
  

  

Abstract — In this paper we discuss our pilot study where 
the NN emulation technique developed previously for 
computing model radiation parameterizations was applied to 
the part of the NCEP GFS model physics, GBPHYS, that is 
complementary to the radiation parameterization.  The results 
of the study showed that not all outputs of GBPHYS are 
emulated uniformly well with the original approach.  
Significant differences between the radiation parameterizations 
and GBPHYS block and challenges for the NN emulation 
approach due to these differences are demonstrated and 
discussed.  Several approaches that will allow us to deal with 
the challenges and that will be used to complement the NN 
emulation approach for dealing with entire model physics are 
also introduced. 

 

I. INTRODUCTION 
eneral Circulation Models (GCM) are used for 
numerical climate simulations and weather predictions. 

Modern GCMs are state of the art, complex systems of 
computer codes run on modern supercomputers (e.g., [1]).  
Because of the complexity of the physical processes in 
climate and weather systems, the calculation of model 
physics usually takes a very significant part of the total 
model computations.  Evidently, this percentage is model 
dependent; however, for example, full model radiation is the 
most time-consuming component of any GCMs [2-4]; it 
usually takes more than 50% of the total model calculation 
time.  In the National Centers for Environmental Prediction 
(NCEP) Global Forecast System (GFS), full model radiation 
takes about 50 – 60% of the total time required for 
calculation of model physics and the remaining 50 – 40% of 
time is consumed by the calculation of the rest of the model 
physics, which includes the moisture block, land surface 
model, ice model, etc.  In this paper we will call this part of 
model physics, which is complementary to the radiation 
block, GBPHYS, using the naming convention of the NCEP 
GFS source code.    
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 In our previous studies [5,6] we demonstrated that the 
neural network (NN) emulation approach can be 
successfully used to significantly (one to two orders of 
magnitude) speed up the calculations of the model radiation, 
providing a sufficient accuracy in decadal (about 50 years) 
climate simulations.  After speeding up the radiation 
calculations, GBPHYS becomes the computational 
bottleneck in GFS.  Since the NN emulation approach that 
we developed is a rather generic one, it can be used not only 
for emulating of the radiation physics but also for emulating 
GBPHYS.    

In this paper we investigate possibilities of using the NN 
emulation technique for speeding up calculations of the non-
radiation part of model physics, GBPHYS.  We discuss 
results of our pilot study that demonstrate differences 
between the radiation and GBPHYS (e.g., higher 
dimensionality, non-homogeneity of outputs) and challenges 
for the NN emulation approach due to these differences.  We 
also propose and discuss some methods of meeting these 
challenges.       

In section 2, we briefly review the GBPHYS structure and 
discuss some differences between GBPHYS and radiation 
parameterizations.  In section 3 we describe a NN emulation 
of GBPHYS developed as a pilot study and illustrate the 
challenges encountered. In section 4, we propose some 
approaches that will be used to meet the challenges. 
Conclusions are given in section 5. 

II. GBPHYS STRUCTURE AND DIFFERENCES BETWEEN 
GBPHYS AND RADIATION PARAMETERIZATIONS  

The model physics part of GCM that calculates physical 
processes in the atmosphere (e.g., the long and short wave 
atmospheric radiation, turbulence, convection and large 
scale precipitation processes, clouds, interactions with land 
and ocean processes, etc.) is structurally separated in two 
blocks in NCEP GFS (Fig.1).  The first, radiation block 
consists of two radiation parameterization: the short wave 
radiation (SWR) and the long wave radiation (LWR).  Each 
radiation parameterization describes one physical process: 
the long or the short wave (solar) atmospheric radiation.  For 
the radiation parameterizations all inputs and outputs are 
defined at each model grid point and are, therefore, 
homogeneous. These two radiation parameterizations do not 
interact with each other and are calculated independently.  
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We emulated them with two different NNs, one NN for the 
short wave and another one for the long wave radiation [6]. 

For the GBPHYS block the situation is different.  This 
part of the model physics consists of sub-blocks that 
describe various physical processes (see Fig.1).  Each of 
these processes is described by a complex multidimensional 
parameterization or model.  These parameterizations and 
models interact with each other (exchange information) by 
virtue of multiple internal variables, which are not inputs or 
outputs of the GBPHYS block. 
 

 
Fig. 1 The GCM structure.  The model physics block consists of two 

major parts: the radiation block and the GBPHYS bock.  The arrows show 
the exchange of information between the model dynamics and physics and 
between constituents of the model physics.  The exchange of information is 

performed by virtue of multiple internal multidimensional variables. 
 
