U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
OCEAN PRODUCTS CENTER

TECHNICAL NOTE

DEVELOPMENT OF A SINGLE "ALL-WEATHER" NEURAL
NETWORK ALGORITHM FOR ESTIMATING OCEAN SURFACE
WINDS FROM THE SPECIAL SENSOR MICROWAVE IMAGER

V. M. KRASNOPOLSKY, L.C. BREAKER, AND W. H. GEMMILL

NATIONAL METEOROLOGICAL CENTER
WASHINGTON, D.C.
JUNE 1994

THIS IS AN UNREVIEWED MANUSCRIPT, PRIMARILY INTENDED FOR INFORMAL
EXCHANGE OF INFORMATION

*OPC Contribution No. 94



No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

10.

aLaly,

12

13.

14.

15

16.

107/

18.

1

20.

215

OPC CONTRIBUTIONS

Burroughs, L. D., 1987: Development of Forecast Guidance for Santa Ana Conditions.
National Weather Digest, Vol. 12 No. 1, 7pp.

Richardson, W. S., D. J. Schwab, Y. Y. Chao, and D. M. Wright, 1986: Lake Erie
Wave Height Forecasts Generated by Empirical and Dynamical Methods —-- Comparison
and Verification. Technical Note, 23pp.

Auer, S. J., 1986: Determination of Errors in LFM Forecasts Surface Lows Over the

Northwest Atlantic Ocean. Technical Note/NMC Office Note No. 313, 17pp.

Rao, D. B., S. D. Steenrod, and B. V. Sanchez, 1987: A Method of Calculating the
Total Flow from A Given Sea Surface Topography. NASA Technical Memorandum 87799.,

19pp.

Feit, D. M., 1986: Compendium of Marine Meteorological and Oceanographic Products
of the Ocean Products Center. NOAA Technical Memorandum NWS NMC 68, 93pp.

Auer, S. J., 1986: A Comparison of the LFM, Spectral, and ECMWF Numerical Model
Forecasts of Deepening Oceanic Cyclones During One Cool Season. Technical Note/NMC
Office Note No. 312, 20pp.

Burroughs, L. D., 1987: Development of Open Fog Forecasting Regions. Technical

Note/NMC Office Note. No. 323., 36pp.

Yu, T. W., 1987: A Technique of Deducing Wind Direction from Satellite
Measurements of Wind Speed. Monthly Weather Review, 115, 1929-1939.

Auer, S. J., 1987: Five-Year Climatological Survey of the Gulf Stream System and
Its Associated Rings. Journal of Geophysical Research, 92, 11,709-11,726.

Chao, Y. Y., 1987: Forecasting Wave Conditions Affected by Currents and Bottom
Topography. Technical Note, 1llpp.

Esteva, D. C., 1987: The Editing and Averaging of Altimeter Wave and Wind Data.
Technical Note, 4pp.

Feit, D. M., 1987: Forecasting Superstructure Icing for Alaskan Waters. National
Weather Digest, 12, 5-10.

Sanchez, B. V., D. B. Rao, S. D. Steenrod, 1987: Tidal Estimation in the Atlantic
and Indian Oceans. Marine Geodesy, 10, 309-350. :

Gemmill, W.H., T.W. Yu, and D.M. Feit 1988: Performance of Techniques Used to

Derive Ocean Surface Winds. Technical Note/NMC Office Note No. 330, 34pp.

Gemmill, W.H., T.W. Yu, and D.M. Feit 1987: Performance Statistics of Techniques

Used to Determine Ocean Surface Winds. Conference Preprint, Workshop Proceedings
AES/CMOS 2nd Workshop of Operational Meteorology. Halifax, Nova Scotia., 234-243.

Yu, T.W., 1988: A Method for Determining Egquivalent Depths of the Atmospheric
Boundary Layer Over the Oceans. Journal of Geophysical Research. 93, 3655-3661.

Yu, T.W., 1987: Analysis of the Atmospheric Mixed Layer Heights Over the Oceans.
Conference Preprint, Workshop Proceedings AES/CMOS 2nd Workshop of Operational
Meteorology, Halifax, Nova Scotia, 2, 425-432.

Feit, D. M., 1987: An Operational Forecast System for Superstructure Icing.
Proceedings Fourth Conference Meteorology and Oceanography of the Coastal Zone.

4pp.

Esteva, D.C., 1988: Evaluation of Priliminary Experiments Assimilating Seasat
Significant Wave Height into a Spectral Wave Model. Journal of Geophysical
Research. 93, 14,099-14,105

Chao, Y.Y., 1988: Evaluation of Wave Forecast for the Gulf of Mexico. Proceedings
Fourth Conference Meteorology and Oceanography of the Coastal Zone, 42-49

Breaker, L.C., 1989: El Nino and Related Variability in Sea-Surface Temperature

Along the Central California Coast. PACLIM Monograph of Climate Variability of the
Eastern North Pacific and Western North America, Geophysical Monograph 55, AGU,

133-140.




LIST OF ABBREVIATIONS

B
NN:
NN1:
NN2:
NN3:
NN4:
NN5:
NN6:
NN7:
NDBC:
DMSP:
SSM/I:
GSW:
GS:
SBB:
Sl
NMC:

GHz:

brightness temperature

neural network

neural network for clear conditions - see Table 4

neural network for cloudy conditions - see Table 4

neural network for cloudy conditions with 5 inputs - see Table 4
neural network for cloudy conditions with 6 inputs - see Table 4
neural network for clear plus cloudy conditions - see Table 4
“all-weather" neural network - see Table 4

“all-weather" neural network with 6 inputs - see Table 4
National Data Buoy Center

Defense Meteorological Satellite Program

Special Sensor Microwave Imager

Goodberlet, Swift and Wilkerson (1989) - see References
Goodberlet and Swift (1992) - see References

Stogryn, Butler and Bartolac (1994) - see References
Schluessel and Luthardt (1991) - see References

