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Abstract — A novel approach based on the neural network 
(NN) technique is formulated and used for development of a 
NN ensemble stochastic convection parameterization for 
numerical climate and weather prediction models.  This fast 
parameterization is built based on data from Cloud Resolving 
Model (CRM) simulations initialized with TOGA-COARE 
data. CRM emulated data are averaged and projected onto the 
General Circulation Model (GCM) space of atmospheric states 
to implicitly define a stochastic convection parameterization.  
This parameterization is comprised as an ensemble of neural 
networks.  The developed NNs are trained and tested.  The 
inherent uncertainty of the stochastic convection 
parameterization derived in such a way is estimated. The 
major challenges of development of stochastic NN 
parameterizations are discussed based on our initial results.  

I. INTRODUCTION 

louds and convection are among the most important and 
complex phenomena of the Earth’s physical climate 

system.  The processes that control clouds, and through 
which they interact with other components of the Earth 
system involve slow and fast fluid motions carrying heat, 
moisture, momentum and trace constituents, and influence 
other important physical processes through phase changes of 
water substances, radiative transfer, chemistry, production 
and removal of trace constituents, and atmospheric 
electricity.   

In spite of intense studies for centuries, clouds still 
provide an intellectual and computational challenge.  
Because of the vast range of time and space scales involved, 
researchers typically focus on a particular component of a 
cloud system, with a narrow range of time and space scales, 
and prescribe features of the cloud that operate outside of 
that range.  For example, ‘box’ models treat a small air 
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parcel as an approximately spatially homogeneous medium 
over length scales of order a meter to explore the evolution 
of a cloud drop spectrum.  Motions of the air as a fluid are. 
prescribed, and the focus is on molecular scale motions (e.g 
vapor deposition) and drop scale motions (e.g. drop 
coagulation).  At the other end of the spectrum of 
representations of clouds is their representation in large 
scale models, for example, in General Circulation Models 
(GCMs). GCMs treat convective clouds very simply.  

Parameterizations must represent the effect of clouds on 
time and space scales that are well below the resolution of 
the scales explicitly treated in GCMs, which resolve 
atmospheric features with space scales of order 100km, and 
time scales of order 10 minutes.  Numerical Weather 
Prediction (NWP) models typically operate at smaller spatial 
and temporal scales, but most cloud processes are still acting 
well below these scales. For this reason, models produce 
independent, but connected ‘parameterizations’ 
(representations) of each of these processes.  

In this paper we focus on improving the representation 
(parameterization) of convective clouds.  Convective clouds 
are loci for some of the most vigorous vertical motions in 
the atmosphere, transporting heat, momentum, moisture, and 
trace constituents from near the surface to 10s of km in 
altitude in minutes.  They are also regions where much of 
the rain hitting the earth’s surface is produced, and the local 
origin or source of water that appears in stratiform clouds 
like ‘cirrus anvils’. 

The representation of cloud processes has long been 
recognized as a challenge at any of the space and time scales 
mentioned above, and the problem is particularly difficult 
for global models [1, 2].  The scientific community realizes 
that many critical aspects of our ability to represent the 
atmosphere for climate and NWP problems are being 
hindered by the representation of clouds, and that we have 
reached an impasse in our ability to improve these 
processes.  These issues are eloquently discussed in [3].  
That paper makes the point that models that explicitly 
resolve processes at the smaller time and space scales that 
are relevant to many features of clouds systems (e.g. 10s of 
meters to less than 10 kilometers, and time scales of seconds 
to minutes), so called Cloud Resolving Models (CRM) also 
called Cloud System Resolving Models (CSRMs) or Large 
Eddy Simulation Models (LES), are usually (but not 
invariably) able to simulate component aspects and 
evolution of the cloud systems much more realistically than 
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large scale models. The improvements seen in representing 
clouds using CSRMs and LES have provided the motivation 
for the approaches described in section 2. 