The complex structure of GBPHYS leads to several 

significant differences as compared with the radiation block.  
Here we discuss a couple of the most important differences. 

A. Significantly Higher Dimensionality   
The GBPHYS block, as well as the radiation 

parameterizations, has two kinds of inputs and outputs (I/O).  
The first kind of I/O is composed of profiles which represent 
1-D elements of a 3-D field in particular points of horizontal 
(latitude-longitude) grid.  For example, in a GCM, 
atmospheric pressure, temperature, and humidity are 3-D 
fields, and in the model physics these variables are 
represented as vertical profiles (e.g., a dependence of the 
temperature on the vertical coordinate) at each latitude and 
longitude of the horizontal grid.  Each profile has many 
elements; the number of elements is equal to the number of 
the vertical layers (nlay) resolved in the model (nlay = 64 in 
GSF).          
 The second kind of I/O is composed of scalars.  These 
scalars are elements of 2-D field in a particular point of 
horizontal (e.g., lat-lon) grid.   The vegetation index, sea 
surface temperature (SST), and outgoing long wave upward 
flux at the top of the atmosphere are examples of such fields. 
 The dimensionality of the input and output vectors of 
radiation and GBPHYS blocks can be calculated as, 
 

nsnlaynp +⋅=dim                (1) 
where dim is the dimensionality of the input or output 
vector, np is the number of input or output profiles, and ns is 
the number of scalar inputs or outputs.  It is clear from (1) 
that profiles contribute to the dimensionality nlay times 
more than scalar variables (nlay = 64 for GFS). 

One of the important differences between radiation 
parameterizations and the GBPHYS block is that the 
GBPHYS block has more inputs and outputs and, therefore, 
much higher dimensionality of input and output vectors. If 
for the long wave radiation the dimensionality of the input 
vector is up to 600 (8 profile plus about 10 scalars), for 
GBPHYS the dimensionality of the input vector is more than 
1000 (17 profiles plus about 50 scalars).  If for the long 
wave radiation the dimensionality of the output vector is 69 
(one profile plus 5 scalars), for GBPHYS the dimensionality 
of the output vector is about 500 (7 profiles plus about 40 
scalars). 

As we will show in the next section, the dimensionality of 
the input and output vector of the part of the model physics 
that is emulated by NN is closely related to the numerical 
complexity of emulating NN, and to the speedup of the 
model physics calculations provided by the NN emulation.   

 

B. Inhomogeneous Inputs and Outputs  
The inputs and outputs of radiation parameterizations are 

homogeneous; that is, all I/O at each particular location are 
defined simultaneously.  Even for the short wave (solar) 
radiation that is calculated only over the day time part of the 
globe, the inputs and outputs over the night time of the globe 
are well defined and have physically meaningful values.  All 
outputs have zero values over the night time part of the 
globe which is physically meaningful for the sun radiation.  
This value does not create a discontinuity in I/O at the 
day/night boundary.  

For the GBPHYS block, the situation is different; not all 
I/O at each particular location are defined simultaneously.  
For example, land temperature is defined only over the land 
and is set to an arbitrary constant (zero) over the ocean that 
creates discontinuity in I/O over the land/ocean boundary; 
similar problem exists for SST in that it is set to zero over 
the land.   

 

III. NEURAL NETWORK EMULATION OF GBPHYS: FIRST 
RESULTS AND CHALLENGES  

The NN emulation technique [8] is based on the fact that 
the entire model physics as well as a single 
parameterizations of model physics may be considered 
mathematically as a continuous or almost continuous (like a 
step function) mapping between two vectors X (input vector) 
and Y (output vector) and symbolically can be written as: 
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where M denotes the mapping, n is the dimensionality of the 
input space (the number of NN inputs), and m is the 
dimensionality of the output space (the number of NN 
outputs).  Such a mapping can be approximated by NN 
(multilayer perceptron) [7].   

The simplest multi-layer perceptron (MLP) is a vector 
valued NN.  It is composed of nonlinear neurons zj and is an 
analytical approximation that uses a family of functions like: 
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0 )(φ  is a “neuron”, xi and yq are 

components of the input and output vectors X and Y, 
respectively, and a and b are fitting parameters (or NN 
weights).  The activation function φ  is usually a hyperbolic 
tangent, n and m are the numbers of inputs and outputs, 
respectively, and k is the number of neurons in the hidden 
layer.  The numerical complexity of the MLP, can be well 
approximated by a number of NN weights: 
 

NC = k · (n + m + 1) + m                        (4) 
 
For NN approximating a particular part of the model 

physics (e.g., radiation parameterization or GBPHYS), 
which can be considered as a mapping (2) with a given 
number of inputs n and outputs m, the number of hidden 
neurons k depends on the intricacy of the internal structure 
of the mapping.  The NN numerical complexity NC 
determines the time required for estimating NN (3).  This 
time is directly proportional to NC with the coefficient of 
proportionality depending mainly on hardware properties of 
the computer used.  The numerical complexity of a NN 
emulation, NC, can also be used as a measure of the 
complexity of the approximated mapping (1) or the 
emulated part of the model physics.   

