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Abstract.  A new approach based on a synergetic combination of statistical/machine 

learning and deterministic modeling within atmospheric models is presented.  The 

approach uses neural networks as a statistical or machine learning technique for an 

accurate and fast emulation or statistical approximation of model physics 

parameterizations.  It is applied to development of an accurate and fast approximation of 

an atmospheric long wave radiation parameterization for the NCAR Community 

Atmospheric Model, which is the most time consuming component of model physics.  

The developed neural network emulation is two orders of magnitude, 50-80 times, faster 

than the original parameterization.  A comparison of the parallel 10-year climate 

simulations performed with the original parameterization and its neural network 

emulations, confirmed that these simulations produce almost identical results.  The 

obtained results show the conceptual and practical possibility of an efficient synergetic 

combination of deterministic and statistical learning components within an atmospheric 

climate or forecast model.  A developmental framework and practical validation criteria 

for neural network emulations of model physics components are outlined.    
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1  INTRODUCTION 

 Tremendous developments in numerical modeling and in computing capabilities 

during the last decades contributed dramatically to the scientific and practical 

significance of interdisciplinary climate, climate change, and weather prediction.  One of 

the main problems of implementing the best atmospheric, ocean, and chemistry models is 

the complexity of physical, chemical and biological processes involved.  

Parameterizations of model physics are approximate subgrid scale schemes based on 

simplified 1-D physical process equations and observational data.  Still, these 

parameterizations are so time-consuming, even for most powerful modern 

supercomputers, that different kinds of additional simplifications are usually applied.  For 

example, some of these parameterizations are calculated less frequently than model 

dynamics (based on solving 3-D geophysical fluid dynamics equations).  This may 

negatively affect the accuracy of model physics calculations and its temporal consistency 

with model dynamics and may lead to a significant reduction of the accuracy of climate 

simulations and especially weather predictions.   

 Calculation of model physics in a typical moderate resolution GCM (General 

Circulation Model) like NCAR (National Center for Atmospheric Research) CAM-2 

(Community Atmospheric Model) T42 (~3 degree) with 26 vertical levels, takes about 

70% of the total model computations.  Higher uniform and variable model resolutions 

(e.g. Fox-Rabinovitz et al. 2001, 2002; Duffy et al. 2003) and more frequent model 

physics calculations, desirable for temporal consistency with model dynamics, would 

increase the percentage to more than 90%.   



 4 

 Such a situation is an important motivation for looking for new alternative 

numerical algorithms that provide faster and, most importantly, very accurate ways of 

calculating model physics and chemistry.  For example, a traditional statistical technique 

based on a representation of the input/output relationship as an expansion of hierarchical 

correlated functions has been investigated in some atmospheric chemistry applications 

(see (Schoendorf et al., 2003) and references there).  However, current climate and 

weather prediction models are complex and nonlinear and they require a much higher 

accuracy and better flexibility of approximation than those provided by traditional 

statistical techniques, which are appropriate for simpler applications.  

 During the last decade, neural network (NN) techniques have found a variety of 

applications in different fields and, more specifically, the accurate and fast modeling of 

atmospheric radiative processes (Krasnopolsky 1997, Chevallier et al. 1998) and in 

satellite retrieval procedures (Krasnopolsky, 1995; Krasnopolsky and H. Schiller, 2003).   

 Two different NN based approaches have been developed to speed up calculations 

of model physics.  The first approach developed by Chevallier et al. (1998, 2000) 

introduces NNs as a convenient tool in the traditional framework of developing new, 

improved long wave radiation parameterizations.  Within his approach NNs were applied 

to develop “a new generation of radiative transfer models” (Chevallier et al. 1998).  A 

new NN based long-wave (LW) radiation parameterization (“NeuroFlux”) has been 

successfully developed for the ECMWF (European Centre for Medium-range Weather 

Forecasting) model (Chevallier et al. 1998, 2000).  In the NeuroFlux parameterization, 

the artificial neural network technique was used in conjunction with a classical cloud 

approximation (the multilayer gray-body model).  As a result, in this new LW radiation 
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parameterization 2 NNs were used to compute upward and downward clear sky parts of 

LW fluxes and 2 × K NNs were used to calculate upward and downward fluxes at each of 

K cloud layers.  Thus, the developed NeuroFlux is a battery of (2 × K + 2) NNs (40 NNs 

for K = 19) (Chevallier et al. 1998).  Each NN has different size and is trained separately.  

NeuroFlux is 8 times faster than the previous parameterization; it was developed using 

blended forecast, climatological, and observational data (Chevallier et al. 1998, 2000).  

NeuroFlux has been used operationally within the ECMWF 4-DVAR (4-dimensional 

variational) data assimilation system since October 2003.   

 A different new approach based on application of NNs has been introduced to 

ocean models (Krasnopolsky et al., 2000, 2002, Tolman et al. 2004), and as a preliminary 

study to an atmospheric (Krasnopolsky et al., 2004) model, the NCAR single column 

model with the physics identical to that of NCAR CAM-2.   This approach introduces an 

accurate and fast method of calculating the atmospheric physics parameterizations by 

developing NN emulations for existing model physics parameterizations.  In this 

approach, the entire parameterization, as a single object (i.e. a continuous or almost 

continuous mapping), is emulated by a NN.  In this case, data used for the NN training 

are obtained through a GCM simulation with the original parameterization.  A NN 

emulation of a model physics parameterization is a functional imitation of this 

parameterization, so that the results of model calculations with the original 

parameterization and with its NN emulation are physically identical.  The high quality of 

NN emulations is achieved due to the high accuracy of approximation of the original 

components.  We prefer to use the term NN emulation, not NN approximation, to avoid 

any possible confusion.  The term parameterization already means a simplified 
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approximation of physical processes.  So, in the context of our approach, the term 

emulation means a complete functional imitation based on a precise 

mathematical/statistical approximation (in a classic mathematical sense) of the model 

physics parameterizations.   

