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Abstract

Approach to calculating model physics using neural network emulations, previously 

proposed and developed by the authors, has been implemented in this study for both 

long-wave and short-wave radiation parameterizations, or to the full model radiation, the 

most time-consuming component of model physics. The developed highly accurate 

neural network emulations of the NCAR CAM (Community Atmospheric Model) long-

wave and short-wave radiation parameterizations are 150 and 20 times faster than the 

original/control long-wave and short-wave radiation parameterizations, respectively. The 

full neural network model radiation was used for a decadal climate model simulation with 

the NCAR CAM. A detailed comparison of parallel decadal climate simulations 

performed with the original NCAR model radiation parameterizations and with their

neural network emulations is presented. Almost identical results have been obtained for 

the parallel decadal simulations. It opens the opportunity of using efficient neural 

network emulations for the full model radiation for decadal and longer climate 

simulations as well as for weather prediction. 
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1. Introduction

One of the main problems in development and implementation of state-of-the-art 

numerical climate and weather prediction models is the complexity of physical processes 

involved. Some of the model physics parameterizations, such as radiation, are time-

consuming even for most powerful modern supercomputers, and because of that are 

calculated less frequently than other model physics components and model dynamics.

This may negatively affect the accuracy of a model’s physics calculation and its temporal

consistency which may, in turn, reduce the accuracy of climate simulations and weather 

predictions.  

The calculation of model physics in GCM (General Circulation Model) used in this study,

the NCAR (National Center for Atmospheric Research) CAM (Community Atmospheric 

Model), with the T42 (~3 degree) horizontal resolution and 26 vertical levels (T42L26), 

takes about 70% of the total model computations.  Evidently, this percentage is model 

dependent but full model radiation is the most time-consuming component of GCMs 

(e.g., Morcrette et al. 2007a,b). Such a situation is an important motivation for looking 

for new alternative numerical algorithms that provide faster calculations of model physics

while carefully preserving their accuracy. We used the NCAR CAM with the 

climatological sea surface temperature forcing for the study as a testbed available to the 

community for experimentation.  

During the last decade new emerging neural network (NN) techniques have found a

variety of applications in different fields and, more specifically, to accurate and fast 



4

modeling of atmospheric radiative processes (Krasnopolsky 1997, Chevallier et al. 1998) 

and for satellite retrieval procedures (e.g., Krasnopolsky, 1997; Krasnopolsky and 

Schiller, 2003).  The NN techniques have been successfully applied to development of a 

new long-wave radiation (LWR) parameterization (“NeuroFlux”) for the ECMWF 

(European Centre for Medium-range Weather Forecasting) model (Chevallier et al. 1998, 

2000).  NeuroFlux, which is 8 times faster than the previous parameterization, consists of 

a battery of about 40 neural networks. NeuroFlux has been used operationally within the 

ECMWF 4-DVAR (4-dimensional variational) data assimilation system since October 

2003.  

A new approach based on the application of a statistical learning technique (NNs) to 

emulation of model physics parameterizations has been introduced to ocean models 

(Krasnopolsky et al. 2000, 2002, Tolman et al. 2004), and recently applied by the authors 

to the NCAR CAM-2 atmospheric physics parameterizations (Krasnopolsky et al. 2005).  

A new type of GCM, the hybrid GCM (HGCM), has also been introduced (Krasnopolsky 

and Fox-Rabinovitz, 2006 a, b). HGCM is based on a synergetic combination of 

statistical learning and deterministic model components. The approach uses a particular 

kind of statistical or machine learning technique, NNs, for accurate and fast emulation of 

model physics components. The term “emulation” means a complete, accurate, and 

robust functional imitation of the input/output relationship or mapping that exists 

between input and output vectors of model physics parameterizations (Krasnopolsky 

2007).  
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NN emulations are developed for the existing, i.e., original parameterizations of 

atmospheric physics.  This allows us to preserve the integrity and the level of 

sophistication of the state-of-the-art physical parameterizations of atmospheric processes.  

Due to the capability of modern statistical learning techniques to provide an 

unprecedented accuracy for emulations of complex, multidimensional, and multi-scale 

systems like model physics, our NN emulations of model physics parameterizations are 

practically identical to the original physical parameterizations in terms of the functional 

input/output relationship.   They are usually significantly (one to five orders of 

magnitude) faster than the original parameterizations (Krasnopolsky et al. 2002, 2005).  