As can be concluded from the above, the I/O 
dimensionality dim (1) and the intricacy of the internal 
structure shown in Fig. 1 determines the complexity of 
different parts of the model physics and of NNs emulating 
these parts.  Table 1 compares these complexities for 
radiation parameterizations and GBPHYS. 

 
Table 1 Complexities of different parts of GFS model physics 

 LWR SWR GBPHYS 
NC 33,294 45,173 237,719 

 
Table 1 shows that the complexity of GBPHYS is almost 

an order of magnitude higher than the complexities of the 
radiation parameterizations.   The reasons for such a high 
complexity of GBPHYS are the higher I/O dimensionalities 
specified in section 2.A and the higher intricacy of the 
internal structure as shown in Fig. 1.   

The higher complexity of GBPHYS causes difficulties in 
the training of the emulating NN and limits the speedup of 
the model physics calculations achieved by the introduction 
of NN emulations.  Despite these difficulties, in this pilot 

study we have used a straightforward approach used in our 
previous works with the radiation parameterizations [5,6] 
and developed a NN emulation for GBPHYS.  A NN 
emulation was trained on a data set collected during one day 
of integration of GFS and validated on an independent data 
set collected during the another day of GFS integration. 

 
Fig. 2 Scatter plot (NN outputs vs. independent validation data) for ozone 

tendency (doz/dt); correlation coefficient CC = 0.95 
 

 
Fig. 3 Scatter plot (NN outputs vs. independent validation data) for 
temperature tendency (dT/dt); correlation coefficient CC = 0.75 

 

 
Fig. 4 Scatter plot (a NN output vs. independent validation data) for sea 

ice temperature 



  

Figs. 2 to 4 show scatter plots for several outputs of NN 
emulating GBPHYS.  Fig. 2 shows results for the tendency 
of the ozone concentration.  These values are reproduced by 
the emulating NN with high accuracy: the correlation 
between NN outputs and the validation data is very high.  
For the air temperature tendencies (Fig. 3) the accuracy is 
significantly lower, and for the sea ice temperatures (Fig. 4) 
there is no correlation between the NN outputs and 
validation data.  The major reason for these striking 
differences between outputs is their non-homogeneity 
described earlier in this section.  Many outputs related to 
surface parameters have discontinuities that negatively 
affect the NN training.  Because the ozone is concentrated 
mainly in the upper layers of the atmosphere, the ozone 
outputs (Fig. 2) are affected by discontinuities at the surface 
in a minimal way.  The air temperature at lower levels is 
affected by discontinuities in SST and more significantly in 
the land surface temperature.  Multiple outliers in Fig. 3 are 
due to the lover level air temperature outputs.  Finally, the 
NN outputs for sea ice temperature that is defined over a 
small portion of the globe are unable to compensate for zero 
values presented to them over the rest of the globe during 
the NN training (Fig.4). 

The aforementioned results show that high complexity and 
dimensionality of GBPHYS together with inhomogeneous 
outputs present challenges for the NN emulation approach 
and require significant modifications to the NN emulation 
approach.  These modifications are considered in the next 
section. 

 

IV. MODIFICATIONS OF NN EMULATION APPROACH TO 
EMULATE GBPHYS  

In this section, we discuss possible modifications of the 
NN emulation approach to meet the challenges described in 
the previous section.  We consider two techniques that we 
developed to reduce complexity and dimensionality and a 
method to deal with the inhomogeneous outputs of NN 
emulations. 

A. Reducing Dimensionality and Complexity of 
Emulating NNs  
It was shown in the previous section that the complexity of 

the emulating NN (see Eq. (4)) is determined by the 
dimensionalities of NN I/O and by the dimensionality of the 
NN hidden layer (the number of hidden neurons, k).  Thus, 
reducing any of these dimensionalities leads to a reducing of 
the NN complexity.  Actually, the dimensionality of NN 
outputs cannot be reduced without reducing the effective 
vertical resolution of the model physics.  The number of 
hidden neurons, k, is also defined more or less tightly by the 
required accuracy of approximation (the complexity of the 
I/O relationship).  Thus, the input dimensionality is the only 
one that can be reduced using at least two different 
approaches.    