A. Current efforts by others to improve the treatment of 
clouds in large scale models 

Because of the problems described above, the research 
community has been exploring alternate ways of making 
progress in representing clouds in global models.  Among 
the alternate paradigms for treating clouds in global models 
are the following: 

1. Cloud System Resolving Models (CSRMs). These 
models, first developed in the 1970s and 1980s [4], operate 
over a limited area (typically continental scale or smaller) at 
finer spatial and temporal time scales than a global model 
(although they still require many simplifications).  The 
spatial and temporal average behavior of these models tells 
us what might be gained if we could resolve many of the 
phenomena that global models must ignore (e.g. higher 
resolution fluid dynamic motions that can resolve some 
updrafts and downdrafts, convective organization, meso-
scale circulations, and stratiform and convective components 
that interact with each other, etc.).  It is important to note 
that CSRMs do not simulate all processes important to cloud 
systems from first principles.  There are still many sets of 
processes (for example microphysical and turbulent 
processes) that are still treated crudely, but they do resolve 
many more phenomena than today’s global model 
parameterizations. 

2. Recently attempts have been made to develop global 
models that resolve some cloud scale motions (down to 
horizontal resolutions of about 3km) (Global Cloud 
Resolving Models or GCRMs, e.g. [5,6]).  They are 
incredibly expensive to run when compared with the cost of 
a typical general circulation model (see next item), and have 
generally been used in idealized settings for exploratory 
experiments (in an water covered planet scenario for 
example)  

3. The term ‘super-parameterization’, also known as a 
‘Multiscale Modeling Framework’ (MMF), was originally 
suggested in [7], and subsequently developed by a group at 
Colorado State University [8,9].  This concept refers to the 
embedding a simplified CSRM into each column of a global 
model.  Because of the simplifications, such a model is 
substantially less expensive (by a factor of 103-104) than a 
GCRM, but it is still enormously more costly (102 -103) than 
models using a conventional convective parameterization 
[9].  A typical MMF parameterization might use a two-
dimensional CSRM with 64 sub-columns within each GCM 
column, to produce sub-resolution of about 4km.  The 
simplifications buy a substantial reduction in cost, with a 
consequent compromise in accuracy of physical 
representation.  There are for example, significant changes 
in the storm evolution (e.g. vertical velocities) produced in 
2-D CSRMs when compared with 3-D formulations, and 2D 
CSRM simulate too rapid a transition from shallow to deep 

convection and too much cloud cover [10].   
In this paper we introduce an alternative approach based 

on the neural network (NN) technique.  This approach 
allows us to develop a NN convection parameterization, 
which can be used as a parameterization in GCM (in our 
case, in NCAR CAM) and can effectively take into account 
major sub-grid scale effects taken into account by other 
approaches (see above) at a fraction of the computational 
cost.  In Section 2 we introduce our approach, discuss 
sources of uncertainties in the convection parameterization 
and estimate these uncertainties.  We also describe the NN 
training and perform an initial evaluation of the developed 
NN convection parameterization.  Section 3 contains 
conclusions. 

II. FORMULATION OF OUR APPROACH: DEVELOPMENT OF 

NN ENSEMBLE CONVECTION PARAMETERIZATION FROM CRM 

DATA 

Our goal is to develop NNs which emulate the behavior of 
a CSRM/CRM simulated data at larger scales (closer to 
GCM scales) for a variety of regimes and initial conditions. 
The resulting emulation can be used as a novel, and 
computationally viable parameterization.  If successful, it 
will produce a parameterization of similar or better quality 
to the superparameterization or MMF, effectively taking into 
account sub-grid scale (in terms of GCM) effects at a 
fraction of the computational cost.  

As we showed in our previous works (e.g., [11]) any 
parameterization of model physics can be emulated using 
NNs.  NN is an analytical approximation that uses a family 
of functions like: 
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where xi and yq are components of the input and output 
vectors X and Y, respectively, a and b are fitting parameters, 
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function   is usually a hyperbolic tangent, n and m are the 
numbers of inputs and outputs respectively, and k is the 
number of neurons in (1).   

