.   

 

< Figure 5 > 

< Figure 6 > 

 

For all types of clouds shown in Figs. 5 through 7, the cloud patterns and bias/differences 

for parallel total radiation NN and control runs are very close for both seasons presented.  

The situation is similar for other seasons (spring and fall) and types of clouds such as 

low, mid, and upper level clouds.  The bias is very small and occurs mostly in the tropics.  

It has the same magnitude (as well as RMSE) and pattern as the differences between two 

control runs or model’s internal variability shown for comparison. For all presented 

clouds the time and global mean errors/biases are near zero, just ~ 0 - 1%, and RMSEs 

are just ~1 – 2.5 %. 

 

< Figure 7 > 
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Let us compare now the results of the parallel NN and control runs in terms of temporal 

characteristics.  The global mean time series for monthly means of the total precipitable 

water (PWAT), with the seasonal cycle subtracted, are presented in Fig. 8.  The figure 

shows the 17-year (1990-2006) time series for the parallel full radiation NN run (the 

dash-dotted line) and for two control runs described in Section 4.1 (the solid line for CTL 

and the dotted line for CTL1).  The time series for PWAT presented in Fig. 8 for the 

parallel full radiation NN and the control run, CTL, show an overall similarity for the 

entire 17-year (1990-2006) period.  The differences between two control runs are similar 

but marginally larger.  

 

< Figure 8 > 

 

Fig.9 shows the 17-year (1990-2006) time series for the Nino3.4 index for the parallel 

full radiation NN and the two control runs described in Section 4.1.  The Nino3.4 index is 

calculated over the small area in the equatorial Pacific Ocean shown by the black 

rectangle in Figs. 3 – 7.  The upper panel shows the Nino3.4 index calculated from 

reanalysis (CDAS), the control runs (the old control  – the second panel from the top, and 

the new control – the second panel from the bottom) and the full radiation NN run (the 

bottom panel). The time series for the Nino3.4 index are affected by a quite limited SST 

anomaly sampling for the relatively small area and are very sensitive to any changes in 

the model or in its computational environment as can be seen from Fig. 9. The 

explanation for the different details of the Nino3.4 time series is that timing and 

magnitude of ENSO events is “chaotic” and subject to different phases of internal 
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variability in the different runs. As can be seen from the standard deviation values 

included in Fog. 9, the model overestimates the ENSO variability compared with CDAS 

reanalysis.  The overall dissimilarity of the indexes or their deviation from CDAS is not 

larger than that of the two control runs from CDAS and from each other.  

 

< Figure 9 > 

 

Fig. 10 shows the 17-year (1990-2006) time series for global mean temperature at 850 

hPa for the parallel full radiation NN and the two control runs described in Section 4.1.  

All three time series are close to each other; the differences do not exceed 0.5 K.  The 

small differences between the full radiation NN and control runs are of the same 

magnitude as those of between two control runs. 

 

< Figure 10 > 

 

The time-mean simulated products presented in Figs. 3-7 as well as other model 

simulated products show that biases and RMSE for the full radiation NN run are small, 

i.e., they are overall within the observational errors or uncertainties of reanalysis, and are 

of a similar magnitude as the model’s internal variability.   

 

Close similarity has also been obtained for other model prognostic and diagnostic fields 

in term of their spatial and temporal characteristics.   Summarizing, from the obtained 

validation results, we can conclude that the differences between decadal climate 
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simulations produced by the parallel full radiation NN and control runs are overall within 

or less than the observation errors and uncertainties of reanalysis (e.g. Kalnay et al., 

1996).  Moreover, these differences (both in terms of bias and RMSE) are of a similar 

magnitude as the model’ internal variability or the differences between two control runs, 

which are regularly introduced in climate models by routine changes in computer 

environment (like changes in hardware, operational system, and/or compilers).    

 

4.2.2 Seasonal predictions  

We performed similar validation for seasonal predictions for 1990.  Basically, the results 

are similar to those presented above.  Fig. 11 shows biases or differences between the NN 

and control runs (NN-CTL) and differences between two control runs (CTL1-CTL) for 

seasonal predictions of SST, total clouds (clm CLD), total precipitation (PRATE), and 

convective clouds (cvl CLD).  