 

1) Reducing dimensionality by sampling smooth 
profiles  

Profile variables like pressure, temperature, humidity, etc. 
contribute mostly in the dimensionality of NN input because 
each profile variable adds up to 64 inputs to NN emulation. 
On the other hand, input profiles contain a lot of redundancy 
that, if properly identified, can be use to reduce the input 
dimensionality.   

First, many input variables (e.g., pressure and all gases) 
have zero or constant values for upper vertical layers, for 
some gases the entire volume mixing ratio profile is constant 
(climatological values).  These constant inputs were not used 
for NN training to improve the accuracy of the 
approximation.  Constant inputs (zero or nonzero) do not 
contribute to the functional input/output relationship and 
should not be used for the development of NN emulations.  
Moreover, if they were used, they would introduce an 
additional noise (an approximation error).   We have 
removed such inputs from the GBPHYS emulating NN; that 
reduced the input dimensionality by about 7%. 

Second, some profiles depend on the vertical coordinate 
very smoothly.  A profile of a variable is the dependence of 
the variable on the vertical coordinate discretized on a grid 
(64 vertical grid points in NCEP GFS).  Thus, a profile is a 
vector composed of 64 components.  Autocorrelation 
functions (ACF) of vertical profiles of some model variables 
are shown in Fig. 5.  

   
Fig. 5 Autocorrelation function for several NN input profiles.  Curves 

have different length for different input parameter profiles because the 
profiles have different number of nonzero components.  

 
ACF of a profile shows the correlation between adjacent 

components of the profile (between values of the 
corresponding variables at the adjacent model levels).  



  

Slowly decreasing ACF (like those for pressure, temperature 
and humidity in Fig. 5) shows that the adjacent components 
of the profile are highly correlated and that redundant 
information is introduced if all of them are used as inputs for 
the emulating NN.  For such profiles a sampling can be 
applied to reduce the redundancy and dimensionality of the 
NN inputs.  For these profiles every other or even every 
third level can be selected as NN input.  For some other 
profiles (e.g., cloud fraction and cloud liquid path; shown in 
pink and brown in Fig. 5) the corresponding ACFs decrease 
very quickly, which means that the redundancy for these 
variables is insignificant and the sampling should not be 
applied.  We checked the sampling procedure using 
radiation parameterization as a test bed.  This procedure 
allowed us to reduce the input dimensionality by an 
additional 7 – 15% without any significant reduction in the 
approximation accuracy (see Table 2). 

 
2) Reducing dimensionality by removing dependent 
inputs  

As was mentioned in the previous section the model 
physics and any of its parts can be considered as a mapping 
(2).  The NN emulation approach uses the entire vector X = 
{x1, x2,…, xn} (2) as an input into the emulating NN.  
However, after closer consideration, we have found that 
some constituents of the input vector X are not independent, 
in a sense that they are functions of one or several other 
components of the input vector X.  For example, 
if ),,( 213 axxfx = , where a is a vector of constant 
parameters (e.g., a lookup table), then equation (2) can be 
transformed in such a way, 

 

1
421

42121

);(),,,,(

),,),,(,,(
−ℜ∈′′=

==
n

n

n

XXQxxxxQ

xxxxfxxMY

K

K
    (5) 

 
where Q is the new mapping, and X′ is the new input vector 
of reduced dimensionality (the component x3 is omitted).  
Some cloud parameters and aerosols are examples of such 
dependent variables used for calculating model physics.  
Using radiation parameterizations as a test bed, we 
demonstrated that, by using such an approach, the input 
dimensionality of the LWR NN emulation can be reduced by 
almost 50% without significant reduction in the 
approximation accuracy (see Table 2).   

 
Table 2 Reduction of input dimensionality for LWR and 

corresponding changes in the accuracy of the emulating NN. 
 Full 

Dimensionalit
y 

After 
Sampling 
Smooth 
Profiles 

After 
Removing 
Dependent 

Inputs 
Input 

Dimension. 
556 492 273 

RMSE 
(K/Day) 

0.46 0.46 0.48 

For the SWR NN emulation the efficiency of the approach 
is even higher; the input dimensionality could be reduced 
from about 3,200 to almost 500, by excluding 2,688 inputs 
that are calculated using humidity (which has been already 
included as an input) and time dependent 3-D look up tables.  
In the place of the removed variables, only three additional 
variables, time and horizontal coordinates, have been 
included in the reduced input vector X′.   
   

