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Outline
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• Two Modes of NN Applications:

– NN Emulations: Speeding up Calculations of Model 
Physics

– NN Parameterizations: Improvement of Model Physics
• Hybrid Models: Synergetic Combination of Deterministic 

and Statistical Learning Model Components
– Robustness of Hybrid Models
– Compound Parameterizations: Coherence of NN and 

Deterministic Components
• NN Ensembles
• Conclusions
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Summary of Recent Developments
• Developed NN Emulation for the NCAR 

CAM LWR Parameterization
– High accuracy of NN emulation vs. the 

original CAM LWR parameterization
– NN emulation is 150 times faster than the 

original CAM LWR 
• Developed NN Emulation for the NCAR 

CAM SWR Parameterization
– High accuracy of NN emulation vs. the 

original CAM SWR parameterization
– NN emulation is 20 times faster than the 

original CAM SWR
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Summary of Recent Developments (2)

• Developed a Hybrid Model Approach 
and Demonstrated its Feasibility: 
– Performed 50 year parallel runs of Hybrid 

NCAR CAM with the full NN radiation block 
and the original NCAR CAM radiation block: 
no significant differences between the runs

– Developed a compound parameterization
approach for robust hybrid models 
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Summary of Recent Developments (3)

• Developed a NN Parameterization Approach
– Approach has been conceptually formulated
– Proof of concept has been produced 

• Developed NN Ensemble Approaches to:
– Improve the accuracy of NN emulation
– Reduce uncertainties of NN Jacobians

• Started Transfer of Developed Methodology 
to NCEP CFS (NN emulations for the 
radiation block)
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Improving Accuracy of Neural Network Emulations with NN Ensemble Approaches”, Neural 
Networks, in press 
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Deterministic and Machine Learning Components for Numerical Climate Modeling and 
Weather Prediction", Neural Networks, 19, 122-134 

• V.M. Krasnopolsky and M.S. Fox-Rabinovitz, 2006: "A New Synergetic Paradigm in 
Environmental Numerical Modeling: Hybrid Models Combining Deterministic and Machine 
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Nonlinear Interactions in Wind Wave Spectra: Direct Mapping for Wind Seas in Deep 
Water”, Ocean Modelling, v. 8, issue 3, 253-278
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Background
• Any parameterization of model physics is 

a relationship or MAPPING (continuous or 
almost continuous) between two vectors: a 
vector of input parameters, X, and a vector 
of output parameters, Y,

• NN is a generic approximation for any
continuous or almost continuous mapping 
given by a set of its input/output records:

SET = {Xi, Yi}i = 1, …,N
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Major Advantages of NNs:

NNs are generic, very accurate and convenient
mathematical (statistical) models which are able to 
emulate numerical model components, which are 
complicated nonlinear input/output relationships 
(continuous or almost continuous mappings ).
NNs are robust with respect to random noise and fault-
tolerant.
NNs are analytically differentiable (training, error and 
sensitivity analyses): almost free Jacobian!
NNs emulations are accurate and fast but NO FREE 
LUNCH!

Training is complicated and time consuming nonlinear 
optimization task; however, training should be done only 
once for a particular application!

NNs are well-suited for parallel and vector processing
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Three Modes of NN Applications
• NN emulations of existing model physics 

parameterizations allow us to:
– Speed up calculation of model physics 102 to 105 times 
– Improve model physics by introducing NN emulations of more 

sophisticated (but time consuming) parameterizations
• Develop new NN parameterizations of model physics 

based on:
– Observations
– Data simulated by first principle process models (like cloud 

resolving models) 
• Using NNs as a tool for continuum (seamless) modeling
• All NN applications are approximations of the original 

model physics (parameterizations, CRM, etc.) ! They 
are NOT an alternative to ongoing developments of first 
principle model physics but rather based on them!



Distribution of NCAR CAM Calculation Time
NCAR CAM 2.0 T42L26
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NN Emulations of Model Physics Parameterizations
Learning from Data
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NN Emulation of Input/Output Dependency:
Input/Output Dependency: 

The Magic of NN Performance

Xi
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Parameterization Yi

Y = F(X)

Xi
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NN for NCAR CAM Physics 
CAM Long Wave Radiation

• Long Wave Radiative Transfer:

• Absorptivity & Emissivity (optical properties):

4
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Neural Network for NCAR LW Radiation
NN characteristics

• 220 (612 for NCEP) Inputs:
– 10 Profiles: temperature; humidity; ozone, methane, cfc11, cfc12, & 