National Meteorological Center

vertical polarization

horizontal polarization

10" cycles/second

degrees Kelvin






ABSTRACT

Brightness temperatures from the Special Sensor Microwave Imager(SSM/I) are
being used routinely to estimate surface wind speeds over the open ocean. At least six
algorithms have been developed since 1983 which convert the SSM/I brightness
temperatures to surface wind speed. The empirical relationships that were first developed
between brightness temperature and wind speed were linear. Subsequently, nonlinear SSM/I
brightness temperature/wind speed algorithms were developed to improve the accuracy of
the wind speed retrievals. Recently, Stogryn, Butler and Bartolac(SBB) developed an SSM/I
wind speed retrieval algorithm using neural networks (NNs) as a basis. The improvement
in wind speed retrieval accuracies they achieved for "clear" and “cloudy” conditions were
remarkable (30% for clear conditions and ~250% for cloudy conditions). In applying these
previous SSM/I wind speed retrieval algorithms, it has been necessary to impose a number
of restrictions (i.e., rain flags) on the brightness temperatures that can be used in retrieving
surface wind speeds under adverse atmospheric conditions where atmospheric moisture
levels become higher. As a result, it has not been possible to make surface wind retrievals
at speeds greater than 15-20 m/sec with acceptable accuracy using the existing algorithms.

As a starting point for the present work, we first reproduce the results of SBB for
‘clear" and "cloudy" conditions using the same data sets and identically-constructed NNs.
We then proceed to extend the results of SBB by constructing and training a single NN which
can be applied to both clear and cloudy conditions. This single network not only eliminates
the problem of bridging the gap between the clear and cloudy regions, but it also provided
the basis for developing a network which could be extended to atmospheric conditions where
higher levels of moisture exist. As a result, NNs were trained to cover adverse atmospheric
conditions considered by SBB to be beyond the region where useful retrievals could be
obtained. Finally, an "all-weather" network was constructed and trained which yields a bias
of -0.05 m/sec and an rms error of 1.65 m/sec over the entire range of conditions
encountered in the data. This network performs as well on the previous clear and cloudy
cases as the previous networks which were trained specifically for these conditions. This
"all-weather" network was also applied separately to the data not considered by SBB which
corresponded specifically to adverse atmospheric conditions, and yielded accuracies which
were only slightly lower than for the previous case, suggesting that at least a weak wind
speed signal from the ocean surface remained in the data. Although no rain flag criteria for
this algorithm have yet been applied, the need for at least limited brightness temperature
restrictions are clearly recognized. Also, it was found that by including brightness
temperatures at 85 GHz, a frequency not normally employed in retrieving surface wind
speeds from the SSM/I, a slight improvement in retrieval accuracy could be achieved for
cloudy/adverse conditions.



1 INTRODUCTION

Accurate synoptic-scale wind measurements over the ocean surface are
required for operational marine meteorology. In-situ marine wind reports are
sparse and at best can only describe the large-scale flow patterns over the
ocean. Over the past 15 years, passive microwave radiometry has been used
with increasing success to infer wind speeds within the marine boundary layer.
The Scanning Multichannel Microwave Radiometer flown aboard the Seasat-A
satellite demonstrated that representative near-surface measurements of wind
speed could be made over the ocean (e.g., Wentz et al., 1986). More recently,
the Special Sensor Microwave/Imager (SSM/I) flown aboard the Defense
Meteorological Satellite Program's (DMSP) polar-orbiting satellites is being used
to estimate boundary layer wind speeds for operational use over the ocean.

A number of algorithms have been developed which convert the various
SSM/I channel outputs to surface wind speed. The original D-matrix algorithm
used to estimate wind speed was based on a linear combination of SSM/I
channel outputs and required nine sets of latitude and time dependent
coefficients for its application (Lo, 1983). Goodberlet et al. (1989) improved this
approach by developing a single algorithm (GSW) which could be applied
globally. This algorithm also met specified accuracy criteria ( 2 m/sec between 3
and 25 m/sec) under rain-free and low moisture conditions. According to
Goodberlet et al., however, this algorithm deteriorates rapidly in areas where
rain and heavy cloud cover occur. Schluessel and Luthardt (SL; 1991) derived a
relationship between the SSM/I channel outputs and wind speed similar to that
obtained by Goodberlet et al. using a slightly different combination of channel
outputs. Validation of their algorithm, however, was limited to observations from
the North Sea. Wentz (1992) developed a physically-based approach to
estimate surface wind speeds from the SSM/| quite different from those of Lo,
Goodberlet et al., and Schluessel and Luthardt. Wentz also found that it may be



possible to estimate wind direction as well as wind speed using data from the
SSM/I. However, Wentz's approach requires several external inputs not
available in the SSM/I data stream.

Because of the high moisture/rain limitation, Goodberlet and Swift (GS:
1992) modified the original GSW algorithm due to its limitations in the presence
of rain or high atmospheric moisture. More recently, Stogryn, Butler, and
Bartolac (SBB; 1994) applied neural networks (NNs) to the problem of estimating
surface wind speed from SSM/I data. The improvement in wind speed retrieval
accuracy for clear conditions was approximately 30% and for higher
moisture/higher wind speed conditions, the improvement was far greater
compared to the currently-operational algorithm of Goodberlet et al. (1989) .

The results obtained by SBB in using NNs as a basis for improving the
accuracy of SSM/I-derived wind speeds are impressive. However, the
application of NNs to practical problems in meteorology and oceanography is
relatively new. Moreover, SBB constructed and trained two separate NNs, one
for clear conditions and a second for cloudy conditions, a situation which could
lead to uncertainties in the region that separates these two regimes. Like GSW,
SBB did not consider high moisture cases, a limitation which creates gaps in the
wind speed fields which are retrieved. As a result, it was our intent to explore
ways of further improving SSM/I wind speed retrieval accuracy, including the
development of a single NN that could be used to retrieve surface wind speeds
over a wider range of atmospheric conditions. The purpose of this study is to
first document our work in reproducing the results of SBB and then to present
new results which provide the basis for additional improvements to SSM/I wind
speed retrievals using NNs. We give particular attention to those results which
lead to the development of a single "all-weather" NN algorithm for operational
SSM/I wind speed retrievals.