A. Design and development of the NN parameterization 
and the training set  

Fig. 1 summarizes the process of development of the NN 
parameterization.  The CRM used in our work is the SAM 
(System for Atmospheric Modeling) developed by M. 
Khairoutdinov and D. Randall and their collaborators [12]. 
It has been used for our CRM simulations. SAM uses  
TOGA-COARE data (ARM or other observations) for 
initialization and forcing and has the horizontal resolution of 
about 1 km, 64 or 96 vertical layers, and time integration 
step of 5 s. We drive the CRM over a domain of 
256x256km.  
The development of NN parameterization is a multi-step 
process.  These steps are:  
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Fig. 1 Development of the NN Parameterization. 

1. Simulating CRM data.  The model is run for a number 
of days (120 days in our current experiments) and the 
high resolution output of the model is archived.   

2. Reducing the resolution of simulated data.  The high 
resolution CRM simulated data are averaged in space 
and time.  The data are averaged to a reduced horizontal 
resolution of 1 km < r ≤ R, where R is the GCM 
resolution, and are interpolated/averaged to the number 
of vertical layers l = L, where L is the number of 
vertical layers in GCM.  

3. Projecting a CRM space of atmospheric states to a 
GCM space of atmospheric states.  From the reduced 
resolution CRM simulated data created at the previous 
step, the subset of variables is selected and this subset 
constitutes the NN development set.  Only variables that 
can be identified with corresponding GCM variables or 
can be calculated from or converted to prognostic or 
diagnostic variables available in GCM, are included in 
the development set (called “pseudo-observations” in 
Fig.1).  Only these variables are used as inputs and 
outputs of our NN parameterization.  The development 
set implicitly represents a stochastic convection 
parameterization with an uncertainty, which is an 
inherent feature of such a parameterization (see Section 
2.2). The pseudo-observations are separated into the 
training and test/validation sets.  The dashed lines in 
Fig. 1 show that, if it is found to be desirable, the high 
resolution CRM simulated data and/or even observed 
data can be added to the development set to enrich sub-
grid scale variability in the development data.  

4. The NN parameterization is trained using the training 
set.  Due to the inherent uncertainty of pseudo-
observations, it is implemented as an ensemble of NNs.  

 

B. Parameterization and its Uncertainties 

The first three steps of the development process 
formulated in the previous sections introduce uncertainties 
in the data set of “pseudo-observations”.  The uncertainties 
are introduced at each of these steps and their sources can be 
traced step by step.  First, the CRM may be formally 

considered as a mapping CRMM
~

, that defines the relationship 
between two vectors: the input vector (x) and the output 

vector (y) that are composed of CRM variables. At each time 

step the mapping CRMM
~

 given vector x produces vector y or, 
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The first step in our developmental process consists of 
applying the mapping (2) at each time step of the CRM 
simulation and continuing with the simulation for a period 
of time T.  The simulation is initialized and at each time step 
forced by observed data; however, because the CRM 
physics is partially parameterized and contains a number of 
simplifications, the simulated will deviate from the observed 
data.  This difference between the observed reality and the 
“CRM reality” is the first contribution into the uncertainty of 
the NN parameterization.      

 
 Fig.2 Spectra of horizontally averaged data for the precipitation rate for 
different averaging areas (r × r) with r = 16, 32, 64, 128, and 256 km 

 
The second step in our development process consists of 

averaging high resolution simulated data (x, y) over some 
area r (1 km < r < R) and over a time interval t (τ < t < T), 
where τ = 5s is the CRM integration time step.  As a result, 
averaged vectors of simulated data are produced.  Fig. 2 
shows the evolution of the spectrum of the precipitation rate 
with the changing the resolution of the field we are 
sampling. We display the sensitivity in precipitation to 
resolution changes over r from 16 to 256 km.  As expected, 
Fig. 2 clearly shows the reduction of high frequency 
variability in averaged simulated data as compared with the 
original high resolution simulated data x and  y.   