In other words, the underlying idea of the approach is not to develop a new 

parameterization but rather to emulate a parameterization already carefully tested and 

validated by its developers. This is achieved by using data for NN training simulated by 

an atmospheric model run with the original parameterization.  Using model-simulated 

data for NN training allows us to achieve an unprecedented accuracy of the 

approximation because simulated data are free of the problems typical for empirical data 

(like a high level of observational noise, sparse spatial and temporal coverage, poor 

representation of extreme events, etc.).  The accuracy and speed-up of NN emulations is 

always measured against the original parameterization.  The developed NN emulation has 

the same inputs and outputs as the original parameterization, which allows us to use it as 

a functional substitute for the original parameterization.

The key objective of this study is validating the efficiency of developed NN emulations 

for the NCAR CAM full radiation block in terms of a close similarity of decadal climate 
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simulations using the original radiation parameterizations (for the control simulation) and 

their NN emulations. 

In the study, we apply the NN approach to approximating both the LWR and short-wave 

radiation (SWR) parameterizations in the NCAR CAM (e.g., Journal of Climate, 1998).  

Calculation of the LWR and SWR or the full/total model radiation is the most time 

consuming part of the atmospheric physics calculations.  For example, the NCAR CAM

T42 total radiation (LWR and SWR) takes ~70% of the time required for calculation of 

model physics.  Because calculation of model physics takes about 70% of the total model 

computations, the calculation of T42L26 full radiation takes ~50% of the total model 

calculation time.  A description of NN emulations for LWR in the NCAR CAM and 

results of their use in 10-year climate simulations with the model are provided in 

Krasnopolsky et al. (2005). Also, the NN emulations for LWR and SWR are discussed in 

Krasnopolsky and Fox-Rabinovitz (2006 a, b). In this study, we will concentrate on a 

discussion of the results of a decadal (50 year) NCAR CAM climate simulation using NN 

emulations simultaneously for both LWR and SWR, i. e., for their combined application 

as the full model radiation. The model simulation using the combined NN emulations is 

compared with or actually validated against the control model simulation using the 

original LWR and SWR parameterizations.

In Section 2, the NN approach and developed NN emulations for NCAR CAM LWR and 

SWR are briefly described in terms of their design, accuracy, and computational 

performance. In Section 3, the results of the two parallel decadal model simulations, one 



7

using the combined LWR and SWR NN emulations for full model radiation and the other 

using the original model radiation (the control) are compared in terms of closeness of

their spatial and temporal variability characteristics. Section 4 contains conclusions.  

2.  NN emulations for the NCAR CAM radiation 

2.1 Background Information on NN emulations for LWR and SWR  

NN emulations of model physics are based on the following considerations. Any 

parameterization of model physics can be formulated as a continuous or almost 

continuous mapping (input vector vs. output vector dependence) and can be symbolically 

written as:

mn YXXMY ℜ∈ℜ∈= ,);(    (1)

where M denotes the mapping, n is the dimensionality of the input space (the number of 

NN inputs), and m is the dimensionality of the output space (the number of NN outputs).  

NNs (multilayer perceptrons, in our case) are a generic tool for approximation of such 

mappings (Funahashi 1989, Hornik 1991).  

NN is an analytical approximation that uses a family of functions like:

(2)
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respectively, and k is the number of neurons in the hidden layer.  Definitions of NN 

terminology can be found in many places, for example in the recent book by Bishop 

(2006) and in Krasnopolsky (2007); however, eq. (2) is sufficient to understand the 

subject of this paper.

The major goals for developing NN emulation for model physics are to obtain an 

extremely high accuracy for NN emulation with practically zero biases or systematic 

errors. This is a necessary condition for obtaining non-accumulating errors during long-

term climate simulations with developed NN emulations. The choice of an optimal 

version of NN emulation is based on accuracy, not on a speed-up of computation.  All the 

NN emulations obtained provide a very significant speed-up anyway. The most efficient 

and convenient way of developing NN emulations for model physics components is to 

develop a single NN for a model physics parameterization.  Such an approach has been 

introduced and discussed in Krasnopolsky et al. (2005) and Krasnopolsky and Fox-

Rabinovitz (2006 b). 