The text is organized as follows. Section 2 contains a brief introduction to

the theoretical background appropriate to this study. Section 3 contains a brief



description of the SSM/I instrument. Section 4 summarizes previous algorithm
development for estimating SSM/I wind speeds with corresponding rain
flag/brightness temperature discriminants. Section 5 describes the data sets
that were used in this study. Section 6 describes our work in reproducing the
results of Stogryn et al. Section 7 describes our results in attempting to improve
upon the results of Stogryn et al. using different NNs. Section 8 contains
operational results at NMC using the NN presented in Section 7. Finally, section

9 contains a discussion and our conclusions.



2 THEORETICAL BACKGROUND

The composite brightness temperature (TB) signal received by a satellite

radiometer at microwave frequencies can be expressed in simplified form as

L=t Te + T+ (l-e)Te + (1-¢)T,e™ (1)

where T, represents the surface temperature, £ the surface emissivity, t, the
atmospheric transmissivity, T, and T, the TB contributions from the atmosphere,
and T, the TB contribution from space. T, and & are both functions of wavelength,
polarization, and satellite zenith angle. The first term on the right-hand side of (1)
represents emission from the ocean surface modified by atmospheric absorption,
the second, upwelling radiation from the atmosphere, the third, reflected
downwelling radiation modified by atmospheric absorption, and the fourth, reflected
radiation from space modified by two-way absorption through the earth's
atmosphere. T, may represent the dominant contribution to T, in the presence of
rain, high humidity, or clouds, making it difficult or impossible to distinguish
contributions from the other sources. Since absorption equals emission under the
conditions of thermodynamic equilibrium, it follows that the term (1 - &€ )corresponds
to the surface reflectivity. Finally, the relationships between T, the composite TB,
and microwave frequency, polarization, and sensor viewing geometry are
complicated and often create problems for the instrument designer and for the data
analyst. To pursue this area in greater detail, see Swift (1990).

For inferring wind speed at the ocean surface, the surface emissivity, g is
the single most important parameter. Winds act on the ocean surface to generate
surface waves which increase in amplitude with increasing wind speed. As the
waves grow, roughness elements associated with these waves likewise increase.
Eventually, the waves begin to break forming whitecaps and foam. Because

surface roughness and foam tend to scatter the emitted surface radiation, the



surface reflectivity decreases which in turn increases the surface emissivity. Thus,
the surface contribution to T,increases as wind speed increases. Before the waves
break, it is the surface roughness that produces the TB dependence on wind speed
but when wave breaking accurs and foam is produced, a different mechanism for
increasing surface emissivity takes place. Foam is a combination of air and water,
Because this mixture has a lower reflectivity than pure water, it has a higher
emissivity. As shown by Swift (1990), the TB contribution from a partially foam-

covered surface can be expressed as

L=~ 36l +0,.F (2)
where T is the temperature of the water/surface foam combination and o is the
fraction of the satellite viewing area covered by foam. Since the area covered by
foam increases with increasing wind speed, we again have a mechanism for
establishing a TB dependence on wind speed. Ultimately, when wind speeds reach
the point where the entire ocean surface is foam-covered, saturation of the TB
signal from the surface occurs and the relationship breaks down. In such cases,
itis likely that atmospheric contributions to the satellite-observed TB field will most
often obscure any contributions from the ocean surface. Although it may be difficult
to estimate surface wind speeds under such adverse oceanic/atmospheric
conditions, it may not be impossible as shown by Black and Swift (1984), who were
able to measure surface wind speeds up to 70 m/sec in rain rates of at least 50
mm/hr using a microwave radiometer aboard an aircraft.

There are several reasons why the overall relationship between satellite TB
and surface wind speed is expected to be nonlinear and further, that the degree
and character of nonlinearity may, in fact, change over the dynamic range of wind
speeds encountered. First, different mechanisms are responsible for increasing
surface emissivity depending on whether or not foam is present, and second, a

power law relationship exists between foam cover fraction and wind speed (Stogryn,



1972). These combined dependencies have important implications for the type of

modeling approach that is used to establish empirical relationships between SSM/I-
observed TBs, and in situ wind speeds.



3. INSTRUMENT DESCRIPTION

The SSM/l is a microwave radiometer flown aboard the DMSP polar-
orbiting satellite. The first instrument was flown aboard the DMSP F8 satellite in
1987. Today, the current spacecraft in the sequence of DMSP satellites are
designated F10 and F11. The orbit of the DMSP satellite is circular and sun-
synchronous. The spacecraft altitude is approximately 835 km with an orbital
angle of inclination relative to the equatorial plane of approximately 99 degrees.

The SSM/l is a seven-channel, four-frequency linearly polarized passive
microwave radiometer. This instrument receives vertically polarized radiation at
22.2 GHz and vertically and horizontally polarized radiation at 19.3, 37.0, and
85.5 GHz. The SSM/I antenna beam pattern produces a conical scan. The
SSM/I viewing angle relative to nadir is 45 degrees (following the spacecraft)
with observations taken = 51 degrees about the aft direction. The active
portion of the SSM/I viewing area or scan covers a swath of approximately 1400
km. Adjacent satellite passes are approximately 2500 km apart at the equator,
leaving gaps ~ 600 km wide between adjacent orbits. The gap locations are not
fixed because the subsatellite ground track repeats itself on an approximate 16-
day cycle. With two satellites in orbit, the ground coverage is almost complete
on a daily basis. Orbital coverage for the DMSP F10 and F11 satellites is shown
in Fig. 1. At 85 GHz, 128 uniformly-spaced samples are taken over the entire
1400 km scan yielding a nominal spatial resolution of 12.5 km. At the three
lower frequencies, 64 samples are taken over the entire scan, yielding a nominal
resolution of 25 Km. For further details on the SSM/| instrument, see Hollinger
et al. (1990).