 The key point is that NN emulation is developed here for the existing 

parameterizations of atmospheric physics.  This allows us to preserve the integrity and 

level of sophistication of the state-of-the-art physical parameterizations of atmospheric 

processes.  Due to the capability of modern machine learning techniques to provide an 

unprecedented accuracy in the approximation of complex systems like model physics, our 

NN emulations of model physics parameterizations are practically identical to original 

physical parameterizations.   In other words, the underlying idea of the approach is not 

developing a new parameterization but rather emulating a parameterization already very 

carefully tested and validated by its developers off-line and then on-line through 

experimentation with the entire model.  It is achieved by using data for NN training that 

are simulated by an atmospheric model run with the original parameterization.  Using 

model-simulated data for NN training allows us to achieve an unprecedented accuracy in 

approximation because simulated data are free of the problems typical in empirical data 

(problems like high level of observational noise, sparse spatial and temporal coverage, 

poor representation of extreme events, etc.).  In the context of our approach, the accuracy 

and improved computational performance of NN emulations are always measured against 

the original parameterization.  It is noteworthy that the developed NN emulation has the 

same inputs and outputs as the original parameterization and is used as its functional 

substitute in the model. 
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 We would like to clarify that the term "existing" parameterizations means not 

only the ones currently used in a model but also new more sophisticated 

parameterizations, that are computationally prohibited in their original form, but will 

become computationally ”affordable” when using their accurate and computationally 

more efficient NN emulations.  Also, by "existing" we mean advanced parameterizations 

currently under development, like those of cloud physics in cloud resolving models (also 

called superparameterizations).   

             The key objectives or questions of this study are: (i) are these emulations 

accurate or close enough to the original physical parameterizations so that their use 

(instead of the original parameterization) allows us to preserve all the richness, integrity 

and detailed features of atmospheric physical processes; in other words, is the NN 

emulation a precise emulation of the original physical parameterization; (ii) are these 

emulations fast enough to significantly accelerate model physics calculations, (iii) are 

these statistical/machine learning techniques able to successfully coexist or be compatible 

with the deterministic components of climate models, so that their combination can be 

efficiently used for accurate and fast climate simulations without any negative impacts on 

their quality; and (iv) is there a real/productive synergy here; in other words, does this 

new combination of deterministic and statistical learning approaches lead to new 

opportunities in climate simulation and weather prediction.  An additional objective of 

this study is to outline a developmental framework and practical criteria for the 

development and validation of NN emulations for model physics and chemistry 

components, which could be used as guidelines in the following-up developments of NN 

emulations for other components of model physics and chemistry.  
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 More specifically, in this study we apply the NN approach to approximating the 

long-wave (LW) radiation parameterization in the NCAR CAM-2 (e.g., Journal of 

Climate, 1998).  LW radiation parameterization has been selected for this first study 

because calculating the LW (and short wave (SW)) radiation is the most time consuming 

part of the atmospheric physics computations.  For example, in the NCAR CAM-2 T42, 

total (LW and SW) radiation takes almost 60% of the time required for the model physics 

calculations.    

The most efficient and convenient way of developing NN emulations for model 

physics components is developing a single NN for a model physics parameterization.  

Such an approach was introduced in our preliminary study (Krasnopolsky et al., 2004) 

where we developed NN emulation for the NCAR LW radiation scheme in the 

framework of the NCAR single column model.  This study showed the feasibility of the 

approach.  In the current study, we extend the developed approach to build a NN 

emulation for the NCAR CAM-2 LW radiation parameterization.  We also performed and 

analyzed past climate simulations using the NN emulation.  A more detailed discussion of 

its impact on climate simulation, with a comprehensive analysis of climate 

characteristics, and the adjustment of NN emulations to account for climate change goes 

beyond the scope of this paper and will be presented later.  

 It is noteworthy that the initial motivation for this study came from the authors’ 

discussion of the possibility of an effective calculation of model physics on a global 

uniform fine resolution grid for stretched-grid GCMs, instead of calculating model 

physics on an intermediate global uniform resolution grid or directly on a stretched grid 

(e.g. Fox-Rabinovitz et al. 2001, 2002).  Calculation of model physics on a global 
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uniform fine resolution grid is feasible only when using the much more computationally 

efficient NN emulations.  These issues will be explored in a separate study.   

 NN emulations of model physics are based on the fact that any parameterization 

of model physics can be considered as a continuous or almost continuous (with finite 

discontinuities) mapping (input vector vs. output vector dependence), and NNs 

(multilayer perceptrons in our case) are a generic tool for approximating such mappings 

(Cybenko 1989, Funahashi 1989, Hornik 1991, Chen and Chen 1995, Attali and Pages 

1997).  NN is an analytical approximation that uses a family of functions like: 

                                                                                                             (1) 

where xi and yq are components of the input and output vectors respectively, a and b are 

fitting parameters, and φ  is a so called activation function (usually a hyperbolic tangent), 

n and m are the numbers of inputs and outputs respectively, and k is the number of 

neurons in the hidden layer (see Ripley 1997 for more details).  

 In Section 2, NN emulation of the NCAR CAM-2 LW radiation parameterization 

is developed and analyzed in terms of its accuracy and computational performance.  In 

Section 3, the use of the developed accurate and fast NN emulation within CAM-2 is 

validated in terms of its impact on climate simulation.  Section 4 contains discussion and 

conclusions.   
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2. NN EMULATION OF THE NCAR CAM LONG WAVE ATMOSPHERIC 

RADIATION PARAMETERIZATION 

 2.1 General or Background Information 

           The major requirement for developing NN emulations for model physics is 

obtaining an extremely high accuracy of NN emulations with practically zero biases or 

systematic approximation errors (i.e. the systematic errors which NN emulation 

introduces in addition to a bias of the original parameterization).  Providing very small 

additional bias is a necessary condition for assuring that additional errors  are not 

accumulating during long-term climate simulations when using developed NN 

emulations. The choice of an optimal version of NN emulation is based on the accuracy, 

not the amount of speed-up.  All the obtained NN emulations guarantee a very significant 

speed-up, anyway.  