The LWR and SWR parameterizations together comprise the full model radiation. The 

LWR and SWR parameterizations or the full model radiation have been emulated using 

NNs in the NCAR CAM-2.  The function of the radiation (LWR and SWR) 

parameterizations in atmospheric GCMs is to calculate radiation fluxes and heating rates 

produced by the LWR and SWR atmospheric processes.  The complete description of 

NCAR CAM atmospheric LWR and SWR parameterizations is presented by Collins 

(2001, 2002).  A very general and schematic outline of these parameterizations, in order 
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to illustrate the complexity that makes them a computational bottleneck in the NCAR 

CAM physics, is given in Krasnopolsky and Fox-Rabinovitz (2006 b).

The input vectors for the NCAR CAM-2 LWR parameterization include ten profiles 

(atmospheric temperature, humidity, ozone, CO2, N2O, CH4, two CFC mixing ratios (the 

annual mean atmospheric mole fractions for the halocarbons), pressure, cloud emissivity, 

and cloud cover) and one relevant surface characteristic (the upward LWR flux at the 

surface).  The LWR parameterization output vectors consist of the profile of heating rates 

(HRs) and several radiation fluxes, including the outgoing LW radiation flux from the top 

layer of the model atmosphere (the outgoing LWR or OLR).  

The NN emulation of the LWR parameterization has exactly the same inputs (total 220

inputs; n = 220 in eq. (1)) and the same outputs (total 33 outputs; m = 33 in eq. (1)) as the 

original LWR parameterization.  Krasnopolsky et al. (2005) have developed several NNs, 

all of which have one hidden layer with 20 to 300 neurons (k = 20 to 300 in eq. (2)).  

Varying the number of hidden neurons allows us to demonstrate the dependence of the 

accuracy of approximation on this parameter as well as its convergence, and as a result,

provide a sufficient accuracy of approximation for the climate model.  

The input vectors for the SWR parameterization include twenty one vertical profiles 

(specific humidity, ozone concentration, pressure, cloud cover, layer liquid water path, 

liquid effective drop size, ice effective drop size, fractional ice content within cloud., 

aerosol mass mixing ratios, etc.), solar zenith angle and surface albedo for four different 



10

bands. The SWR parameterization output vectors consist of a vertical profile of heating 

rates (HRs) and several radiation fluxes.  The NN emulations of the SWR

parameterization have 173 inputs and 33 outputs. We have developed several NNs, all of 

which have one hidden layer with 50 to 200 neurons (k = 50 to 200 in eq. (2)).

It is noteworthy that the number of NN inputs is less then the number of input profiles 

multiplied by the number of the vertical layers plus the number of relevant single level

characteristics.  Many input variables (e.g., all gases) have zero or constant values in 

upper vertical layers.  These constant values are not included as NN inputs because NN 

does not need constants inputs.  

The NCAR CAM-2 (T42L26) was run for two years to generate representative data sets.   

The representative data set adequately samples the atmospheric state variability. The first 

year of simulation was divided into two independent parts, each containing input/output 

vector combinations.  The first part was used for training and the second for tests (control 

of overfitting, control of NN architecture, etc.).  The second year of simulation was used 

to create a validation data set completely independent of both the training and test data 

sets.  The third part or the validation set was used for validations only.  All approximation 

statistics presented in this section are calculated using this independent validation data 

set. The accuracy of the NN run, i.e., biases and rmse, are calculated against the control 

run. 
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2.2   Bulk Approximation Error Statistics

To ensure a high quality of representation of the LWR and SWR radiation 

processes, the accuracy of the NN emulations has been carefully investigated.  Our NN 

emulations have been validated against the original NCAR CAM LWR and SWR 

parameterizations.  To calculate the error statistics presented in Table 1 and the following 

figures of this section, the original parameterizations and their NN emulations have been 

applied to a validation data set.   Two sets of the corresponding HR profiles have been 

generated for both LWR and SWR.  Total and level bias (or mean error), total and level 

RMSE, profile RMSE or PRMSE, and σPRMSE have been calculated (Krasnopolsky et al., 

2005, Krasnopolsky and Fox-Rabinovitz 2006a).  Some of these statistics presented in 

Table 1 have been calculated as follows. The outputs of the original parameterization 

and the NN emulations can be represented as: Y(i,j) and YNN(i,j), respectively, where i = 

(lat, lon), i=1,…,N is the horizontal location of a vertical profile, N is the number of 

horizontal grid points, and j = 1,…, L is the vertical index where L is the number of 

vertical levels.