10
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4. PREVIOUS ALGORITHMS AND RAIN FLAG CRITERIA
The SSM/I retrieval problem may be expressed formally as:
W =Pl b e B (3)

where W is the retrieved wind speed, t,, ..., t, are channel TBs, and F is a
complicated, and most likely, nonlinear transfer function (see previous section)
which represents all of the processes that influence the wind speed signal from
its emission at the ocean surface to its manifestation as a TB signal at the output
of the SSM/I.

Because the physics that defines these processes is only partially
understood, it is difficult to create a theoretical model for F. As a result, most of
the retrieval algorithms that have been developed are essentially empirical.
Furthermore, these models are often linear.

We review here a number of algorithms which have been used to retrieve
surface wind speed based on the TBs and polarizations available from the
SSM/I. Each of these algorithms has been developed for specific
atmospheric/oceanic conditions. TBs from the SSM/| are used as a basis for
discriminating between various levels of atmospheric moisture and thus we
include the appropriate TB discriminants (i.e., rain flag criteria) that were used or
recommended in each case.

We start with the original D-matrix algorithm given by Lo (1983), where

the surface wind speed, W, is given as
W = Cy(i) + C4(i)TB19H + C,(i)TB22V + C,4(i)TB37V + C,(i)TB37H (4)

This relationship gives the wind speed in m/sec at a height of 19.5 m for TBs
expressed in degrees K. The TB's represent the brightness temperatures at the

12



SSM/I frequencies and polarizations indicated, and the C/'s are the D-matrix
coefficients which are a function of latitude and season. Following Lo, 11 sets of
coefficients, only 9 of which are unique, are required to span the entire range of
latitudes and seasons. In this case, the relationship between wind speed and
TBis linear. Equation (4) corresponds to a linear (location and time dependent)
model for the transfer function F in (3), and, as indicated, uses only four of the
seven TBs which are available.
The corresponding rain flag criteria are
If TB19H > 190 K
or A, <25 K, where A,,=TB37V-TB37H

then rain is possible and the rain flag is set equal to 1.
If B2 10K

heavy rain is indicated and the rain flag is set equal to 2.
An improved global D-matrix algorithm (i.e., single equation) was
developed by Goodberlet, Swift and Wilkerson (1989). The wind speed, W, is

given in m/sec as

W = 147.90 + 1.0969 TB19V - 0.4555 TB22V - 1.7600 TB37V +
+0.7860 TB37H (5)

where the coefficients were determined using data from the DMSP F8 spacecraft
and the height of the wind speed is 19.5 m. Again, the relationship between
wind speed and TB is linear. This algorithm (5) corresponds to a more general
linear model for the transfer function, F. Today, this algorithm is being used to
retrieve surface wind speeds over the ocean on an operational basis by the

Navy, the Air Force, and NMC.

13



The rain flag criteria for this algorithm are:

Rain Flag0: A;;, >50K
TB19H < 165 K yields an error < 2 m/sec 2.

RainFlag1: 37K< A, <50K
TB19H > 165 K yields an error of 2-5 m/sec.

Rain Flag2: 30K < A,,< 37K yields an error of 5-10 m/sec.
Rain Flag3: A,; < 30K yields an error > 10 m/sec.

Because the Goodberlet et al. (1989) algorithm produced poor results
under adverse weather conditions (i.e., clouds, water vapor and/or rain),
Goodberlet and Swift (1992) modified their previous algorithm to produce better
results for water-laden atmospheres. If we refer to (5) as "GSW", then the
modified equation can be expressed as

Wes = (Wasw - 1856 a) /(1. - ) (6a)

where Wy is the wind speed from (5), and « is given by

x = (30.7/A,)* (6b)
This modified version has the undesirable property that when A,, approaches
30.7 K, W has a singularity and thus the expression becomes meaningless in

this region. This is unfortunate since TB differences at 37 GHz (i.e., between the

V and H polarizations) in this range often correspond to higher moisture regimes

*Note that in GSW (1989), this TB criteria is given as TB19H < 165 K, whereas in GS (1992) itis
given as TB19H > 165 K. The first criteria appears to be correct and is thus given here.

14



which may be of interest. Unlike its predecessors, however, the relationship
between wind speed and TB is nonlinear with respect to the two TBs at 37 GHz
(H and V), as indicated in (6). This modified algorithm, however, has not been
adopted for operational use.

Schluessel and Luthardt (1991) present another algorithm for calculating
surface wind speeds from the SSM/I. Simulated TBs are obtained by calculating
the radiative transter for the SSM/I channels applied to a global set of vertical
profiles of temperature and humidity with the addition of artificially-introduced
multilayer clouds. Randomly-generated sea surface temperatures and wind
speeds at 10 m are included. The wind speeds were uniformly distributed
between 0 and 30 m/sec. Schluessel and Luthardt use these results together
with a subsequent regression analysis to construct a new wind speed algorithm
based on the available TBs and polarizations from the SSM/I. Three alternate
regression relationships are given. Based on surface-truth wind speed
comparisons in the North Sea, their third algorithm produces the best results and
is given below:

W =149.0 + 0.8800 TB19V - 0.4887 A,; - 0.4642 TB22V - 0.7131 TB37V -
-0.4668 A, (7)
where A,,=TB18V - TB1gH

Wind speed is calculated in m/sec and TBs are in degrees K. This retrieval
scheme is also linear and very similar to that of Goodberlet et al. (1989) and
uses five (vs. four) TBs. It also produces retrieval accuracy similar to GSW (rms
differences of 2.0 m/sec). However, it was only verified in one area, the North
Sea.

The only rain flag criteria used by SL was

5K <TBBEV - TB37FV <« 58 K,

15



where SSM/I TBs that fell outside this range were excluded due to rain. Only
2% of their data were excluded on this basis.