 The T42/26-level NCAR CAM-2 is used in this study.  The function of the LW 

radiation parameterization in atmospheric GCMs is to calculate the heating fluxes and 

rates produced by LW radiation processes in the atmosphere.   The complete description 

of the NCAR CAM LW radiation parameterization is presented by Collins (2001, 2002).   

 The input vectors for the NCAR CAM-2 LW radiation parameterization include 

ten profiles (atmospheric temperature, humidity, ozone, CO2, N2O, CH4, two CFC mixing 

ratios (the annual mean atmospheric mole fractions for halocarbons), pressure, and 

cloudiness) and one relevant surface characteristic (upward LW flux at the surface).  The 

CAM-2 LW radiation parameterization output vectors consist of the profile of heating 

rates (HRs), and several radiation fluxes including the outgoing LW radiation flux from 

the top layer of the model atmosphere (the outgoing LW radiation or OLR).   
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 The NN emulation of the NCAR CAM-2 LW radiation parameterization has the 

same inputs (totally 220; n = 220 in eq. (1)) and the same outputs (totally 33; m = 33 in 

eq. (1)) as the original NCAR CAM-2 LW radiation parameterization.  We have 

developed several NNs, all of which have one hidden layer with 20, 90, 150, 200, 250, or 

300 neurons (k = 20, 90, 150, 200, 250, 300 in eq. (1)).  Varying the number of hidden 

neurons allows us to demonstrate the accuracy of approximation dependence on this 

parameter as well as its convergence, and as a result to provide the sufficient accuracy of 

approximation for the climate model.   

 The NCAR CAM-2 was run for two years to generate representative data sets.  

The first year of simulation was divided into two independent parts each containing 

input/output vector combinations.  The first part was used for training and the second was 

used for tests (control of overfitting, control of a NN architecture, etc.).  The second year 

of simulation was used to create a validation data set, completely independent from both 

training and test data sets.  This third data set was used for validations only.  All 

approximation statistics presented in the rest of this section are calculated using this 

independent validation data set. 

 

 2.2 Bulk Approximation Error Statistics 

 To ensure a high quality of representation of long wave radiation processes, the 

accuracy of the NN emulations have been carefully investigated.  Our NN emulations 

have been validated against the original NCAR LW parameterization.  For calculating the 

error statistics presented in Table 1 and the figures of this section, the original 

parameterization and its NN emulation have been applied to the validation data.   Two 
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sets of corresponding HR profiles have been generated.  The total and level bias (or mean 

error), total and level RMSE, profile RMSE or PRMSE, and σPRMSE  presented in Table 1 

have been calculated as follows.  The outputs of the original parameterization and NN 

emulation can be represented as: Y(i,j) and YNN(i,j), correspondingly, where i = (lat, lon), 

i=1,…,N  is the horizontal location of a vertical profile, N is the number of horizontal grid 

points, and j = 1,…, L is the vertical index, where L is the number of the vertical levels. 

 The mean difference, B (bias or a systematic error of approximation), and the root 

mean square difference (a root mean square error of approximation), RMSE, between the 

original parameterization and its NN emulation, are calculated as follows: 
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These two characteristics (eqs. (2)) describe the accuracy of the NN emulation integrated 

over the entire 4-D (latitude, longitude, height, and time) data set. Using a slight 

modification of eqs. (2), bias and RMSE for mth vertical level can be calculated: 
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The root mean square error can also be calculated for each ith profile: 
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This error is a function of a horizontal location of the profile.  It can be used to calculate 

mean profile root mean square error, PRMSE, and its standard deviation, σPRMSE that are 

location independent: 
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Table 1 shows that the profile (PRMSE) error and the RMSE are close but not equal.   

 Fig. 1 illustrates improvements (convergence) in four error statistics when the 

number of hidden neurons, k, increases from 20 to 300.  These statistics are RMSE (2), 

RMSE26 (m = 26 in eq.(3)), PRMSE and σPRMSE (5).  The 26th, or lowest model level 

errors are presented because they are the maximum errors for the entire vertical profile. 

After a sizeable improvement for k increasing from 20 to 90, the errors practically reach 

convergence for k =150, and even for k = 90.  All our NN emulations have almost zero or 

negligible systematic errors (biases), which (see Fig. 2) practically do not depend on 

height and are indistinguishable from each other for the figure scale.  The rest of Fig. 2 

shows the vertical profiles of RMSEs (2) for six developed NNs.  For all NNs with the 

number of hidden neurons starting at 90, the RMSE (which is a purely random error in 

the case of a zero bias) for the 10 upper levels does not exceed 0.2 K/day, reaching 0.4 

K/day at the 22nd level.  For the two lowest levels, RMSE is about 0.6 - 0.8 K/day.  Here 

we also show the “NeuroFlux” characteristics just as a closest reference point.  The 

ECMWF “NeuroFlux” has RMSE of about 1.4 K/day and bias about 0.3 K/day at the 

lowest layer (Chevallier et al. 2000).  It is noteworthy that “NeuroFlux” statistics show 

the difference between two LW radiation parameterizations, operational ECMWF LW 
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radiation parameterization and “NeuroFlux” whereas NN emulation statistics show 

approximation errors.  Statistics (biases and RMSEs) for the lowest (26th) level are also 

included in Table 1.  The natural variability (σ) of the HRs is significantly higher (see in 

the title of Table 1) at the lowest levels than at the higher ones.  Hence, relative errors in 

the HRs calculated with respect to the natural variability (σ) are approximately the same 

as errors at the higher levels. 