 

 All the patterns for the control and NN runs (not shown) are quite close to each other.  

The differences between seasonal predictions produced by the parallel full radiation NN 

and control runs are slightly larger than the differences for climate simulations shown 

above in section 4.2.1.  It is partly due to a significantly smaller sample used for seasonal 

predictions.  However, the differences/biases are still comparable with the observation 

errors and uncertainties of reanalysis.  The differences do not increase significantly from 

season one to season four.  For the seasonal predictions, biases or differences between the 

NN and control runs (NN-CTL) are close by magnitude and do not exceed the differences 

between the two control runs (CTL1-CTL) or model’s internal variability described in 
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Section 4.1.  The time and global mean biases and RMSEs (shown in panel titles) are also 

quite small for NN-CTL and comparable with those of CTL1-CTL.  

 

< Figure 11 > 

 

The examples of seasonal predictions show overall reasonable results. We realize that for 

practical implementation seasonal predictions should be produced in an ensemble mode 

(typically, including several tens of ensemble members), to reduce the impacts of internal 

variability and to estimate forecast uncertainty. However, this kind of testing is supposed 

to be done by an implementation group that goes beyond the scope of this study. 

 

5. Conclusions and Discussion 

In this study, the NN emulation approach (Krasnopolsky et al. 2005a,b, 2008a) has been 

further developed and tested in the state-of-the-art, high resolution, coupled NCEP CFS.  

The developed highly accurate neural network emulations of long-wave (RRTMG-LW 

and RRTMF-LW) and short-wave (RRTMG-SW) radiation parameterizations are on 

average 16, 20, and 60 times faster than the original/control long-wave and short-wave 

radiation parameterizations, respectively (see Table 1).  The above results were obtained 

in a sequential code-by-code comparison and adequately represent the situation when the 

model is run on a single processor.  However, if we compare the control model run using 

the original parameterizations with the NN run when both runs use multiple processors 

and threads, the actual speedup will be significantly higher.  In the case of parallel 

calculations utilizing multiple processors and threads, in addition to a significant 
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speedup, the use of the NN emulations in the model provides an additional advantage, 

namely it helps to achieve a significantly better load balance. 

   

The use of the full NN model radiation provides: (1) an overall speedup of about 20 – 

25% for climate simulations and seasonal predictions, and (2) an opportunity to increase 

significantly the frequency of radiation calculations (for example, to calculate model 

radiation at every model dynamic time step) without increasing the total model 

calculation time. 

 

The full NN model radiation was used for the 17-year climate model simulation and 

seasonal prediction with the NCEP CFS that has T126 spectral horizontal and high 

vertical (64 layers) resolutions.  We demonstrated the profound similarity for the parallel 

climate simulations, produced with NN emulations and original radiation (the control 

run).  We have also shown that the model biases and RMSEs associated with NN 

emulations are quite comparable with internal variability of the model for 17-year 

integrations and seasonal predictions, which justifies the possibility of using 

computationally efficient neural network emulations of full model radiation for decadal 

and longer climate simulations as well as seasonal predictions.   

 

Comparisons with similar results (Krasnopolsky et al. 2008a) obtained for NCAR CAM 

presented in section 3.6 and Table 1 show that our NN emulation approach works for the 

high resolution (T126L64) NCEP CFS as well as for the lower resolution (T42L26) 

NCAR CAM.  The NN emulation approach has already been applied to both LWR and 
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SWR parameterizations and tested in different models with different dynamical cores and 

with different resolutions (Krasnopolsky and Fox-Rabinovitz 2006a, b, Krasnopolsky et 

al. 2008a).   It is significantly less dependent (in terms of both the accuracy and speedup 

of calculations) on the increase of vertical resolution than the NN approach introduced by 

Chevallier et al. (1998) for developing a NN based LWR parameterization NeuroFlux.  

At vertical resolution of 60 layers and more, both accuracy and rapidity of NeuroFlux can 

not be achieved simultaneously (Morcrette et al. 2008).   As we demonstrated in this 

study, our NN emulation approach can achieve simultaneously both the desired high 

accuracy and significant speedup at vertical resolution of 60 layers and more.   