Wentz (1992) presents a different approach for estimating SSM/I surface
wind speeds. Here, the TBs at 37 GHz (H and V) are equated to separate
functions of the desired wind speed, W (at 19.5 m), and the atmospheric

transmittance, t

TB37V = F (W, ©) (8a)
TB37H = Fu(W, ) (8b)

The model functions, F, and F, are expressed in radiative transfer form for a dry,
nonscattering atmosphere. Several of the required inputs to the model
equations such as sea surface emissivity, sea surface temperature, and effective
air temperature must be calculated separately or approximated from climatology.
The calculation of surface emissivity is non-trivial. Once the model equations for
Fy and F, are specified, (8a) and (8b) can be solved using a numerical scheme
such as Newton's method. The final solution for W is obtained by inverting (8)
and then iterating until the solution for W converges. Because of the need for
external information and difficulties that arise in estimating these model
functions, this approach does not appear to be well-suited for rapid, real-time
applications.

Because rain produces large variations in atmospheric TB tending to
obscure the weaker surface wind speed signals, Wentz indicates that SSM/I
wind speed retrievals are only valid when the vertically-integrated absorption
due to liquid water at 37 GHz does not exceed 0.044 napers. A method for
estimating this quantity is given by Wentz.

A recent algorithm for estimating surface wind speeds from the SSM/I
using neural networks (NNs) has been presented by Stogryn, Butler, and
Bartolac (1994). The SSM/I TB/buoy wind speed matchup database that was

16



used in their study is described in the next section. The SSM/I channels used to
train the NNs were 19.3 GHz(V), 22.2 GHz(V), 37.0 GHz(V) and 37.0 GHz(H).
Separate networks were constructed for clear and cloudy conditions to
distinguish between rain-free and light-rain situations. The NN equations take

the following form
W = Ne(T) (9)

where the TB input vector T = {1, t,,t,,t,} = {TB19V, TB22V, TB37V, TB37H}, and
Net is a nonlinear operator (see Section 6 for a detailed description). The NN
algorithm (9) corresponds to a very general nonlinear model for the transfer
function, Fin (3), and does not require any a priori knowledge about the
particular form of the input/output relationship. The rain flag criteria used by
SBB to distinguish between clear and cloudy conditions are presented in the
next section.

The NN approach of SBB shows a 30% improvement in wind speed
retrieval accuracy over GSW for clear conditions and roughly a 250%
improvement for cloudy conditions. However, the use of two different NNs,
which corresponds to a piecewise approximation of the transfer function, leads
to a region of discontinuity between the clear and cloudy regimes. Furthermore,
their approach was not applied to higher moisture levels beyond the cloudy

regime. In what follows, we strive to surmount these limitations.
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5. THE DATA USED FOR ALGORITHM DEVELOPMENT AND TESTING

a. SSM/I/Buoy Matchups

The data used in this study consist of matched pairs of SSM/I TBs and
NDBC buoy wind speeds acquired at closely coincident times and locations over
the open ocean (and at least 100 km away from land). The TBs were acquired
from the SSM/I flown on the DMSP F8 satellite. Matchups were produced only
when the SSM/I retrievals were within 25 km of the buoy location and-the time of
satellite data acquisition was within 30 minutes of the buoy observation. In each
case, wind speeds have been adjusted to a standard height of 19.5 m. These
data were provided to us by G. Poe. They are identical to the data used by SBB
(1894) and were originally compiled by GSW (1989).

Each SSM/I/buoy matchup consists of (i) seven SSM/I TBs at 19.3 GHz
(Hand V), 22.2 GHz (V), 37.0 GHz (H and V), and 85.5 GHz (H and V), and (ii),
the corresponding buoy wind speed. These matchups are divided into two sets:
the first set for training and the second set for testing. During the course of the
study, SBB reversed the role of the training and test data sets in order to
maximize the amount of information that could be extracted from them. We have
done the same. SBB subdivided each set into three subsets. The first subset
includes all matchups where the SSM/| TBs satisfied the following condition,

A, >50 K.
Note that this discriminant is not as restrictive as the GSW (1989) rain flag zero
criteria which, in addition to the above, also requires that TB19H < 165 K. This

subset (subset #1 in Table 1) corresponds to "clear" conditions, according to the

terminology adopted by SBB. The remaining matchups where A,, < 50 K,

18



were further subdivided into two groups. The first group meets the following TB

criteria,

By 50K
T19V < T37V
T19H < 185K
T37H < 210K

which corresponds to "cloudy" conditions, following SBB (subsets #2 in Table 1).
The remaining matchups constitute subsets #3 (see Table 1), corresponding to
"very cloudy" conditions. According to SBB, for subset #3, " wind speed effects
on TB are so overshadowed by atmospheric attenuation that retrievals should
not be attempted". The first TB discriminant corresponds to the GSW (1989)
rain flag one criteria but the other discriminants do not correspond to any of the
higher GSW rain flag criteria (and no explanation for how they were determined
was provided). Thus, SBB formed three subsets, the first and second
corresponding roughly to clear and cloudy conditions, respectively, and
implicitly, a third, which we call "very cloudy" conditions. Loosely, the term clear
corresponds to low wind speed/low moisture conditions whereas cloudy
corresponds to higher wind speed/higher moisture conditions, and finally, the
label "very cloudy" corresponds to high wind speed/high moisture conditions
where the distinctions between categories are based on the previous TB
discriminants.

Tabie 1 shows the number of matchups contained in each of the subsets
used for training and for testing by SBB, and by us. SBB constructed separate
NNs for the clear and the cloudy cases; however, due to the expected problems
arising from increased atmospheric attenuation at the higher wind speeds, they

did not attempt to construct a NN for the very cloudy case.
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Table 2 shows the means and standard deviations stratified by subset
(i.e., clear, cloudy, and very cloudy) for the buoy wind speeds that were used in
creating the matchups. Figure 2 shows that the frequency distribution of wind
speed for training and testing are similar. In both cases, these distributions are
nonuniform; the maximum number of observations peak in the 4 - 7 m/sec range,
and no observations occur beyond ~18 m/sec. The lack of observations at the
higher wind speeds has important implications for our ability to adequately train

a NN to retrieve wind speeds in this region.