The mean difference, B (bias or a systematic error of approximation), between the 

original parameterization and its NN emulation, is calculated as follows:

∑∑
= =
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This error can be used to calculate mean profile root mean square error, PRMSE, and its 

standard deviation, σPRMSE :
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Table 1 shows bulk validation statistics for the accuracy of approximation and 

computational performance for the best (in terms of accuracy and performance) 

developed NN emulations: NN 50 (k = 50 hidden neurons in eq.(2)) for the LWR 

emulation and NN 55 (k = 55 hidden neurons in eq.(2)) for the SWR emulation.  

The errors profiles for LWR and SWR are shown in Fig. 4 of Krasnopolsky (2007).  The 

NN emulations developed for LWR and SWR are highly accurate. They have practically 

zero bias and a quite small PRMSE. Zonal mean differences between the NN emulation 

and the original parameterization for radiative fluxes at the top of the atmosphere and at 

the surface have also been produced.  The differences appear to be uniformly small for all 

latitudes, mostly within ±0.5 W/m2 and do not exceed ±1 W/m2.  

The NN emulations using 50 neurons in the hidden layer provide, if run separately at 

every model physics time step (1 hour), a speed-up of roughly 150 times for LWR and 20 

times for SWR as compared with the original LWR and SWR, respectively. It is 

noteworthy that the main reason for the smaller performance gain for NN SWR vs. NN 

LWR is that the original CAM SWR parameterization is simpler and about 10 times 

faster than the original CAM LWR.

Using NN emulations simultaneously for LWR and SWR or for the full model radiation 

results in an overall significant, 13-fold acceleration of calculations for the entire/full 
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model radiation block. It is worth clarifying, for a better understanding of the overall 

speed-up, that for the usual control run the original LWR (including time-consuming 

optical properties calculations) is calculated less frequently, only every 12 hours or twice 

a day, and only computationally inexpensive heating rates and radiative fluxes are 

calculated every hour. Notice that all other inputs, including cloud cover, which is 

represented by a vertical profile of cloud fraction, are updated hourly. For the model run 

using NN emulations, LWR (including both optical properties and heating rates and 

radiative fluxes) is calculated more frequently, every hour, consistent with SWR and 

other model physics calculations. We also performed an additional costly control run 

with the original LWR calculated every hour, as it is done in the LWR NN run, for a 

limited period (10 years).  The results of the two control runs appeared to be very close.  

The difference between them is significantly less than the difference between each of 

them and the LWR NN run.  Because of that we decided to validate the 40 year full 

radiation NN run against the usual control run.
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3. Validation of parallel decadal model simulations

The comparisons between diagnostic and prognostic fields for the relatively short 

parallel model runs, one using the original LWR or SWR (the control run) and the other 

one using NN emulations for the LWR or SWR parameterizations, are presented in 

Krasnopolsky at al. (2005), and in Krasnopolsky and Fox-Rabinovitz (2006 a,b).  They 

show that the parallel runs produce the results that are close to each other. Therefore, 

both components of radiation, LWR and SWR, can be successfully emulated using the 

NN approach.

These results opened the opportunity to use both NN emulations, for LWR and 

SWR (or full model radiation) simultaneously, in a multi-decadal simulation using 

NCAR CAM (T42L26), the results of which are discussed below.  The results of multi-

decadal climate simulations performed with NN emulations for both LWR and SWR, i. 

e., for the full model radiation, have been validated against the parallel control NCAR 

CAM simulation using the original LWR and SWR.  Below we estimate closeness of the 

results for these parallel 50-year climate simulations. Note that the first 10 years of 

simulations are not included in the validation to avoid the impact of spin-up effects, so 

that years 11-50 are used for the validation. The spin-up is done for the original NCAR 

CAM; it is not related to the use of NN emulations.  We will analyze below the 

differences between the parallel runs in terms of time and spatial (global) means as well 

as temporal characteristics. 