The third step of our developmental process – projecting 
the CRM space of atmospheric states onto the GCM space 
of atmospheric states – consists of transition from averaged 
CRM variables to a subset of these variables, X and Y, with 
the subsequent averaging over the removed variables.  The 
new variables X and Y include only variables that can be 
identified with the corresponding GCM variables or can 
be calculated from or converted to prognostic or 
diagnostic variables available in the GCM; all other CRM 



 
 

 

simulated variables can not be used as not existing in GCM 
and therefore are omitted or projected out. 

Both of the above operations – averaging and projecting – 
lead to a significant uncertainty in X and Y. Taking into 
account the uncertainty, and assuming the mapping between 
the new vectors of projected variables X and Y exists, it can 
be written as, 
 

 )(XMY                                 (3) 

This new mapping (3) is obtained from the mapping (2) by 
averaging and projecting out all omitted CRM variables.  
The mapping (3) is an approximate one, which is reflected 
by introducing the uncertainty vector .  This uncertainty 
emerges due to the averaging of CRM data and due to an 
unaccounted variability of omitted parameters.  After 
projection of these vectors onto the GCM space, the 
projected vectors X and Y do not correspond to any 
particular values of omitted parameters; these values are 
uncertain.  Actually when we learn mapping M from data, 
the projected vectors X and Y correspond to the mean values 
of omitted parameters calculated over the training set.   

Thus, mapping (3) is thus not an exact mapping as is the 
mapping (2); it is a stochastic mapping between two 
random vector variables X and Y.  Stating this we’d like to 
emphasize that stochastic elements emerge in this problem 
before introducing the NN emulation technique.  Actually, 
(3) is a stochastic parameterization, which inherently 
contains the uncertainty .  It is implicitly defined by the 
training set (X, Y).  The uncertainty in this case is not a 
destructive noise; it is an inherent informative part of 
the stochastic parameterization, which contains 
important statistical information about sub-grid scale (in 
terms of GCM) effects.  Actually, the stochastic 
parameterization is a family of mappings distributed 
with a distribution function inside the range and with a 
shape of the distribution function determined by the 
uncertainty vector . 

C. NN Emulation of the Parameterization and Estimation 
of its Uncertainties 

1) Data 
A limited data set was simulated for the development due 

to the lack of longer observational data needed for 
driving/forcing SAM simulations.  SAM/CRM using the 
TOGA-COARE forcing was ran for the 256 x 256 km 
domain with 1 km resolution and 96 vertical layers (0 – 28 
km) for 120 days.  Then it was averaged at every hour of 
model integration to produce a simulation data set with an 
effective resolution of 256 km.  Finally, only variables that 
are available in GCM (NCAR CAM) or can be calculated 
there have been selected. The final data set consists of 2,800 
records (every hour).  The simulation dataset was partitioned 
into two parts: a training set – 2,240 records or 80% of data 
and a test set – 560 records or 20% of data.  Namely, first 
2,240 records are included in the training set and the last 
560 records – in the test set.   

These two data sets have been used for the NN training 
and test/validation.  As was noticed in the previous section, 
these data implicitly represent a stochastic parameterization 

that inherently contains an uncertainty , which is not a 
useless noise.  However, from the point of view of a single 
NN that is trained using the data, the data (both component 
X and Y of the data) contain a significant level of noise.   

Symbolically, the NN emulation of the stochastic 
parameterization (3) can be written as, 

appNN XMY   )(
                                          (4) 

where MNN  is a NN emulation of the mapping M (3) 

and app is a NN approximation error.  Thus, in the case of 

the stochastic parameterization, the NN emulation task is 
different from that of emulating a original deterministic 
parameterization in GCM (e. g. [13, 14]).  The simulated 
data that represent a deterministic parameterization do not 
contain a noise (here we are talking about the noise of the 
magnitude significantly higher than round off errors).   