           Hereafter, NN20, NN90, NN150, NN200, NN250, and NN300 stand for NNs with 

20, 90, 150, 200, 250, and 300 hidden neurons.  Because NN20 is less accurate, and 

NN250 and NN300 do not provide a significantly better accuracy than NN200, only three 

NNs, namely NN90, NN150, and NN200, are included into Table 1.  Table 1 shows bulk 

validation statistics for the accuracy of approximation and computational performance for 

the three best (in terms of accuracy and performance) developed NN emulations.  Here 

again, statistics for comparison of the ECMWF operational and NeuroFlux LW radiation 

parameterizations are also shown just as a reference point.  Mean values and standard 

deviations (σHR) of HRs are presented in the title of Table 1 for a better understanding of 

relative errors.    

 In addition to this high approximation accuracy, our NN emulation performs 

about 80-35 times faster (for NN90, NN150, and NN200, correspondingly) than the 

original NCAR LW radiation parameterization.  Table 1 and Figs. 1 and 2 clearly 

demonstrate a systematic improvement in approximation accuracy with increasing NN 

hidden layer size.  Table 1 also demonstrates a reciprocal reduction in performance gain, 

from 80 to 35 times faster, than the original parameterization.  This offers an opportunity 

for the accuracy vs. performance trade off; however, as we mentioned earlier, in this 
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trade off the key requirement, which allows the successful, synergetic functioning of NN 

emulation within the model, is to preserve the accuracy and integrity of the description of 

the corresponding physical process.     

 All three NNs (including NN90) provide an accurate approximation of the 

original parameterization.  Actually, there is no difference between 1%, 2% or 3% cost of 

the original parameterization calculations with NN90, NN150 or NN200 (that are 80, 50 

or 35 times faster).  Therefore, we would recommend and use the accurate and reliably 

converged version.   Obviously, the final decision on the optimal version of the NN, 

which has to be implemented into the model, should be made based on testing these NNs 

in a climate model (see Section 3).  We would like to stress that the speed-up is achieved 

for the NN emulation of the entire LW radiation scheme that includes calculations of 

optical properties (emissivity and absorptivity), HRs and radiative fluxes.  Our speed-up 

for the entire LW radiation scheme provides the opportunity of calculating it hourly, i.e. 

as frequently as HRs and radiative fluxes calculations, at a very limited computational 

cost.  

 



 16 

 2.3 Detailed Evaluation of Approximation Errors 

  Both the original parameterization and its NN emulation are complicated 

multidimensional objects (mappings).  In this case, calculating bulk statistics is not 

sufficient for evaluating the accuracy of the approximation.  We evaluated many different 

statistical metrics of the approximation accuracy, the most important of which are shown 

in Figs. 1-6.  Fig.3 shows the typical level statistics (for level number 20 from the top) 

based on NN150 emulation.  It contains the scatter plot Y vs. YNN (upper left panel), the 

distribution of errors or differences ( , ) ( , )NNY i j Y i j−  (lower left panel), and bias and 

RMSE as functions of HRs (the upper and lower right panels, correspondingly).  The 

scatter plot cloud contains hundreds of thousands of points, which are tightly 

concentrated along the diagonal, with only several points at the upper and lover ends 

located outside the one sigma interval (marked by dotted lines).  The error distribution is 

strongly picked about 0 K/day, and it is narrower than the normal distribution with the 

same mean and standard deviation (dotted line), which indicates a lesser amount of larger 

errors than in the case of the normal error distribution.  Similar behavior takes place in 

the distribution of the prmse - profile rms errors (see eq. (4)) shown in Fig 4.  This 

distribution is also significantly sharper than the normal one with the same mean value 

and standard deviation.  

 The two right panels in Fig. 3 show both systematic (bias) and random (RMSE) 

approximation errors as functions of HRs.  An increase in errors at the tails of the HR 

distribution (shown with the dashed line), where NN was exposed to an insufficient 

amount of training data, can be clearly seen.  More training data should be simulated in 

this part of the domain to improve the approximation accuracy there.   
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 Fig. 5 shows the absolute zonal mean bias (left column) and zonal mean RMSE 

(right column).  Three rows correspond to three different NNs, namely NN90, NN150, 

and NN200, from top to bottom, correspondingly.  When the accuracy of approximation 

increases (with increasing the number of hidden neurons in the NN), both zonal mean 

bias and RMSE decrease significantly.  Comparing the top, middle and bottom panels, we 

see that small areas with bias > 0.01 K/day (left column) in the lower part of the 

atmosphere disappear completely.  Also, the small areas of RMSE > 0.25 K/day (right 

column) disappear at the upper levels.  In the lower part of the atmosphere, small areas 

with RMSE > 1 K/day (right column) begin to disappear for NN150, and even more so 

for NN200, and the areas with RMSE > 0.5 K/day are confined to just two small spots 

located in the polar areas. 

Figs. 6 shows three typical individual profiles with profile rms errors (prmse, eq. 