N2O mixing ratios, pressure, cloudiness, emissivity
– Relevant surface characteristics: surface pressure, upward LW flux 

on a surface - flwupcgs
• 33 (69 for NCEP) Outputs:

– Profile of heating rates (26)

– 7 LW radiation fluxes: flns, flnt, flut, flnsc, flntc, flutc, flwds
• Hidden Layer: One layer with 50 to 300 neurons 
• Training: nonlinear optimization in the space with 

dimensionality of 15,000 to 100,000
– Training Data Set: Subset of about 200,000 instantaneous profiles 

simulated by CAM for the 1-st year
– Training time: about 1 to several days (SGI workstation)
– Training iterations: 1,500 to 8,000

• Validation on Independent Data:
– Validation Data Set (independent data): about 200,000 

instantaneous profiles simulated by CAM for the 2-nd year
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Neural Network for NCAR SW Radiation
NN characteristics

• 451 Inputs:
– 21 Profiles: specific humidity, ozone concentration, pressure, 

cloudiness, aerosol mass mixing ratios, etc
– 7 Relevant surface characteristics

• 33 Outputs:
– Profile of heating rates (26)
– 7 LW radiation fluxes: fsns, fsnt, fsdc, sols, soll, solsd, solld

• Hidden Layer: One layer with 50 to 200 neurons 
• Training: nonlinear optimization in the space with 

dimensionality of 25,000 to 130,000
– Training Data Set: Subset of about 100,000 instantaneous profiles 

simulated by CAM for the 1-st year
– Training time: about 1 to several days (SGI workstation)
– Training iterations: 1,500 to 8,000

• Validation on Independent Data:
– Validation Data Set (independent data): about 100,000 

instantaneous profiles simulated by CAM for the 2-nd year
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Error Vertical Variability Profiles
RMSE profiles in K/day RMSE Profiles in K/day
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Individual Profiles

PRMSE = 0.11 & 0.06 K/day PRMSE = 0.05 & 0.04 K/day

Black – Original 
Parameterization
Red – NN with 100 neurons
Blue – NN with 150 neurons

PRMSE = 0.18 & 0.10 K/day
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Individual Profiles (NCEP)
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Hybrid Numerical Models (HNM)

• Hybrid Numerical Models (HNM) –
combine deterministic components with 
statistical components

• Deterministic components are based on 
first principles or physically based

• Statistical components – are either NN 
emulations of physically based 
components or NN parameterizations.
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Validation of Hybrid NCAR CAM Model

• The control NCAR CAM with the original LWR 
and SWR parameterizations is run for 40 years 
(in the 50 year run first the 10 years are 
skipped to account for spin-up effects).  

• The Hybrid NCAR CAM with LWR and SWR 
NN emulations is run for 40 years. 

• The validation of the Hybrid NCAR CAM with 
NN emulation is done against the control run. 
The following is the comparison of the two 
parallel runs (11-50 year products). 
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Zonal Mean LW Heating Rate, K/day.

Note: light 
green and light 

beige colors 
correspond to 

the near 0 
values!
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Zonal Mean SW Heating Rate, K/day.
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Zonal Mean 2-meter T, K.
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Zonal Mean T, K.  
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T-850, K.  
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T-850, K.  Winter-Summer Difference.
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T-850, K.  Global Time Series.

Red – NCAR CAM, Blue – Hybrid NCAR CAM (with NN radiation)
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Vertical Profile of T (Resolute, Canada), K
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NN Parameterizations
• New NN parameterizations of model 

physics can be developed based on:
– Observations
– Data simulated by first principle process 

models (like cloud resolving models). 
• Here NN serves as an interface 

transferring information about sub-grid 
scale processes from fine scale data or 
models (CRM) into GCM (upscaling)
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NN convection parameterizations for climate models 
based on learning from data.
Proof of Concept (POC) -1.

D
ata

CRM
1 x 1 km
96 levels

T & Q Reduce Resolution 
to ~250 x 250 km

26 levels

Prec., Tendencies, etc. Reduce Resolution 
to ~250 x 250 km

26 levels

NN

Training Set

Initialization
Forcing

“Pseudo-
Observations”
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Proof of Concept - 2
• Data (forcing and initialization): TOGA COARE 

meteorological conditions
• CRM: the SAM CRM (Khairoutdinov and Randall, 2003).  

– Data from the archive provided by C. Bretherton and P. Rasch
(Blossey et al, 2006).  