This important difference should be taken into account 
when the NN approximation is trained, the approximation 
error statistics are analyzed and interpreted, and the NN 
architecture is selected.  For example, in the case of 
training the usually used criterion of minimum of the 
root mean square error should be substituted by the 
requirement that the root mean square error should not 
exceed the uncertainty or, 
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All NNs that satisfy the condition (5) are equally valid 

emulations of the stochastic parameterization (4).  
Actually, each of these NNs emulates a member of the 
family of mappings that together represent the stochastic 
parameterization (3).  Therefore, all the NNs satisfying (5) 
together – the entire ensemble of NNs – represent the 
stochastic parameterization (3).  It is clear now that any 

estimate of the magnitude of   is of a paramount 
importance for our approach.  We will attempt to derive 
such an estimate in the next sections. 

 
2) NN architectures and NN training 

Selecting of an emulating NN architecture includes two 
different aspects and types of decisions: (i) the selection of 
inputs and outputs and their numbers (n and m in (1)), 
which, as we have already mentioned, are determined by the 
availability of the variables in the GCM, and (ii) the 
selection of the number of hidden neurons (k in (1)) in the 
emulating NN, which is determined by many factors (the 
length of the training set, the level of noise in the data, the 
character of conversions of the training and test errors, etc.). 

Table 1 shows seven different (in terms of inputs and 
outputs) architectures we have experimented with here.  The 



 
 

 

major inputs for different NN architectures are the vertical 
profiles of the following model prognostic and diagnostic  

 
fields:  Tabs - temperature, QV - water vapor, RelH – 

relative humidity, U and V – horizontal wind components, 
W - vertical velocity, and Rad – radiation heating/cooling 
rates.  The major outputs for all NN architectures (except for 
the NN architecture {2}), are the vertical profiles (or 
vectors) of the following model prognostic and diagnostic 
fields: Q1C (the “apparent heat source”), Q2 (the “apparent 
moist sink”), PREC (the precipitation rate, a scalar), and 
CLD (cloudiness).  For the NN architecture {2} no CLD 
vertical profile was used.       

Next, the number of hidden neurons (HID) has to be 
selected.  NNs with this number of hidden neurons will be 
used for comparisons of different architectures.  We selected 
several architectures, varied HID, trained a corresponding 
NN, and tested it.  Fig. 3 shows results of these experiments 
for the output parameter Q1C.  The figure shows NN errors 
on training and test sets for HID changing from 1 to 20 for 
the architecture {3} (see Table 1).   

 
Fig. 3 NN approximation error on training and test sets for Q1C. 

It is important to understand that NN training (a least 
square minimization) attempts to minimize the total 

)( app  , that is the approximation error and the 

uncertainty (noise).  Because of very different statistical 

properties of these components, they can be approximately 
separated and roughly estimated using detailed 
information about the training and test statistics.   This is 
discussed in more detail below. 

Fig. 3 demonstrates a classic situation that is usually takes 
place when NN is trained using the data with a significant 
level of noise.  The training error, after a sharp initial drop, 
decreases very slowly. The test error, after an initial drop, 
stabilizes and then increases.  The interpretation of this 
behavior is well known.  After the initial improvement of the 
approximation of the data due to an increasing flexibility of 
an approximating NN, a short interval of stability is reached 
(at HID ~ 3 to 7) when NN fits the signal but filters out the 
noise.  Here the training error keeps decreasing; however, 
the test error is almost constant. Then with the increase of 
the flexibility of the approximating NN, it starts fitting the 
noise (i.e., the overfitting occurs). The training error keeps 
slowly decreasing; however, the test error quickly increases.  
The number of fitting parameters (NN weights) in NNs with 
HID >10 exceeds 1129.  Taking into account that the training 
set contains 2240 records, it is not surprising that clearly 
pronounced overfitting is observed at HID > 10.  