(4)) close to their mean (PRMSE, eq. (5)).  Each of these profiles demonstrates a 

complicated vertical variability for original and  NN emulation profiles that are very 

close to each other.  There is an obvious convergence of the emulating profiles (gray) to 

the original (black).  The prmse for each profile systematically improves when the 

number of neurons in the NN hidden layer increases from 90 to 200.   This convergence, 

however, is not uniform at some vertical levels.  For example, at level 14 in Fig. 6a, 

NN150 (gray dashed line) is slightly closer to the original profile (black solid line) than 

NN200 (gray dotted line).  It is remarkable that for all individual profiles all the NN 

emulations are very close to the original profiles.  It shows a high uniform convergence 

and accuracy at the profile and even grid point level. 
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 The analysis of approximation errors presented above shows that the NN 

technique is capable of providing NN emulations with practically zero systematic errors 

or biases, and small random errors.  Moreover, the distributions of errors are usually 

narrower than the corresponding normal distributions, which indicate a significantly 

smaller amount of larger errors.  An additional analysis shows that larger errors are 

located in the areas supported by a smaller amount of training data.  In these areas NN is 

forced to extrapolate.  These areas should be enriched by additional simulated data to 

improve the accuracy of the NN emulation there.  Namely, the original parameterization 

should be run in this sub-domain to generate more data.        

 

3. RESULTS OF CLIMATE SIMULATIONS  

In assessing the impact of using a NN emulation of the LW radiation 

parameterization, the parallel NCAR CAM-2 climate simulations were performed with 

the original LW radiation parameterization (the control run) and with its NN emulations 

which are described in Section 2.  The climate simulations have been run for ten years 

starting after the training and validation period (see Section 2), namely for years 3 

through 12.  All the comparisons of the control and NN emulation runs presented in this 

section are done by analyzing the time (10-year) mean differences between the results of 

different runs.  

 Preservation of time means of prognostic and diagnostic fields is one of the most 

important/necessary properties in climate simulations.  In the climate simulations 

performed with the original LWR parameterization and its NN emulations, the time mean 

surface pressure is almost precisely preserved.  For example, for the NN150 run there is a 
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negligible difference of 0.0001% between the NN and control runs (see Table 2).  Other 

time global means, some of which are also presented in Table 2, show a profound 

similarity between the simulations in terms of these global time means, with the 

differences usually within about 0.03 – 0.1% and not exceeding 0.1 - 0.3%.  Other 

simulations (with NN90 and NN200) show similar results. 

            Let us now consider some key simulated diagnostic and prognostic fields and 

their differences, produced in the control and NN emulation runs.  The time mean vertical 

distributions of zonal means for LW radiation HRs (QRL), potential temperature (T), 

zonal wind (U), and specific humidity (Q) are presented in Figs. 7 - 10.  All the figures 

contain (the letters correspond to the figure panels): (a) the control simulation (with the 

original LWR parameterization); (b) and (c) are two simulations, with NN90 and NN150 

emulations, correspondingly; (d) and (e) are biases or deviations of these NN90 and 

NN150 simulations from the control simulation or (b - a) and (c - a), correspondingly.  

Therefore, the biases are calculated against the control run.  The general assessment of 

the presented field distributions and their biases is as follows.  The field distributions for 

the control and NN emulation runs are very close, showing a striking similarity to each 

other that can be seen by the comparing panels (a) with (b) and (c) for each of Figs. 7 - 

10.  Such a profound pattern similarity is further confirmed and quantified by the small 

biases shown in the panel (d) and even smaller, almost negligible biases shown in the 

panel (e) of Figs. 7 - 10.   

 Now let us discuss the results in more detail.  The LWR HRs for the NN90 run 

(Fig. 7 b) show four minor spots located within the 400 - 500 hPa layer that are not 

present in the control (Fig. 7 a) and the NN150 (Fig. 7 c) runs.  These differences are 
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more visible in the bias pattern of the NN90 run (Fig. 7 d).  Actually, small positive and 

negative biases, in the 0.05 - 0.2 K/day range, are present in the troposphere.  For some 

spots, within the lower tropospheric 900-1000 hPa layer, the bias increases to 0.6 - 1.0 

K/day (Fig. 7 d).  For the NN90 run, bias can be reduced by extending training data sets 

for the tails of the distribution as mentioned above in Section 2. However, for the NN150 

run (Fig. 7 e), the bias pattern has cleared up significantly (bias is mostly within 0.01 - 

0.05 K/day) and contains just a few small positive and negative spots in the lower 

tropospheric layer, including those with a maximum magnitude of 0.2 - 0.4 K/day located 

near the poles.  Bias in the stratospheric domain (above 100 hPa) is significantly smaller 

than that of the tropospheric domain.  For both NN90 and NN150 runs, it is well below 

0.05 K/day, especially for the NN150 run (Fig. 7 d and e), with the exception of polar 

areas near the top model levels for the NN90 run, where bias reaches 0.1 - 0.15 K/day 

within the polar domain (Figs. 7 d).  

           The distributions of temperature, zonal wind, and specific humidity for the control, 

NN90 and NN150 runs are practically indistinguishable from each other (for each of 

Figs. 8 – 10, compare panels (a), (b), and (c)).  The differences between runs can be seen 

only in bias distributions (compare panels (d) and (e) for each of Figs. 8 - 10). 

Temperature bias for the NN90 run (Fig. 8 d) is mostly limited by magnitude to 0.5 K.  It 

increases to a maximum of 1 K for polar domains within the 300-200 hPa layer, and for a 

few spots at the ~100 hPa level.  In the middle stratosphere polar domains, it increases to 

1 - 1.5 K.  Bias for the NN150 run (Fig. 8 e) is largely reduced everywhere compared to 

that of the NN90 run (Fig. 8 d), mostly to 0.1 - 0.2 K by magnitude, with the exception of 

a few very small spots where it approaches 0.5 K.   
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        Zonal wind bias for the entire troposphere and stratosphere domain in the NN90 run 

(Fig. 9 d) is small, mostly below 0.5 m/s, and does not exceed 1 m/s by magnitude. Bias 

is slightly larger within the small spot around 25º S at 100 hPa, and it increases to 2.5 m/s 

for the upper model level within the polar domains.  For the NN150 run (Fig. 9 e), bias is 

significantly reduced to 0.1 - 0.2 m/s, with a maximum magnitude of only 0.5 m/s for a 

few small spots.  It is noteworthy that meridianal wind bias for the NN90 run (not shown) 

is mostly below 0.05 m/s and is within 0.1 m/s by magnitude. Only in the small areas 

around the tropical tropopause does bias reach 0.1 - 0.15 m/s, which does not affect the 

Hadley and Ferrell circulations.  Bias for the NN150 run is further reduced to 0.01 - 0.02 

m/s, with the exception of a few very small spots where it increases to 0.05 m/s. 