Table 2 presents comparisons between the parallel control and NN emulation runs in 

terms of the time (40-year) and global mean characteristics and the differences between 

the results of the parallel runs. Basically, the differences, in terms of mean, rms, 
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minimum and maximum characteristics, between the parallel runs, are small. More 

specifically, there are negligible mean differences (bias), 0.02 hPa and -0.1 K, in sea level 

pressure and 2-meter temperature, respectively, between the NN and control runs.  For 

these fields, rmse, minimum and maximum differences are also small. Other time and 

global mean differences presented in Table 2, including such sensitive fields as total 

precipitation, total cloud amount, cloud amounts for high, low, and mid clouds, total grid-

box cloud liquid and ice water paths, top of model net long-wave flux and cloud forcing, 

also show a close similarity, in terms of all presented difference characteristics, between 

the parallel simulations for these fields. These differences are within typical observational 

and reanalysis errors/uncertainties. Note that minimum and maximum differences in 

Table 2 are not averaged in space and time but rather are instantaneous grid point values 

obtained for the entire 40-year simulation.  

Let us discuss the differences between the parallel simulations in terms of spatial and 

temporal characteristics.  Zonal and time mean heating (or cooling) rates for LWR and 

SWR are presented in Figs. 1 and 2, respectively. The HR patterns (the upper panels) are 

practically indistinguishable and their differences (the bottom panels) are small. It 

confirms that the NN emulations for LWR and SWR are very close to their original 

parameterizations throughout the model simulations. It is noteworthy that the HR 

differences in SWR and especially in LWR are a bit larger at the surface because HRs are 

larger there (Figs. 1 and 2). For the zonal means it is not easy to distinguish between the 

ocean and land. However, the differences seem to be larger over the mountainous 

Antarctica region (60º S to 90º S) as well as over the Northern Hemisphere mid-latitudes 
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where the major mountains are located (such as those in Europe, Asia and North 

America). 

Fig. 3 shows a very close similarity in zonal and time mean 2-meter temperature for the 

parallel simulations (the upper panel) where their differences are within the -0.6 K to 0.3 

K range (the bottom panel).

The zonal and time mean vertical distributions of temperature for the parallel runs (Fig. 

4) are close to each other and their difference or mean bias is practically zero, with 

minimum and maximal biases within ~ 2-2.5 K by magnitude. This larger zonal bias 

occurs in the stratosphere mostly over the Southern polar domain. However, it is 

comparable with typical observational and/or reanalysis errors/uncertainties (just as a 

reference) and also comparable with the differences between the NCEP and ECMWF 

reanalysis.

Close similarities have also been obtained for the results of parallel runs in terms of time 

mean spatial fields such as 850 hPa temperature presented in Fig. 5. The horizontal fields 

presented in the upper and middle panels are close to each other. For the difference field 

(the bottom panel), bias is negligible (-0.06 K), RMSE is small (0.34 K), and minimum 

and maximum values (~-1.6 K and ~0.9 K) are well within observational or reanalysis 

errors/uncertainties.

In addition to global distributions such as shown in Fig. 5 it is important to assess the 
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differences between the parallel simulations at a local (station) level, an example of 

which is presented in Fig. 6. The vertical distributions of time mean temperature are very 

close for both runs at the local level as well.

Now we compare the results of the parallel simulations in terms of temporal

characteristics.  Fig. 7 shows the winter-summer differences for time mean temperature at 

850 hPa. Their patterns are practically indistinguishable and the minimum and maximum 

values are very close.  The global mean time series for time mean temperature at 850 hPa 

presented in Fig. 8 are very similar throughout the entire decadal simulations for the 

parallel runs, with only occasional small differences (within 0.5 K) that are well below 

the observation and reanalysis errors. The annual cycle for global mean temperature at 

850 hPa is presented in Fig. 9. It shows very small differences between the runs, with the 

maximum within 0.2 K for January.  The precipitation annual cycles are very close for 

both runs (the upper panels) and their differences or bias (the bottom panel) is quite 

small.  Close similarity has also been obtained for other model prognostic and diagnostic 

fields in term of their spatial and temporal characteristics. 

The results obtained confirm the profound similarity in parallel climate simulations,

which justifies the possibility of using efficient neural network emulations of full model 

radiation for decadal and longer climate simulations as well as for weather prediction 

models.  The methodology developed can be applied to other LWR and SWR schemes 

used in a variety of models, process studies, and other applications. 
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4. Conclusions

In this study, we presented an approach based on a synergetic combination of 

deterministic modeling based on physical (first principle) equations and statistical 

learning (NN emulation) components within an atmospheric model.  The statistical 

learning approach was used to develop highly accurate and fast NN emulations for model 

physics components.  Here we presented a NN emulation of the full atmospheric 

radiation, i.e. for long- and short-wave radiation parameterizations used in numerical 

climate and weather prediction models.  