The above results are presented for the NN architecture 
{3} (see Table 1); however, other architecture produce 
similar results.  Thus, we can conclude that, for a particular 
simulation (data set) used, HID = 5 would be a good 
approximation for the number of hidden neurons in 
emulating NN.  This value is inside of the interval of 
stability of the test error when the NN emulation fits the 
mapping (3) but does not fit the noise in the data.  For that 
reason, comparisons of different architectures presented in 
the following subsection are performed for HID = 5.  

D. Comparison of different NN architectures and 
interpretation of NN training and test results 

Here we present the comparison of different NN 
architectures defined in Table 1.  NNs presented here were 
trained using the training set and tested using the 
independent test set; both sets are described above in 
Section 2.C.1.  For each NN and for each NN output 
variable error statistics were calculated (bias, RMSE, and 
correlation coefficient) by comparison of NN generated 
output variables with the corresponding ones in the training 
or test set.  All NNs have the number of hidden neurons HID 
= 5.  It means that they all are inside the stability interval 
where NN fits well enough the signal in the training set and 
is not significantly responsive to noise in the data (see Fig. 
3).  The training errors for all output parameters are 
significantly less sensitive to the selection of the NN 
architecture than the test errors and to the selection of HID 
inside the interval of stability (see Fig. 3).  Thus, the 
training errors can be considered as a rough estimate of 
the noise in the data that is the inherent uncertainty of 
the stochastic parameterization (3).  

Following this assumption, the errors on the test set 

TABLE I 
DIFFERENT INVESTIGATED NN ARCHITECTURES (COMBINATIONS OF 

INPUTS AND OUTPUTS) . T IS TEMPERATURE, Q – ATMOSPHERIC 

MOISTURE  OR VAPOR MIXING RATIO, W – VERTICAL VELOCITY, U AND 

V ARE HORIZONTAL WIND COMPONENTS, RELH IS RELATIVE HUMIDITY, 
RAD –RADIATIVE HEATING/COOLING RATES, Q1C – THE “APPARENT 

HEAT SOURCE”, Q2 – THE “APPARENT MOIST SINK”, PREC – THE 

PRECIPITATION RATE, AND CLD –CLOUDINESS.   

Architecture Inputs Outputs 

{2} – 47:40 T, Q Q1C, Q2,  PREC 
{3} – 47:59 T, Q Q1C, Q2,  PREC, CLD 

{4} – 87:66 T, Q, U, V Q1C, Q2,  PREC, CLD 
{5} – 58:66 T, Q, W Q1C, Q2,  PREC, CLD 
{6} – 81:66 T, Q, W, RelH Q1C, Q2,  PREC, CLD 
{7} – 66:66 T, W, RelH Q1C, Q2,  PREC, CLD 
{9} – 84:66 T, Q, W, RAD Q1C, Q2,  PREC, CLD 

 



 
 

 

should be considered as a combination of the uncertainty 
(an estimate for it is provided by the training error) and 
an approximation error.  For example, for Q1C, for the 
architecture {6} the training error is 2.3 K/day and the test 
error is 2.9 K/day.  Thus, assuming that the uncertainty and 
the approximation error are independent, i.e., that in (4), 

222)( appapp  
 

only 1.8 K/day can be attributed to the NN approximation 
error.  If we perform such a correction for all statistics, we 
find that, as in the aforementioned example, after the 
separation of the uncertainty (the training error) the NN 
approximation errors on the test set, in most cases, do not 
exceed significantly the uncertainty.  In our case of NN 
emulation of a stochastic parameterization, the major 
criterion for evaluation of the NN emulation (5) is the 
similarity of the approximation error and the uncertainty.  
Thus, all trained NNs can be considered as equally valid 
emulations of the parameterization (3).  These NNs can be 
considered together as an NN ensemble emulation of the 
stochastic parameterization (3).  