        Specific humidity bias in the NN90 run (Fig. 10 d) shows a maximum of 0.3 - 0.4 

g/kg around ~700 hPa in the equatorial domain.  For the NN150 run (Fig. 10 e), bias is 

significantly smaller, mostly 0.01 - 0.02 g/kg by magnitude, with a maximum of 0.05 

g/kg over a couple of small spots in the subtropical lower troposphere. 

        The above comparison of biases for NN90 and NN150 runs (see Figs. 7 - 10 d and e) 

confirms that increasing the number of hidden neurons from 90 to 150 leads to a 

measurable bias reduction that positively affects the accuracy of the NN150 climate 

simulation in terms of its profound similarity to the control simulation.  Most 

importantly, biases for both NN90 and NN150 10-year simulations do not accumulate 

over time. The LW radiation HRs obtained in these climate simulations maintain the level 

of approximation accuracy consistent with that obtained in Section 2. 

 

 



 22 

4. DISCUSION AND CONCLUDING REMARKS    

 In this study, we presented a new approach based on a synergetic combination of 

deterministic modeling and a machine learning technique within an atmospheric model.  

This approach uses neural networks as a statistical or machine learning technique to 

develop highly accurate and fast approximations for model physics components.   The 

approach consists of four major steps: 

1. Analysis of the structure and complexity of the original parameterization for 

determining the topology (architecture) of the future NN emulation by specifying 

all the inputs and outputs and selecting the initial number of neurons in the NN 

hidden layer. 

2. Generation of representative data sets for training, testing and validation.  This 

approach is based on using data simulated during the GCM runs with the original 

parameterization, which allows us to produce NN emulations that are physically 

identical to the original parameterizations.  For weather prediction applications, 

the use of blended (simulated, assimilated, and observational) data for NN 

training could be beneficial.  To account for insufficient sampling for some 

events, it is possible to run the original parameterization off-line and generate 

complimentary data to extend sampling.  This off-line simulation can also be used 

in the context of adjusting NN emulations for future climate change.     

3. NN training.  Several different versions of NNs, with different number of neurons 

in hidden layer, should be trained to determine the optimal size of the hidden 

layer, which provides the sufficient accuracy of approximation; several 
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initialization procedures and training algorithms should be applied to assure that 

an optimal minimization is achieved.   

4. Validation of trained NN emulation consisting of two steps.  The first step is 

validation of the NN approximation against the original parameterization using an 

independent validation data set.  The second validation step consists of 

performing comprehensive parallel model runs with the original parameterization 

(the control run) and the developed NN emulations.         

In this study, we presented an NN emulation of an atmospheric LW radiation 

parameterization used in NCAR CAM-2.  The LW radiation has been selected as the 

most time consuming component of the NCAR model physics.  We evaluated the 

accuracy and computational performance of this NN emulation.  The obtained results 

show: 

(i) The conceptual and practical possibility of developing an accurate NN 

emulation of model physics components, which preserves the integrity and all 

the detailed features of atmospheric physical processes.  The practical 

possibility of experimentations with NNs with hundreds of inputs, hundreds of 

neurons in a hidden layer, and tens or more of outputs, using a training data 

set with about 100,000 records.  The efficient software for a standard 

workstation without any hardware acceleration has been developed allowing 

such experimentations.  

(ii) That these accurate NN emulations are very fast (up to 80 times) despite the 

large size of the corresponding NNs, so the significant speed-up of model 

physics calculations can be achieved without compromising its accuracy; 
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(iii) That these statistical/machine learning techniques can be successfully 

combined with deterministic climate model components so that their synergy 

can be efficiently used for climate simulations without any negative impacts 

on simulation quality as it was shown by the presented decadal climate 

simulation;   

(iv) That this productive synergy or the new combination of the state-of- the-art 

deterministic and statistical learning approaches leads to new opportunities in 

climate simulation and weather prediction.  For example, more accurate and 

more sophisticated atmospheric parameterizations may exist or be developed 

in the future, which may be currently computationally prohibited because they 

are too time consuming even for most powerful supercomputers available.  

After developing NN emulations for these parameterizations they may 

become computationally feasible.    

 The systematic error introduced by NN emulation is negligible and does not 

accumulate over the model integration in time.  The random error for NN emulation is 

also small, as shown in Section 2.  The distributions of error are usually narrower than the 

corresponding normal distributions, which indicate a significantly smaller amount of 

larger errors.  The application of this approach allows us to accelerate the calculation of 

the LW radiation parameterization by about 50-80 times (or takes only 1% - 2% of the 

original parameterization computation time) for NN150 and NN90, correspondingly, 

without compromising the accuracy and integrity of the original long wave radiation 

parameterization.   
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 The impact of using NN emulation on climate simulation has been assessed by a 

comparison of some basic climate characteristics of parallel NCAR CAM-2 simulations, 

calculated with the original LW radiation parameterization and its NN emulations.  The 

differences between the simulations with the original LW radiation parameterization and 

its NN emulations appear to be very small for simulated fields.  The results obtained 

show that the NN emulation of the considered atmospheric LW radiation 

parameterization is accurate and provides a significantly improved computational 

efficiency. 

 There are several important topics like adjustments of NN emulations to account 

for climate change, an explicit evaluation of NN emulation Jacobian, and dealing with 

giant NNs in the case of higher resolutions, which go beyond the scope of this study.  