 

Applying the NN emulation approach, which allows us to achieve such a significant 

speedup with preservation of the accuracy and functional integrity of model physics, may 

create some challenges that can be resolved using the tremendous flexibility of statistical 

learning techniques and of the NN technique in particular.  Because NN emulations are 

statistical approximations, there exists a small probability of larger approximation errors 

or outliers.  The major reason for obtaining larger errors is high dimensionality n of the 

input space of the mapping (1), which reaches several hundreds for NCEP CFS and may 

reach thousands for future models with significantly higher vertical resolution.  It is 

difficult to sample uniformly a domain in such a high dimensional space.  Far corners of 

the domain may remain underrepresented in the training set.  During the NN run, if input 

vectors belonging to these underrepresented far corners of the domain are encountered, 

they may cause larger errors in the NN outputs.  These larger errors can be successfully 

controlled using a compound parameterization technique with a quality control procedure 
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for removing larger errors (Krasnopolsky 2007a, Krasnopolsky et al. 2008b) and/or using 

the NN ensemble approach with NN emulations (Krasnopolsky 2007b).   

 

The compound parameterization technique can also be used as a method of enriching the 

training data set by inclusion of underrepresented atmospheric states (Krasnopolsky et al. 

2008b).  Taking into account the ability of NN to be adjusted sequentially, i.e. using one 

record of the training set per time, the compound parameterization may be used as a 

constituent of a dynamically adjustable NN emulation.  Such a dynamically adjustable 

NN emulation will be retrained on-line every time when recognizable changes happen in 

the environment and an unusual atmospheric state is pinpointed by the compound 

parameterization.  For example, the NN emulations presented in this paper have been 

trained for the CO2 level changes in the range of several tens of percents.  Dynamically 

adjustable NN emulations will be able to perform better and under significantly higher 

changes of the CO2 level. 

 

Because model vertical resolution determines the NN emulation architecture, i.e., the 

number of inputs and outputs, every time the vertical resolution of the model is changed 

(which is usually done quite rarely), the NN emulation needs to be retrained.  It is 

noteworthy that NN retraining can be done routinely and takes a very limited time and 

effort once the practical framework for a specific model is developed.   

 

In some applications of the developed NN emulation (in a data assimilation system or for 

an error and sensitivity analysis) not only NN emulation but also its first derivatives (NN 
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Jacobian) are used.  High accuracy of NN emulation does not automatically guarantee the 

accuracy of the NN Jacobian.  An approach that allows us to calculate accurately the NN 

Jacobian was developed by Krasnopolsky (2007b).  

 

As mentioned above, the NN emulations described in this study have been developed 

only for the existing model parameterizations.  Extension of the NN approach to 

developing new parameterizations goes beyond the scope of this study and could be done 

as a collaborative effort with parameterization developers interested in implementation of 

more sophisticated and realistic model physics, which are now computationally 

prohibitive.  Also, it is noteworthy that the NN emulation technique can be applied to 

accelerate calculations of model chemistry and other components. 
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Appendix 1. Balancing NN radiation outputs 
 
There exist an integral relationship that relates pressure, heating rates, and fluxes.  For 

example, this relationship for the imbalance, , can be written as, 
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                                              (A1.1) 

where Gpp kkk /)( 1 , pk is pressure at a vertical level k, G is a constant, Ftup is the 

total sky outgoing LWR or SWR flux at the top of the atmosphere, Ftdn is the total sky 

downward SWR flux at the top of the atmosphere, Fsup is the total sky upward LWR or 

SWR flux at the surface, and Fsdn is the total sky downward LWR or SWR flux at the 

surface.  