Figs. 4 - 7 show the performance of NNs with different 
architectures on the independent test set.  Fig. 4 
demonstrates predictions of precipitation time series 
produced by different NNs in comparison with “pseudo-
observations”.  These NNs produce an envelope (with a 
rather measurable spread) which on average gives a very 
good prediction of the precipitation on the test set.  The 
spread of the envelope shows that there is still a measurable 
difference between NNs with different architectures and 
some of the members of the envelope (e.g. {9}) give results 
that are closer to the “pseudo-observations”.  The magnitude 
of the spread reflects the uncertainty of the parameterization 
(3). 

 
 
Fig. 4 NN simulations of precipitation (in mm/day) on the test set. The 

legend describes different curves presented in the figure; the number in 

parentheses indicates the NN architectures described in Table 1.  
 
Figures 5 and 6 depict the mean profiles for outputs of the 

NN parameterization: Q1C and CLD.  As in the case of 
precipitations, different NNs create envelopes with 
significant spreads for the mean profiles.   

In general, the results show that the statistical structure of 
“pseudo-observations” and therefore of the parameterization 
(3) is well represented by envelopes created by different 
NNs.  The spread of these envelopes reflects the magnitude 
of the uncertainty in the parameterization (3).  The 
differences between the members of the ensemble inside the 
envelope are small as compared with the uncertainty; 

however, these differences are significant.  They give 
estimates of the differences between members of the family 
of parameterizations determined by (3) and implicitly 
available in “pseudo-observations”.  
 

 
Fig. 5.  Q1C (the apparent heat source from convection) mean profile on 

the test set produced by different NNs. The legend (see Fig. 6) describes 
different curves presented in the figure; the number in parentheses indicates 
the NN architecture described in the Table. The vertical levels are the same 
as in NCAR CAM.  

 

 
 

Fig. 6 Same as in Fig. 5 but for CLD 

Fig. 7 shows the Hovmöller diagrams for the time series 
of cloudiness (CLD) profiles for “pseudo-observation” (the 
upper panel) and for a single member of the NN ensemble 
with the architecture {9} (the bottom panel).    The patterns 
generated by NN are a bit smoothed, diffused; they are less 
sharp than the “observed” ones but very well recognizable.  
NN represents the sequence of patterns very well and 
without shifts. 
As a result, we can conclude that the errors calculated on the 
test set cannot be considered as an estimate of the NN 
accuracy only; they contain a contribution of the 
parameterization uncertainty  and should be adjusted as in 
the example above. Another conclusion that can be made is 
that the errors on the test set are more sensitive to the NN 



 
 

 

architecture; however, the variations of errors for different 
NN architectures (the spread of the envelope created by 
different NNs) is representative of the level of noise in the 

 
Fig. 7 Hovmöller diagrams for CLD profile time series: SAM “Data” – 
upper panel, NN {9} – lower panel. 

 
data or the uncertainty of the stochastic parameterization 

(3).  It means that, in the context of the current application 
(development of NN emulation for a stochastic 
parameterization (3)), selecting the best architecture for the 
emulating NN followed by the subsequent use of this 
“optimal” NN parameterization in GCM, is not the best 
approach.  All NNs presented here (as well as other that 
could be developed by, for example, training NNs with the 
same architecture and the same number of neurons but with 
different initializations) can be considered as equally valid 
emulations of the parameterization (3).  They should be 
rather considered as members of a particular NN 
ensemble realization of the stochastic parameterization 
(3) represented by a particular data set.  Thus, every 
single NN emulation can be considered as a particular 
realization of this stochastic parameterization.  The NN 
ensemble parameterization can be used in GCM in several 
different modes [15, 16]. 

We considered above an NN ensemble created by NNs 
with various architectures.  Different methods of creating 
NN ensembles exist [15] and can be applied also in this 
case.  
 An initial validation of NN convection in NCAR CAM 
has been done in an off-line/diagnostic mode. Actually, 
CAM inputs have been used, at every time step of the 
control/original CAM integration, for parallel (off-line) 
calculations of the NN convection parameterization (CAM-
NN) to produce its outputs as a diagnostic byproduct.  
   The CLD patterns shown in Fig. 3 are similar; their further 
in-depth analysis is needed. Note that the time series of 
precipitation and CLD for the CAM-NN- and control CAM 
runs (not shown) are similar in terms of both magnitude and 
frequency. 
 