Table 1. The number of matchups in subsets # 1,2,3,4 in the training and

test sets.
Subset Training set Test set
# 1 or "clear" 1684 1673
# 2 or "cloudy" 220 238
# 3 or "very cloudy" 75 68
# 4 or "clear + cloudy" 1904 1911
Total (# 5) 1979 1979
Table 2. Statistics for buoy wind speeds.
Subset Training set Test set
Mean G Mean G’
#1 6.41 3.01 6.46 3.08
#2 8.89 3.57 9.04 3.39
#3 8.03 3.19 7.86 3.55
Total (# 5) 8.75 3.19 6.82 3.25
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Fig. 2. Normalized wind speed distribution for the training (solid) and test

(dotted) data sets.

Table 3 presents the means and standard deviations separately for each
SSM/I TB channel for the training and test data. Because these statistics vary
significantly from one channel to the next, this table emphasizes the need to

rescale or normalize the data before any NN calculations are undertaken.
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Table 3. Brightness temperature statistics for SSM/I data.
Channel Training set Test set
Mean . G s Mean . G nax
T19V 196.5 7% 138 e 196.6 7. 14.3 .24
T19H 1324 ¢ ¢ 22.7 32 132.7 4 23897
T22V 219.2 132 20.8 /23 219.4 1z | 21.12%%
T37V 214.8 15, 10.5 224 215.0 (43] 1 10.8 2x5
T37H 157.4 |, 20.3 ;30 157.8 12 21,0253
T85V 254.2 144 14.4 ., 254.2 s 138 5%
T85H 222.8 16 25.4 ;44 2231 ly7 28.5 a4¢
b. NN classification

In this study, we constructed, trained, and tested a number of different

NNs. Different subsets were used for training and testing these NNs; in some

cases, the number of inputs was varied. Their nomenclature and certain

characteristics are summarized in Table 4.

Table 4. NNs examined in the study.

Abbr. | Atmospheric | # of Inputs Training
conditions | inputs set
NN1 Clear only 4 TB19V, TB22V, TB37H,V # 1
NN2 | Cloudy only 4 Same as for NN1 #2
NN3 | Cloudy only 5 Same as for NN1 plus TB19H, #2
TB85H or TB85V as the 5th input
NN4 | Cloudy only 6 Same as for NN1 plus TB85H,V #2
as the 5th and 6th inputs
NN5 | Clear+Cloudy 4 Same as for NN1 #1+#2
NN6 | "All-Weather" 4 Same as for NN1 #1+#2
+#3
NN7 | "All-Weather" 6 Same as for NN4 #1+#2
+#3
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6. REPRODUCING THE RESULTS OF SBB

In order to reproduce the results of SBB and to make our findings directly
comparable with theirs, we have adopted the same NN design or architecture. Thus,
we have constructed feed-forward, fully-connected NNs which employ back-
propagation, a technigue commonly used for training multilayer NNs (e.g., Wasserman,

1989). These NNs contain three layers, an input layer, one hidden layer, and an output

layer (Fig. 3).

Inputs => t1 T2 t3 14

Input layer => O O (O<=Input node

Hidden layer => <= Hidden node

Output layer => <= Qutput node

QOutput => W

Fig. 3. The basic architecture of the four-input NNs used in this study.
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The input layer (layer 0) has four nodes (n = 4) which simply pass the input TBs in
degrees K (i.e., 19.3 GHz(V), 22.2 GHz(V), 37.0 GHz(V), and 37.0 GHz(H)), to the
hidden layer (layer 1). The hidden layer has two processing elements or nodes (m = 2).
Since these NNs are fully connected, each input is connected to each of the nodes in
layer 1. The hidden layer is followed by a final output layer (layer 2) which contains one
node. Both nodes in the preceeding layer (layer 1) are connected to the output node.
At the nodes in layers 1 and 2, linear combinations of the outputs from the nodes in the

previous layers (layers 0 and 1) are formed. Thus, we can express the combined input

to node jin layer 1 as

yi=2 Q. +B, (10)
j=1
where the t are the four input TBs, the Q; are weights, the B, are biases, and j = 1,2
(nodes of hidden layer). To transform this combined input into an output at each node,

a nonlinear transfer function, often called a squashing function, is employed. Thus, the

output for the i-th node can be expressed as
x=f(y) (11)
where frepresents the squashing function. In our case, f was chosen to be
f(x) = tanh(x) (12)

although the final results are not usually strongly dependent on the exact choice of the
squashing function. However, it is essential that this function has a nonlinear transfer
characteristic in order for the NN to represent input/output relationships which are
inherently nonlinear. Also, this function must be bounded and monotonically increase
over the range of the independent variable. A bias term, B, is included in (10) to center

the squashing function about the ordinate, an addition which makes the training

24



process more efficient. The output of hidden node x; provides the input to the output

node, which in turn produces the NN output:

Net=b+af(} 0,x,+B) (13)
=1
where the w are the weights, B is the bias, and a and b are scaling factors.
Once the training is complete and the weights have been determined, the

desired wind speed, W(m/sec), is calculated as
W = Net (T) (14)

where T, as before, is the input vector of TBs.

Before network training can begin, initial weights for each of the connections
within the network must be specified. Often, these weights are chosen randomly (e.g.,
Wasserman,1989). However, other weight initialization schemes are used (e.g.,
Wessels and Bernard, 1992; Nguyen and Widrow, 1990) and we have chosen one
recommended by Nguyen and Widrow because it gives the most rapid convergence to
a solution in our case. Next, the TB inputs are applied to the NN and the output wind
speed, W, is calculated. This output is then compared to the observed or target wind

speed, w, contained in the matchup. The function that was used to minimize the error

was

l N
E=— 2 (W-w)’ (15)

N i=l
where N is the number of matchups in the training set. E is often called the cost

function.
The difference between the calculated wind speed and the target wind speed is
fed back through the network and the weights at each node are changed in order to

minimize the error. This process is called backpropagation and is repeated many times
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until the error converges to an acceptably small value. Deciding when convergence to
the minimum error or at least a near minimum has been achieved is one of the more
difficult issues that face NN users and represents a problem in nonlinear optimization.
Training takes place as the network is repeatedly exposed to matched pairs of SSM/I
TBs and buoy wind speed. After each exposure, the weights and biases are adjusted

in accordance with the following training rule (e.g., Simpson, 1990):

G =(1-M)E,, +NAS (16)

where §is an adjusted weight or bias, and AE is a weight (or bias) increment

calculated by the backpropagation algorithm,

0E (17)

A(t,‘:—"g

where the partial derivative in (17) can be expressed in terms of the derivative of the
squashing function f(Simpson, 1990). n is called the learning constant. The learning
constant controls the rate at which the weights and biases are adjusted and has
important implications for locating the solution during convergence and for the
convergence rate itself. In our case, the learning constant was changed adaptively
during training to accelerate the convergence process.