 

The outputs of original radiation parameterizations satisfy the relationship (A1.1) with 

high accuracy because these relationships are explicitly (or implicitly) included into the 

parameterizations.   The outputs of the NN emulations will obviously satisfy (A1.1) only 

approximately, i.e., in this case the imbalance 0 ; however,   is small.  For example, 

for the RRTMG – LW NN emulation presented in Table 1, mean value for ε is 6.5 · 10-4 

K/Day.  A correction can be introduced for the heating rates,  kk hh
~

.  The correction 

makes the corrected or balanced heating rates kh
~

to satisfy the relationship (A1.1).  This 

correction is very small and, as the results presented in Table 1 show, this balancing 

procedure does not practically affect the overall accuracy of LWR NN and marginally 

improve the overall accuracy of SWR NN. 
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Appendix 2.  Error statistics used in this study 

The statistics presented in Table 1 have been calculated as follows.  The mean difference 

B (bias or systematic error of approximation) and the root mean square difference RMSE 

(a root mean square error of approximation) between the original parameterization and its 

NN emulation describe the accuracy of the NN emulation integrated over the entire 4-D 

(latitude, longitude, height, and time) data set and are calculated as follows: 
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                                       (A2.1) 

where Y(i,j) and YNN(i,j) are outputs from the original parameterization and its NN 

emulation, respectively, where i = (latitude, longitude), i=1,…, N  is the horizontal 

location of a vertical profile; N is the number of horizontal grid points; and j = 1,…, L is 

the vertical index where L is the number of the vertical levels.      

 

Using a minor modification of Eq. (A2.1), the bias and RMSE for the mth vertical level of 

the model can be calculated: 
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The root mean square error has been calculated for each ith vertical profile: 
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This error was used to calculate the mean profile root mean square error, PRMSE, and its 

standard deviation, PRMSE : 
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The statistics (A2.4) and (A2.1) both describe the accuracy of the NN emulation 

integrated over the entire 4-D data set.  However, because of a different order of 

integration it reveals different and complementary information about the accuracy of the 

NN emulations.  The root mean square error profile shown in Fig.1 was calculated as: 
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Figure captions  

 

Fig.1 Vertical distributions of NN emulation errors for two models: NCAR CAM (26 

vertical layers) and NCEP CFS (64 vertical layers).  Solid line corresponds to LWR and 

dashed line to SWR.  The errors and their vertical distributions are similar for both 

models.  

 

Fig. 2  The upper row: zonal and time mean Top of Atmosphere Upward Long (left 

panel) and Short (right panel) Wave Fluxes (in W per m2) for the winter.  The solid line – 

the difference (the full radiation NN run – the control (CTL)), the dash line – the 

differences between two control runs presented for comparison. The lower row: zonal 

and time annual mean downward (left panel) and upward (right panel) Surface Long 

Wave Flux (in W/m2).  The fluxes’ differences are multiplied by cos (lat) to equalize the 

areas.   

 

Fig. 3  The 17-year  (1990-2006) time-mean (NN run) SST distributions and 

bias/differences for winter (DJF: December-January-February, left column) and for 

summer (JJA: June-July-August, right column) for the full radiation NN run vs. the 

control run. The upper row panels show full radiation NN runs.  The middle row panels 

show bias or the difference (full radiation NN run – CTL). The lower row panels show 

the differences between two control runs shown for comparison.  The contour intervals 

for the SST fields are 5º K and for the SST bias and difference are 0.3º K.  Numbers 

above the figures in the middle and lower rows show the global bias and RMSE.    
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Fig. 4. The same as in Fig. 3 but for total precipitation (PRATE).  The contour levels for 

the PRATE fields are 2, 4, 8, 16 and 32 mm/day. The contour intervals for the PRATE 

differences (the bottom panels) are 1 mm/day with 0 mm/day contour skipped for clarity. 

 

Fig. 5 The same as in Fig. 4 but for total clouds. The contour intervals for the cloud fields 

are 20% and for the differences – 4% with 0 % contour skipped for clarity.  

 

Fig. 6 The same as in Fig. 5 but for convective precipitation clouds. The contour intervals 

for the cloud fields are 10% and for the differences – 4%.  

 

Fig. 7 The same as in Fig. 5 but for boundary layer clouds.  The contour levels for the 

cloud fields are 10, 20, 40, 60, 80 and 100 % and for the differences – 4%. 

 

Fig. 8  The 17-year  (1990-2006) time series of the total precipitable water (PWAT), in 

kg/m2, with the seasonal cycle subtracted, for the full radiation NN run (dash-dotted line) 

and for two control runs described in Section 4.1, CTL (solid line) and CTL1 (dotted 

line). 