However, these topics should and will be addressed in our following up investigations.  

In this methodological study, we dealt with the past climate.  In the following-up efforts 

we will consider different options (like, for example, extensions of the training domain, 

using recurrent NNs, and adopting some control theory tools), which machine learning 

techniques can provide, to adjust NN emulations to climate change.   

In Krasnopolsky et al. (2002) we demonstrated the acceptable quality of the NN 

emulation Jacobian for moderate size NN emulations.   For the large size NN emulations, 

an explicit investigation of the quality of the NN emulation Jacobian should be 

conducted.  When the Jacobian is a very highly dimensional object, a special study is 

desirable like that of Chevallier and Mahfouf (2001).  In our case, the high accuracy of 

approximation and interpolation demonstrated by our NN emulation on an independent 

validation data set and during the parallel run of NCAR CAM-2, demonstrates, although 
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indirectly, the practically sufficient accuracy of Jacobians in terms of the considered 

application.   

Increasing the model resolution will result in increasing the size of NNs.  Training 

such NNs will become more and more time consuming.  In our previous studies 

(Krasnopolsky et al. 2002 and Tolman et al. 2004), we proposed a solution for this 

problem.  Before applying a NN technique, inputs and outputs are decomposed using 

EOFs (or another complete basis). Then NN is applied to relate the coefficients of these 

decompositions.  This approach allowed us to reduce the size of input and output vectors 

(and the size of the NN emulation) by an order of magnitude.          

 The success of the approach introduced in this paper for approximating the long 

wave radiation parameterization opens the opportunity for a complete open-minded 

reexamination of computations for all model physics components.  The next logical steps 

would be developing NN emulations for the full atmospheric radiation (including short 

wave) block and for the moisture physics block, including convection, cloudiness, and 

turbulence.  Eventually, NN emulations for all the diabatic forcing components could be 

introduced.  This, in turn, could potentially make an important positive impact on 

extensive experimentation with the complex models needed to improve climate change 

and variability assessments, as well as weather prediction.  It should be emphasized that 

the results obtained on the accuracy and efficiency of the NN emulation may facilitate a 

collaborative effort (with model physics scheme developers) to develop new, more 

sophisticated parameterizations of model physics (superparameterizations, e.g. cloud 

physics) that are now computationally prohibitive.  This is also true for computational 
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bottlenecks in model dynamics like complicated solvers, iterations, transformations, 

inversions, etc.     
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Table captions  

Table 1. Statistics estimating the accuracy of HRs (in K/day) calculations and 

computational performance for NCAR CAM-2 LWR using NN emulation vs. the original 

parameterization.  Bias26 and RMSE26 (in K/day) correspond to the lowest layer.  Total 

mean value for HRs = -1.36 K/day and standard deviation σHR = 1.93 K/day.  For the 

lowest level (26th), mean value for HRs = -2.22 K/day and σHR = 5.57 K/day.  

Corresponding statistics (in K/day) for the ECMWF model are shown just as a point of 

reference. 

 

Table 2.  Time and global means for mass (mean sea level pressure) and other model 

diagnostics for the NCAR CAM-2 climate simulations with the original LWR 

parameterization and its NN emulation (NN150) and their differences (in %).  
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 Table 1. Statistics estimating the accuracy of HRs (in K/day) calculations and 

computational performance for NCAR CAM-2 LWR using NN emulation vs. the original 

parameterization.  Bias26 and RMSE26 (in K/day) correspond to the lowest layer.  Total 

mean value for HRs = -1.36 K/day and standard deviation σHR = 1.93 K/day.  For the 

lowest level (26th), mean value for HRs = -2.22 K/day and σHR = 5.57 K/day.  

Corresponding statistics (in K/day) for the ECMWF model are shown just as a point of 

reference. 

Model Bias RMSE PRMSE σPRMSE Bias26  RMSE26 Performance 

NCAR  

NN90 
-4. × 10-4 0.33 0.27 0.19 -6. × 10-4 0.85 

∼ 80 

times faster 

NCAR 

NN150  
1. × 10-4 0.28 0.23 0.16 -4. × 10-3 0.79 

∼ 50 

times faster 

NCAR 

NN200 
5. × 10-5 0.26 0.21 0.15 2. × 10-3 0.71 

∼ 35 

times faster 

ECMWF 0.2 0.4 - - 0.3(* 1.4(* 
∼ 8 

times faster 

*) These statistics are for the lowest (31st) level in ECMWF model. 
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 Table 2.  Time and global means for mass (mean sea level pressure) and other model 

diagnostics for the NCAR CAM-2 climate simulations with the original LWR 

parameterization and its NN emulation (NN150) and their differences (in %).   

Field Original LWR 
Parameterization 

NN Emulation Difference in % 

Mean Sea Level 
Pressure (hPa) 

1011.480 1011.481 0.0001 

Surface 
Temperature (°K) 

289.003 289.001 0.0007 

Total Precipitation 
(mm/day) 

2.275 2.273 0.09 

Total Cloudiness 
(fractions 0.1 to 1.) 

0.607 0.609 0.3 

LWR Heating 
Rates (°K/day) 

-1.698 -1.700 0.1 

Outgoing LWR – 
OLR (W/m2) 

234.43 234.63 0.08 

Latent Heat Flux 
(W/m2) 

82.84 82.82 0.03 
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Figure Captions 

Fig. 1  Convergence of four error statistics when the number of hidden neurons increases 

from 20 to 300.  RMSE (2) - solid, PRMSE (5) – dashed, σPRMSE (5) – dotted, and 

RMSE26 (3) – dot-dashed lines. 