Once the network was constructed, training was undertaken first using the data
originally designated for training by SBB and then tested on the data designated for
testing. Then the roles of the training and test data sets were reversed following SBB.
Before training was started, the TBs in each channel were rescaled so that the ranges of
values between channels were similar. This rescaling was accomplished by normalizing
the values in each channel based on the maximum and minimum values that occurred.
During training, several hundred to several thousand iterations were required in order to
achieve convergence. Because of the simple NN architectures employed, CPU times were

minimal (< 5 minutes in all cases for a VAX workstation model 4000.60).
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a. Clear conditions

First, we present the results for the clear/low moisture conditions ( A;, > 50 K).
Table 5 shows the biases, rms differences, correlation coefficients and skewnesses for (i)
the original GSW (1989) algorithm, (ii) the modified GS (1992) algorithm, (iii) the SBB
(1994) NN algorithm, and (iv), our own NN algorithm (NN1) for both the training and the
test data sets. Standard definitions for each of the statistics were adopted (e.g., Ostle and
Mensing,1975). The statistics are based on the differences between the algorithm-
derived, and the observed (buoy) wind speeds. Each of the statistics shows that the NN-
based algorithms outperform the GSW and GS algorithms. Also, the NN1 algorithm shows
slight improvement over the SBB algorithm both in terms of the bias and the rms
differences; however, the differences are small and it is difficult to determine their
significance. What is significant in our view is that similar results were obtained using

independently-constructed and trained NNs.

Table 5. Performance of different algorithms on the training and test sets

for clear conditions (set # 1).

Algorithm Bias RMS Corr. Coeff. Skewness
Training set
GSW -1.0 2.02 0.866 -0.553
GS -0.17 1.85 0.865 -0.617
SBB NN -0.07 1.41 0.885" -0.360°
NN1 0.001 1.38 0.888 -0.219
Test set

GSW -1.1 2.13 0.869 -0.654
GS -0.26 1.98 0.866 -0.764
SBB NN 0.1 1.41 0.890° -0.211"
NN1 -0.02 1.40 0.891 0.073

* These values were not presented in SBB (see Stogryn et al., 1994), however, they were calculated during

this study using the weights presented in Table 3 of SBB.

.
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Additional statistics are contained in Table 5 which we have calculated using the
weights presented in SBB (1994). A comparison of our results with SBB show that they
are consistently similar for the clear case. Consequently, in the following comparisons
with the GSW and the GS algorithms, we include only our results since to continue
including the results for the SBB NN would be essentially redundant. We also point
out that SBB used only the bias and rms statistics for comparison whereas we include
additional statistics (the correlation coefficient and skewness) and introduce several
plots (scatter plots, wind speed distributions and wind speed error distributions) to
provide a more complete basis for evaluating our results. We note that NN2 produces
a much smaller bias and smaller skewness than SBB, a result that is most likely related
to details of the training process and to the method of rescaling the TBs initially.

Figures 4-7 show scatter plots of SSM/I wind speed versus buoy wind speed for the
(i) GSW, (ii) GS, and (iii), the NN1 algorithms, using the training data set. In these
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Fig. 8. Error distributions for NN1 (solid), GSW (dotted) and GS(dashed) for test data.
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figures, the line y = x indicates perfect agreement between the buoy observations and
the SSM/I algorithm. The outer dashed lines provide a measure of uncertainty in the
buoy observations themselves (Gilhousen,1986). For NN1, the scatter plots for the
training and the test data sets are both shown to emphasize the similarity in
performance of NN1 on independent data vs. the data it was trained on. Clearly, the
NN1 plot shows less overall scatter and a better fit to the data.  Figure 8 compares
these algorithms by plotting the normalized error density (directly analogous to relative
frequency in elementary statistics) for wind speed versus the error in wind speed itself,
This plot indicates that the errors for NN1 are concentrated closer to the ordinate than
the errors for GSW or GS, leading to a more peaked distribution with a shorter tail.
The algorithms presented here can also be applied to the SSM/I TBs to reproduce the
entire training and test data sets. Thus, statistics (i.e., the means and standard
deviations) for the SSM/I-produced wind speeds can be compared directly with
corresponding statistics for the observed wind speeds. Table 6 shows this comparison
and includes the mean values for the wind speed squared as well, to emphasize the
importance of the errors for the higher moments of wind speed (e.g., wind stress). The
NN1 algorithm reproduces the mean values closely in each case. The GSW and GS
algorithms overestimate the variance whereas NN1 underestimates the variance. We
note, however, that GSW and GS tend to overestimate the variance more than NN1
underestimates it. The distributions of wind speeds for the SSM/I-derived winds and for
the observed winds are plotted in Figure 9. The NN algorithm produces a closer fit to
the observed distribution, particularly at wind speeds above 11 m/sec, than the other
algorithms. Both the GSW and GS algorithms overestimate the tail of the wind speed
distribution which produces large errors in the higher moments for wind speed (e.g.,
wind stress. For wind speed squared, the GSW algorithm produces an error of about
35% (see Table 6) and about 75% for the wind speed cubed (not shown).
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Fig. 9. Wind speed distributions for the clear case. Buoy winds (solid), NN (dashed),
GSW (dotted) and GS (dot-dashed) - produced winds.

Table 6. Mean values and standard deviations for clear conditions (set # 1).