B.  Dealing with Inhomogeneous Outputs 
The problem with inhomogeneous outputs emerges when, 

for example, a parameter that is defined over the land only 
(like land surface temperature) continues to be trained 
outside of the land.  NN training is a nonlinear optimization 
process that minimizes an error function, using a training set 
composed of pairs of input and output vectors{ } Niii YX ,,

~,~
K1=

, 

where N is the number of input/output records in the training 
set.  A regular error function can be written as, 
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where i
qy~ is a training value for the q-th NN output in the i-

th training record, iX~  is the input vector in the i-th training 

record, i
qy  is the q-th NN output calculated for the i-th 

training input iX~ using eq. (3), and w is the vector of the 
NN weights that are trained.   

In order to solve the problem with inhomogeneous 
outputs, we introduce a modified error function, following 
the procedure similar to one introduced in remote sensing to 
deal with missing data, 
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where matrix α is defined in accordance to the rule: for the 
training record number i, 
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Using the modified error function (7) allows us to train 

each particular NN output only where and when it is defined 
and exclude it from the training when and where it is not 
defined.   

V. CONCLUSIONS AND DISCUSSION 
In our pilot study we applied the NN emulation technique 

developed previously for emulating model radiation 
parameterizations to the part of the NCEP GFS model 
physics, GBPHYS that is complementary to the radiation 
parameterization.  The results of the study showed that the 
original emulation approach does not work uniformly well 



  

in emulating all the outputs of GBPHYS.  Moreover, it 
demonstrated significant differences between the radiation 
parameterizations and the GBPHYS block. 

In this paper we discussed two major differences: (1) 
GBPHYS has significantly higher complexity and 
dimensionality than radiation parameterizations and (2) it 
has inhomogeneous inputs and outputs.  We also discussed 
challenges to the NN emulation approach due to these 
differences and introduced several approaches that allowed 
us to deal with the challenges and that can be used to 
complement the NN emulation approach for dealing with the 
entire suite of model physics.      

 We introduced several approaches that help to reduce the 
dimensionality of the NN input vector and, therefore, the 
complexity of the NN emulation.  These approaches include 
a sampling of smooth input profiles and removing redundant 
(related or dependent) inputs.  We also introduced an 
approach that allowed us to deal with inhomogeneous 
outputs.  This approach is based on using a modified error 
function that lets us train a particular NN output only on 
those records of the training set where this output is defined.  

These complementing approaches have been tested using 
radiation parameterizations as a test beds.  They 
demonstrated their efficiency, and currently they are being 
applied as the modified NN emulation approach to 
GBPHYS.  Our first preliminary results show significant 
improvements in the accuracy of the GBPHYS NN 
emulation due to the additional improvements by the method 
introduced here.  Fig. 6 shows the temperature tendencies 
after introducing the new error function (7).  Comparison 
with Fig.3 shows a significant improvement in the NN 
emulation accuracy for this output. 

 
Fig. 6 Scatter plot (NN outputs vs. independent validation data) for 
temperature tendency (dT/dt); correlation coefficient CC = 0.85 

It is noteworthy that the modified NN emulation 
approach, which we introduced in this paper, preserves the 
major feature of our original emulation approach: the entire 
GBPHYS block is emulated by a single NN.  An alternative 
approach that uses multiple NNs (such as a battery of NNs), 
each of which emulates a constituent of GBPHYS (i.e. land 
model, boundary layer, convection, etc., see Fig.1), is also 

possible.  In such an approach the complexity (size) of each 
constituent NN will be lower than the complexity of a single 
GBPHYS NN emulation.  This simplifies the development 
of each constituent NN.  However, such an approach 
requires training and validation of multiple NNs, including 
creating multiple training and validation data sets.  Also, 
there are a lot of internal variables of the GBPHYS block 
linking the constituents (see Fig.1).  In our approach, using a 
single emulation NN, they are not a part of I/O of the single 
emulating NN.  In the alternative approach, using a battery 
of NNs, all these variables become I/O of the constituent 
NNs.  As a result, the total complexity of the battery of NNs, 
especially at higher vertical resolutions, may become 
significantly higher than the complexity of the single 
emulating NN that we use [9], thus making the battery of 
NNs significantly slower that the single emulating NN.  This 
discussion does not suggest that we completely exclude the 
multiple NN approach from consideration; however, we will 
consider it as a backup approach only if the single emulating 
NN approach cannot provide a sufficient accuracy for some 
outputs. 
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