Fig. 2 The vertical profiles of mean approximation errors at each of 26 levels, level biases 

(the left vertical line) and level RMSEs (3), for six developed NNs (NN20 – thin solid, 

NN90 – thick solid, NN150 – dashed, and NN200 – dotted, NN250 – dash-dotted, 

NN300 – dash-double dotted lines) all in K/day.  

Fig. 3  Typical level statistics (for the 20th from the top level, about 625 hPa).  The 

scatter plot Y (original HRs) vs. YNN (NN150 HRs) both in K/days (upper left panel), 

large dark circles and associated bars show average in the bin and an error bar.  The 

distribution of errors or differences ( , ) ( , )NNY i j Y i j−  and the normal distribution with the 

same mean and standard deviation (dotted line) (lower left panel); horizontal axis 

correspond to errors in K/days.  Bias and RMSE (in K/day) as functions of HRs (in 

K/day) with event distribution (dashed lines) (upper and lower right panels, 

correspondingly). 

Fig. 4  The distribution of the prmse (4) – profile rms errors (in K/days) and the normal 

distribution with the same mean and standard deviation (dotted line).   

Fig. 5  Absolute zonal mean bias (the left column) and zonal mean RMSE (the right 

column) for NN90, NN150, and NN200 (for the top, middle and bottom panels, 

correspondingly). 
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Fig. 6 Typical profiles with prmse (4) above (a) close to (b) and below (c) PRMSE (5). 

Solid black – original profile, solid gray – its NN90 emulation, dashed gray – NN150 

emulation, and dotted gray – NN200 emulation.  

Fig. 7  Zonal and time (10-year) mean vertical distributions of instantaneous long-wave 

radiation (LWR) heating rates (QRL) for: (a) the control NCAR CAM-2 simulation with 

the original LW radiation parameterization; (b) NCAR CAM-2 simulation using NN90 

emulation of LW radiation parameterization; (c) NCAR CAM-2 simulation using NN150 

emulation of LW radiation parameterization; (d) bias or deviation of the NN90 simulation 

from the control simulation or (b-a); (e) bias or deviation of the NN150 simulation from 

the control simulation or (c-a).  The contour intervals for (a), (b), and (c) are 0.5 K/day 

and for (d) and (e) 0.05 K/day.  

Fig. 8 Same as Fig. 7 but for temperature. The contour intervals for (a), (b), and (c) are 5 

K and for (d) and (e) 0.5 K. 

Fig. 9 Same as Fig. 7 but for zonal wind. The contour intervals for (a), (b), and (c) are 5 

m/s and for (d) and (e) 0.5 m/s. 

Fig. 10 Same as Fig. 7 but for specific humidity. The contour intervals for (a), (b), and (c) 

are 2 g/kg and for (d) and (e) 0.05 g/kg. 
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Fig. 1  Convergence of four error statistics when the number of hidden neurons increases 

from 20 to 300.  RMSE (2) - solid, PRMSE (5) – dashed, σPRMSE (5) – dotted, and 

RMSE26 (3) – dot-dashed lines. 
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Fig. 2 The vertical profiles of mean approximation errors at each of 26 levels, level biases 

(the left vertical line) and level RMSEs (3), for six developed NNs (NN20 – thin solid, 

NN90 – thick solid, NN150 – dashed, and NN200 – dotted, NN250 – dash-dotted, 

NN300 – dash-double dotted lines) all in K/day. 
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Fig. 3  Typical level statistics (for the 20th from the top level, about 625 hPa).  The 

scatter plot Y (original HRs) vs. YNN (NN150 HRs) both in K/days (upper left panel), 

large dark circles and associated bars show average in the bin and an error bar.  The 

distribution of errors or differences ( , ) ( , )NNY i j Y i j−  and the normal distribution with the 

same mean and standard deviation (dotted line) (lower left panel); horizontal axis 

correspond to errors in K/days.   Bias and RMSE (in K/day) as functions of HRs (in 

K/day) with event distribution (dashed lines) (upper and lower right panels, 

correspondingly). 



 41 

 

 
 

Fig. 4  The distribution of the prmse (4) – profile rms errors (in K/days) and the normal 

distribution with the same mean and standard deviation (dotted line).  
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Fig. 5  Absolute zonal mean bias (the left column) and zonal mean RMSE (the right 

column) for NN90, NN150, and NN200 (for the top, middle and bottom panels, 

correspondingly). 
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Fig. 6 Typical profiles with prmse (4) above (a) close to (b) and below (c) PRMSE (5). Solid black – original profile, solid gray – its 

NN90 emulation, dashed gray – NN150 emulation, and dotted gray – NN200 emulation.  

(b) (c) (a) 
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Fig. 7  Zonal and time (10-year) mean vertical distributions of instantaneous long-wave 

radiation (LWR) heating rates (QRL) for: (a) the control NCAR CAM-2 simulation with 

the original LW radiation parameterization; (b) NCAR CAM-2 simulation using NN90 

emulation of LW radiation parameterization; (c) NCAR CAM-2 simulation using NN150 

emulation of LW radiation parameterization; (d) bias or deviation of the NN90 simulation 

from the control simulation or (b-a); (e) bias or deviation of the NN150 simulation from 

the control simulation or (c-a).  The contour intervals for (a), (b), and (c) are 0.5 K/day 

and for (d) and (e) 0.05 K/day.  
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Fig. 8 Same as Fig. 7 but for temperature. The contour intervals for (a), (b), and (c) are 5 

K and for (d) and (e) 0.5 K. 
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Fig. 9 Same as Fig. 7 but for zonal wind. The contour intervals for (a), (b), and (c) are 5 

m/s and for (d) and (e) 0.5 m/s. 



 47 

 

Fig. 10 Same as Fig. 7 but for specific humidity. The contour intervals for (a), (b), and (c) 

are 2 g/kg and for (d) and (e) 0.05 g/kg. 

 