 

Fig. 9  The 17-year  (1990-2006) time series for the Nino3.4 index for the reanalysis 

(CDAS) (the upper panel), and for the parallel full radiation NN (the bottom panel) and 

two control runs (the middle panels) described in Section 4.1.  The Nino3.4 index is 

calculated over the area in the Pacific Ocean shown by a rectangle in Figs. 3 – 7. 
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Fig. 10 The 17-year  (1990-2006) time series for global mean temperature at 850 hPa (in 

K) for the parallel full radiation NN (solid line) and the old control (large-dashed line) 

and new control (short-dashed line) runs. 

 

Fig. 11   Biases or differences between the NN and control runs (NN-CTL) and 

differences between two control runs (CTL1-CTL) for seasonal predictions of 1990 for: 

winter (DJF) SST - (a) and (b) panels, summer (JJA) total clouds (clm CLD) – (c)  and 

(d) panels, total precipitation (PRATE) – (e) and (f) panels, and convective clouds (cvl 

CLD) – (g) and (h) panels. The contour intervals for the SST fields are 1º K, for PRATE 

– 2 mm/day, for total clouds – 10%, and for convective precipitation clouds – 5%.  
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Fig.1 Vertical distributions of NN emulation errors for two models: NCAR CAM (26 

vertical layers) and NCEP CFS (64 vertical layers).  Solid line corresponds to LWR and 

dashed line to SWR.  The errors and their vertical distributions are similar for both 

models. 
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Fig. 2  The upper row: zonal and time mean Top of Atmosphere Upward Long (left 

panel) and Short (right panel) Wave Fluxes (in W per m2) for the winter.  The solid line – 

the difference (the full radiation NN run – the control (CTL)), the dash line – the 

differences between two control runs presented for comparison. The lower row: zonal 

and time annual mean downward (left panel) and upward (right panel) Surface Long 

Wave Flux (in W/m2).  The fluxes’ differences are multiplied by cos (lat) to equalize the 

areas.   
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Fig. 3  The 17-year  (1990-2006) time-mean (NN run) SST distributions and 

bias/differences for winter (DJF: December-January-February, left column) and for 

summer (JJA: June-July-August, right column) for the full radiation NN run vs. the 

control run. The upper row panels show full radiation NN runs.  The middle row panels 

show bias or the difference (full radiation NN run – CTL). The lower row panels show 

the differences between two control runs shown for comparison.  The contour intervals 

for the SST fields are 5º K and for the SST bias and difference are 0.3º K.  Numbers 

above the figures in the middle and lower rows show the global bias and RMSE.    
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Fig. 4. The same as in Fig. 3 but for total precipitation (PRATE).  The contour levels for 

the PRATE fields are 2, 4, 8, 16 and 32 mm/day. The contour intervals for the PRATE 

differences (the bottom panels) are 1 mm/day with 0 mm/day contour skipped for clarity. 
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Fig. 5 The same as in Fig. 4 but for total clouds. The contour intervals for the cloud fields 

are 20% and for the differences – 4% with 0 % contour skipped for clarity.  
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Fig. 6 The same as in Fig. 5 but for convective precipitation clouds. The contour intervals 

for the cloud fields are 10% and for the differences – 4%.  
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Fig. 7 The same as in Fig. 5 but for boundary layer clouds.  The contour levels for the 

cloud fields are 10, 20, 40, 60 , 80 and 100 % and for the differences – 4%. 
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Fig. 8  The 17-year  (1990-2006) time series of the total precipitable water (PWAT), in 

kg/m2, with the seasonal cycle subtracted, for the full radiation NN run (dash-dotted line) 

and for two control runs described in Section 4.1, CTL (solid line) and CTL1 (dotted 

line). 
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Fig. 9  The 17-year  (1990-2006) time series for the Nino3.4 index for the reanalysis 

(CDAS) (the upper panel), and for the parallel full radiation NN (the bottom panel) and 

two control runs (the middle panels) described in Section 4.1.  The Nino3.4 index is 

calculated over the area in the Pacific Ocean shown by a rectangle in Figs. 3 – 7. 
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Fig. 10 The 17-year  (1990-2006) time series for global mean temperature at 850 hPa 