 
Fig. 8 Total CLD (in fractions, the contour interval is 0.1) for the Eastern 
Tropical Pacific Ocean (15 S to 15 N, 150 E to 90 W) for the 4-month 
TOGA-COARE period (Nov.-92 – Feb.-93) for the: NCEP reanalysis 
(upper), control CAM (middle), and CAM-NN (lower).     

 

III. CONCLUSIONS 

In this paper we introduce a novel approach to 
development of NN convection parameterizations based on 
applying the NN technique. This approach is used for 
development of a NN ensemble stochastic parameterization 
for climate models.  This fast parameterization is built based 
on data from CRM simulations initialized and forced/driven 
with TOGA-COARE data.  The SAM/CRM [12] has been 
used for CRM simulations.  SAM emulated data were 
averaged and projected onto the GCM space of atmospheric 
states to implicitly define a stochastic convection 
parameterization.  Next, the data were used to emulate the 
stochastic convection parameterization using an ensemble of 
neural networks defined by different choices of input and 
output variables.  An ensemble of NNs with different 
architectures has been trained and tested.  The inherent 
uncertainty of the stochastic convection parameterization 
derived in such a way is estimated.   

The alternative approaches discussed in introduction 
require very large increases in the computational cost of 
current models. Their advantage is transparency, but we 
believe the computational cost is so high that it makes them 
impractical for most problems with present day computers.  
We believe that an ensemble of NNs, trained on the output 
from more realistic and comprehensive representations of 
convective processes over a variety of regimes could serve 
as a practical convective parameterization for global models.  
The NN ensemble can be used in global models in several 



 
 

 

different ways [16].   
We consider the results presented here as promising ones 

and expect that we will be able to produce a useful 
parameterization for a variety of application in weather and 
climate science. The NN convection parameterization 
provides an opportunity to capture many aspects of the more 
realistic representation at a fraction of the cost of the 
alternatives.  

Our future plans include: 
1. running SAM simulations initialized and forced by 

GCM (specifically, by NCAR CAM) to allow broader 
geographical coverage and to cover longer time period 
and more diverse weather conditions, and to develop a 
more representative training set   

2. testing the NN convection parameterization trained 
using these new data in GCM in diagnostic and 
prognostic modes. 

There are also some consequences to the approach. We 
are aware of the following issues:  
1. We will have abstracted the physical description of the 

processes driving the system by another conceptual 
layer. A simple example of this situation can be seen 
when considering the possible influence of 
aerosol/cloud interactions. Unless we train the NN 
using aerosol distribution as ‘inputs’, and vary those 
inputs during the training process, we can not build a 
parameterization that is sensitive to those processes. 
Note that many convective parameterizations today are 
also unable to handle these processes.  

2. We must of course have trained the NN 
parameterization on the ‘right’ inputs, and have sampled 
the phenomena of interest over the whole range of 
parameter space that the NN is expected to perform 
realistically over. The NN parameterization also needs 
to predict situations where no convection will occur, 
and adapt to different convective regimes (like shallow 
and deep maritime convection, midlatitude frontal 
convection, continent midlatitude summertime 
convection, continental deep convection). The 
parameterization must be able to seamlessly transition 
from one regime to another, or at the very least 
recognize where it should not be operating.  Again, 
most current parameterizations have this same 
constraint.  

3. It may be difficult to interpret the model response to 
variations in the important processes. For example it 
may be difficult to attribute increased precipitation to a 
particular process (e.g. a change in accretion processes 
in rain or snow falling from anvils) because those 
processes are not explicitly available within the 
parameterization to monitor. It should be possible to 
design an NN to output this information.  
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