This study has shown the practical possibility of using highly efficient NN emulations for 

the full model radiation block for decadal (50 year) climate simulations. A very high 

accuracy and increased speed of NN emulations for the NCAR CAM full radiation (LWR 

and SWR) has been achieved. The systematic errors introduced by NN emulations of full 

model radiation are negligible and do not accumulate during the decadal model 

simulation.  The random errors of NN emulations are also small as is shown in Section 2.

Almost identical results have been obtained for the parallel 50-year climate simulations

as shown in Section 3.  These results show the potential of developing efficient NN 

emulations for model physics components and the entire model physics. 

The NN emulation approach presented here is very robust.  It was applied to both LWR 

and SWR parameterizations in different models with different dynamical cores and with 

different resolutions.  For example, in addition to the NCAR CAM applications presented 

here, this approach was applied to the NASA NSIPP model and to the NCEP CFS model,
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using NN emulations of the LWR parameterizations (Krasnopolsky and Fox-Rabinovitz 

2006 a, Krasnopolsky et al. 2008).  In all these cases, the systematic errors introduced by 

NN emulations are negligible and the random errors are very small, similar to errors 

presented in this paper.  The computational speed-ups achieved in all these cases are also 

similar (about two orders of magnitude).

Applying the NN emulation approach, which allows such a significant speed-up with 

preservation of the accuracy and functional integrity of the model physics, may create 

some challenges that can be resolved using the tremendous flexibility of statistical 

learning techniques and of the NN technique in particular. Because NN emulations are 

statistical approximations, there exists a small probability of larger approximation errors 

or outliers.  These larger errors can be successfully controlled using a compound 

parameterization technique with a quality control procedure for removing larger errors 

(Krasnopolsky 2007) or using the NN ensemble approach with NN emulations (Fox-

Rabinovitz et al. 2006). The NN emulation technique is sensitive to the resolution of the 

model used, especially to vertical resolution, which determines the NN emulation 

architecture, i.e., the number of inputs and outputs.  Every time the vertical resolution of 

the model is changed, the NN emulation needs to be retrained.  It is noteworthy that NN 

retraining can be done routinely and takes a limited time and effort once the practical 

framework for a specific model is developed.

As mentioned above, the NN emulations described in this study have been developed 

only for the existing model parameterizations.  Extension of the NN-approach to 
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developing new parameterizations goes beyond the scope of this study and could be done 

as a collaborative effort with parameterization developers interested in implementation of 

more sophisticated and realistic model physics, which are now computationally 

prohibitive. Also, it is noteworthy that the NN emulation technique can be applied to 

accelerate calculations of the model chemistry.
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Figure-caption list.

Fig. 1 Zonal and time mean LWR Heating Rates, in K/day, for the NN LWR run (the 

upper left panel), the control run (the upper right panel) and their difference (the bottom 

panel).  

Fig. 2 Same as in Fig. 1 but for the SWR.

Fig. 3 Zonal and time mean 2-meter temperature, in K, for the full radiation NN and 

control runs (the upper panel) and their difference (the bottom panel).

Fig. 4 Zonal mean vertical distribution of time mean temperature, in K, for the full 

radiation NN run (the upper left panel), the control run (the upper right panel), and their 

difference or bias (the bottom panel).

Fig. 5 Time mean temperature at 850 hPa, in K, for the full radiation NN run (the upper 

panel), the control run (the middle panel), and their difference (the bottom panel). 

Fig. 6 Vertical profile of time mean temperature, in K, at the Resolute, Canada station for 

the full radiation NN run (the dashed line), the control run (the solid line), and 

observations (the dotted line).

Fig. 7 Winter-summer difference for time mean temperature at 850 hPa, in K, for the full 

radiation NN run (the upper panel), and the control run (the bottom panel).  
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Fig. 8 Global mean time series for time mean temperature at 850 hPa, in K, for the full 

radiation NN run (the dotted line), and the control run (the  solid line).

Fig. 9 Annual cycle for global mean temperature at 850 hPa, in K, for the full radiation 

NN run (the dashed line), and the control run (the solid line).