(in K) for the parallel full radiation NN (solid line) and the old control (large-dashed 

line) and new control (short-dashed line) runs.  
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Fig. 11   Biases or differences between the NN and control runs (NN-CTL) and 
differences between two control runs (CTL1-CTL) for seasonal predictions of 1990 for: 
winter (DJF) SST - (a) and (b) panels, summer (JJA) total clouds (clm CLD) – (c)  and 
(d) panels, total precipitation (PRATE) – (e) and (f) panels, and convective clouds (cvl 
CLD) – (g) and (h) panels. The contour intervals for the SST fields are 1º K, for PRATE 
– 2 mm/day, for total clouds – 10%, and for convective precipitation clouds – 5%.  
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Table 1. Statistics estimating the accuracy of HRs (in K/day) calculations and the computational performance for NCEP CFS 
(T126L64) LWR and SWR using NN emulation vs. the original parameterization.  For comparison, NCAR CAM (T42L26) LWR and 
SWR statistics are also shown.  Total statistics show the bias, RMSE (A2.1), PRMSE, and σPRMSE (A2.4) for the entire 3-D HR fields.  
Layer (for the top and bottom layers) statistics show the bias and RMSE (A2.2) for one horizontal layer (the top or bottom layer).  
Also, the changes in statistics due to applying the balancing procedure (see Appendix1) are shown for RRTWG1 LWR and SWR NN 
emulations.  The NN complexity NC (2) and average speedup2 η are shown.   
 

LWR SWR 
NCEP CFS NCEP CFS 

Statistics 
Types 

Statistics NCAR 
CAM RRTMG 

Change due 
to 

Balancing 
RRTMF 

NCAR 
CAM RRTMG 

Change due 
to 

Balancing 
Bias 3. · 10-4 2.·10-3 6. · 10-4 7. · 10-4 -4. · 10-3 5. · 10-3 -3  · 10-3 

RMSE 0.34 0.49 1. · 10-4 0.42 0.19 0.20 -5. · 10-3 
PRMSE 0.28 0.39 3. · 10-4 0.30 0.15 0.16 -5. · 10-3 

Total 
Error 

Statistics 
σPRMSE 0.2 0.31 1. · 10-4 0.30 0.12 0.12 1. · 10-3 
Bias -2. 10-3 -1.·10-2 -6. · 10-4 6. · 10-3 -5. · 10-3 9. · 10-3 -8. · 10-3 Bottom 

Layer 
Error 

Statistics 
RMSE 0.86 0.64 1. · 10-5 0.67 0.43 0.22 -0.01 

Bias -1. · 10-3 -9.·10-3 6. · 10-4 2. · 10-3 2. · 10-3 1.3 · 10-2 4. · 10-3 Top Layer 
Error 

Statistics RMSE 0.06 0.1782 4. · 10-3 0.09 0.17 0.21 1. · 10-3 

NN 
Complexity 

NC 
See eq. (2) 

12,733 
 

33,294 
 

- 
93,969 

 
11,418 

 
45,173 

 
- 

Speedup, η Times 150 16 - 21 20 60 - 

                                                 
1 RRTMG and RRTMF are different versions of the radiation code developed by AER Inc. (see Section2 and references there). 
2 Here η shows an averaged (over a global data set) speedup or how many times NN emulation is faster than the original parameterization in a sequential single 
processor code by code comparison. 
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Table 2.  Comparison of calculation time and speedups η for LWR and SWR RRTMG 

original parameterizations and NN emulations (time is shown per 3,000 profiles) under 

different cloud conditions.  The calculations were performed using a single processor of 

IBM Power 6 supercomputer.  

Parameterization LWR RRTMG  SWR RRTMG 

Type of Cloudiness 
Clear 
Sky 

3-layer 
Clouds 

Deep 
Convection 

Clear 
Sky 

3-layer 
Clouds 

Deep 
Convection 

Original 
Parameterization  

(time in sec) 
9.6 10.1 11.7 33.8 42.8 52.9 

NN (time in sec) 0.6 0.6 0.6 0.6 0.6 0.6 

η (times) 16 16.8 19.5 56 71 88 

 

  