– Hourly data over 90 days
– Resolution 1 km over the domain of 256 x 256 km
– 96 vertical layers (0 – 28 km) 

• Resolution of “pseudo-observations” (averaged CRM 
data): 
– Horizontal 256 x 256 km 
– 26 vertical layers

• NN inputs: only temperature and water vapor fields; a limited 
training data set used for POC

• NN outputs: precipitation & the tendencies T and q, i.e. 
“apparent heat source” (Q1), “apparent moist sink” (Q2), and 
cloud fractions (CLD) 
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Proof of Concept - 4

Time averaged water vapor tendency
(expressed as the equivalent heating)
for the validation dataset. 

Q2 profiles (red) with the corresponding NN 
generated profiles (blue).  The profile rmse
increases from the left to the right. 
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Proof of Concept - 3

Precipitation rates for the validation dataset. Red – data, blue - NN 
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Compound Parameterization (CP):
Quality Control (QC) for Outliers and 

Adaptivity to Climate Change
• NN emulations are very accurate; however, 

larger errors (outliers) may occur because of 
several reasons and a quality control (QC) for 
outliers is needed to account for:
– Not representative training set 
– High level of noise in training data 
– Redundancy in NN architecture

• Due to climate changes NN can face situations 
for which it was not trained (e.g. an increased 
level of CO2)

• CP addresses both above challenges 
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Compound Parameterization 
Based on Error NN
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NN Emulation
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Predicted vs. Real Errors 
Mean CC = 0.87
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Error PDF

HR Errors in K/day

Solid – all data (207,338)
Dashed – 0 < prmse NN < 0.4 K/day 

(203,695 or 98.3%)
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Hourly prmse



5/31/2007;  GFDL V. Krasnopolsky & M. Fox-Rabinovitz, Neural Networks for Model Physics 41

NN Ensembles
• Ensemble approach is easily and naturally 

compatible with NN techniques
– Many ways of generating NN ensembles

• Different initial conditions for NN training
• Different NN architectures
• Different partitioning of training set and/or domain

– NNs can be applied for a nonlinear ensemble averaging
• NN ensembles can be applied to:

– Improve accuracy of NN emulations
– Improve accuracy of NN parameterizations
– Reduce uncertainty of climate simulations and projections
– Reduce uncertainty of NN Jacobian
– Produce ensembles of perturbed physics

• NN ensembles are possible due to computational 
efficiency of NNs
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Ensemble 
Member NN#1

Ensemble 
Member NN#2

Ensemble 
Member NN#n

.
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Y2

Yn
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Ensemble Approaches to Improve the 
Accuracy of NN Emulations: 

Nonlinear Ensemble.

Schematic 
representation of a 
nonlinear ensemble that 
uses an averaging NN.  A 
tilde over the averaging 
NN output     emphasizes 
that a nonlinear 
ensemble average is 
produced.  X is an input 
of the emulation.

Y~
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Ensemble Approaches to Improve the 
Accuracy of NN Emulations: 

Nonlinear Ensemble.

The random part of the 
emulation error (the standard 
deviation, SD, of the error) 
normalized to the maximum 
member error (the vertical axis) 
and the systematic error (bias) 
also normalized to the maximum 
member error (the horizontal 
axis).  Each ensemble member is 
represented by a star, the 
conservative ensemble average 
– by the cross, and the nonlinear 
ensemble using the averaging 
NN by the diamond.
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Conclusions - 1
• NN is a powerful tool for speeding up 

calculations of model physics or for 
developing NN emulations
– Accurate and fast NNs emulations have been 

successfully developed for:
• NCAR CAM LWR & SWR parameterizations
• NASA LWR parameterization
• NCEP LWR & SWR parameterizations (work in progress)

– NN emulations of the NCAR CAM LWR & SWR are 150 
to 20 times faster and very close to the original 
parameterizations. 

– The simulated diagnostic and prognostic fields are very 
close for the parallel NCAR CAM climate runs with NN 
emulations and the original parameterizations
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Conclusions - 2
• NN is a promising tool for improving 

model physics or developing new NN 
parameterizations
– With an extremely simple characterization of 

the atmospheric state, useful information 
about the CRM model behavior can be 
produced (i.e. we can emulate CRM 
convective and cloud physics) at the GCM 
scales

– This is the first step in the construction of a 
NN convective parameterization. 
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Conclusions - 3
• Potential challenges can be successfully 

resolved exploiting the tremendous flexibility of 
NN techniques:
– A higher accuracy of approximation can always be 

achieved by the expense of a speed up because the 
later will remain significant anyway 

– NNs can be used for developing Compound 
Parameterizations with sophisticated QC procedures

– NN can be dynamically adjusted to climate changes
– NN ensembles can be efficiently used 

• Alternative Statistical (or Machine) Learning 
Techniques (like Support Vector Machines or 
other Kernel Methods) are being explored  