Fig. 10 Annual cycle for precipitation, in mm/day, for the full radiation NN run (the 

upper left panel), the control run (the upper right panel), and their difference or bias (the 

bottom panel).
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Table 1. Statistics estimating the accuracy of HRs (in K/day) calculations and 
computational performance for NCAR CAM-2 LWR and SWR using NN emulation vs. 
the original parameterization.  

Bias

(K/day)

PRMSE 

(K/day)

σPRMSE

(K/day)

Performance

(times faster)

LWR NN 50 3. · 10-4 0.28 0.20 150

SWR NN 55 -4. · 10-3 0.15 0.12 20
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Table 2. Time (40-year) and global means for model diagnostics from NCAR CAM-2 
control climate simulations with the original LWR and SWR, simulation with NN 
emulations for the full radiation using NN 50 (LWR) and NN 55 (SWR), and their 
differences.  SLP – sea level pressure;   T2M – temperature at 2 m ;  U-200 - 200 hPa 
zonal wind;  TPR - total precipitation rate;  TCA - total cloud amount;  HLCA - high-
level cloud amount; LLCA - low-level cloud amount; MLCA - mid-level cloud amount; 
TGCLWP - total grid-box cloud liquid water path; TGCIWP - total grid-box cloud ice 
water path; TOMNLW - top of model net long-wave flux; TOMLWC - top of model 
long-wave cloud forcing.

Field Control NN Full 

Radiation

Mean

Difference

RMS 

Difference

Min 

Difference

Max

Difference

SLP (hPa) 1011.48 1011.50 0.02 0.52 -2.04 1.57

T2M (K) 287.37 287.27 - 0.1 0.26 -1.64 0.78

U-200  

 (m/s)

16.21 16.29 0.08 0.86 -2.31 3.95

TPR 

(mm/day)

2.86 2.89 0.03 0.2 -1.84 1.19

TCA (%) 60.71 61.12 0.41 1.42 -7.50 5.76

HLCA(%) 43.05 43.29 0.24 1.63 -7.52 8.01

LLCA(%) 31.67 31.93 0.26 1.06 -5.20 4.78

MLCA(%) 19.11 19.14 0.03 0.81 -4.86 4.39

TGCLWP

(g/m2)

60.23 60.59 0.36 3.02 -19.43 14.95

TGCIWP

(g/m2)

8.82 8.83 0.01 0.39 -1.69 1.45

TOMNLW

(W/m2)

234.48 234.54 0.06 2.32 -8.37 11.56

TOMLWC

(W/m2)

29.33 29.07 -0.26 2.45 -15.59 7.64
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Fig. 1 Zonal and time mean LWR Heating Rates, in K/day, for the NN LWR run (the 

upper left panel), the control run (the upper right panel) and their difference (the bottom 

panel).  
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Fig. 2 Same as in Fig. 1 but for the SWR.
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Fig. 3 Zonal and time mean 2-meter temperature, in K, for the full radiation NN and 

control runs (the upper panel) and their difference (the bottom panel).
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Fig. 4 Zonal mean vertical distribution of time mean temperature, in K, for the full 

radiation NN run (the upper left panel), the control run (the upper right panel), and their 

difference or bias (the bottom panel).



32

Fig. 5 Time mean temperature at 850 hPa, in K, for the full radiation NN run (the 

upper panel), the control run (the middle panel), and their difference (the bottom 

panel). 
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Fig. 6 Vertical profile of time mean temperature, in K, at the Resolute, Canada station for 

the full radiation NN run (the dashed line), the control run (the solid line), and 

observations (the dotted line).
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Fig. 7 Winter-summer difference for time mean temperature at 850 hPa, in K, for the full 

radiation NN run (the upper panel), and the control run (the bottom panel).  
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Fig. 8 Global mean time series for time mean temperature at 850 hPa, in K, for the full 

radiation NN run (the dotted line), and the control run (the solid line).
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Fig. 9 Annual cycle for global mean temperature at 850 hPa, in K, for the full radiation 

NN run (the dashed line), and the control run (the solid line).
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Fig. 10 Annual cycle for precipitation, in mm/day, for the full radiation NN run (the 

upper left panel), the control run (the upper right panel), and their difference or bias (the 

bottom panel).