Source Mean w Mean w? 6
Training set

Buoy data 6.41 50.1 3.01

GSW 7.39 67.0 3.52

GS 6.58 56.7 3.66

NN1 6.41 48.2 257

Test set

Buoy data 6.46 51.2 3.08

GSW 752 70.4 3.73

GS 6.71 60.2 3.89

NN1 6.48 497 2.77
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b. Cloudy conditions

Next, we show the results for cloudy conditions (subset # 2) using the TB

discriminants of SBB, where

Bis £ 50 K

TB19V <« TB37V

TB19H < 185K

TB37H < 210K
As indicated in the previous section, the first TB discriminant corresponds to the GSW rain
flag zero criteria but the remaining TB discriminants were not obtained from GSW, but
were adopted independently by SBB. Table 7 presents the same statistics that were given
in Table 5 but for the cloudy case, for the GSW, the GS, the SBB, and NN2 (our NN for
the cloudy case) algorithms for the training and test data sets. For the test data, GS
performs poorly because some of the TB differences, i.e., A,;, are close to 30.7 K where
this algorithm has a singularity. Consequently, the TBs in this region were removed and
the results for GS recalculated. These results are shown just below the first table entry for
GS and indicate considerable improvement. Again, the NN results of SBB and NN2 are
similar and both show a large improvement over the GSW and the GS algorithms. We
note, however, that NN2 produces a much smaller bias and a smaller skewness than SBB,
a result most likely related to the training process and the method of rescaling the TBs
initially.

Figs. 10-13 show scatter plots of SSM/I wind speeds versus buoy wind speeds for
the GSW, the GS, and the NN2 algorithms using the training data set. Again, the NN2
algorithm (and presumably SBB), shows less scatter and a better fit to the data than the
other algorithms. The normalized error density plot in Fig.14 shows that NN2 produces
a distinctly sharper error distribution with a smaller tail than either GSW or GS. Table 8
shows the same statistics for the cloudy case that were shown in Table 6 for the clear

case. The statistics for the SSM/I-produced, and the observed, wind speeds again
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indicate for both data sets (i.e., training and test) that the NN reproduces the sample
means closely whereas the others do not. Also, NN2 underestimates the sample
variance whereas GSW and GS overestimate the variance, as before. Finally, the wind

speed distributions in Fig. 15 show that the NN provides a closer fit to the

Table 7. Performance of different algorithms on the training and test sets for

cloudy conditions (set # 2).

Algorithm Bias RMS Corr. Coeff. Skewness
Training set

GSW -4.0 513 0.608 -0.861
GS -1.39 9.96 0.244 5.13

SBB NN 0.47° 2.39° 0.758 -0.621°

NN2 0.006 2.30 0.765 -0.496

Test set

GSW -3.92 5.08 0.583 -1.845
GS 5.56 101.0 -0.006 14.66
GS(A,, >31) -1.79 8.76 0.389 -7.9

SBB NN 0.5 2.39 0.712° -0.802°

NN2(A,, >31) 0.2 2.05 0.801 -0.148

NN2 0.02 2.38 0.711 -0.578

* These values were calculated using the weights presented in Table 3 of SBB.
observed data than either the GSW or the GS algorithms, particularly at wind speeds in
the range of 15-20 m/sec.

The neural network results of SBB are reproducible for both the clear and cloudy
cases using the same data for training and testing, and a network with the same
architecture. In some cases, it was possible to improve upon the results of SBB using
the NN1 and NN2 neural networks, although these improvements were small. These

improvements, where they occurred, were most likely due to differences in the training
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Fig. 14. Error distributions for NN2 (solid), GSW (dotted) and GS(dashed).

Table 8. Mean values and standard deviations for cloudy conditions (set # 2).

Source Mean w Mean w? o
Training set
Buoy data 8.89 91.7 3.57
GSW 12.9 179.6 3.69
GS 10.2 207.8 10.1
NN2 8.88 86.2 2.71
Test set

Buoy data 6.46 83.1 3.08
GSW 7.52 181.4 3.73
GS 8.71 251.7 3.89
NN2 6.48 88.1 2,77
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process since the architectures employed were identical. In an effort to make further
improvements, additional nodes were added to the hidden layer (i.e., changing the NN
architecture) but no improvement was found, consistent with the results of SBB. Also, the
GSW algorithm output itself was used as an additional input to our NNs but again no

improvement was found.

WIND SPEED DISTRIBUTIONS ("CLOUDY SKY" CASE)
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Fig. 15
Wind speed distributions for the cloudy case. Buoy winds (solid), NN (dashed), GSW
(dotted) and GS (dot-dashed) - produced winds.

The weights that were obtained for the NN1 and NN2 neural networks for the clear
and cloudy cases were quite different from those obtained by SBB. This result is due to
the fact that NNs are inherently nonlinear (due to the nonlinear "squashing" functions
employed) and during the training process, as convergence takes place, there is no

quarantee it will lead to the same set of weights (i.e., the same local minima in the error
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function (15)) in each case. The local minima which are found depend strongly on the
weights that are chosen initially in the training process and, as mentioned earlier, they are
often selected randomly (as was done by SBB) or, in some cases, using other approaches
(as was done here).
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T DEVELOPING AN IMPROVED NEURAL NETWORK WIND SPEED
RETRIEVAL ALGORITHM

a. Additional SSM/I channels

As a first step in exploring ways of improving SSM/I wind speed retrievals
using NNs, we revisited the question of SSM/I channel selection. The results of
GSW and SBB indicated that only four channels (i.e., 19.3 GHz(V), 22.2 GHz(V),
37 GHz(V), and 37 GHz(H)) of the SSM/| are required and that including
additional channels yields no improvement in wind speed retrieval accuracy.
Our results confirm their conclusions for clear conditions when additional
channel inputs were included in the training process. However, this is not the
case for cloudy conditions. For cloudy conditions, we trained and tested NNs
with a 5th input. In the first case, we included the 19.3 GHz(H) channel, in the
second case, the 85.5 GHz(V) channel, and in the third case, the 85.5 GHz(H)
channel. The results are summarized in Table 9. Inclusion of the 18 GHz(H)
channel provides little or no improvement. However, inclusion of the 85.5
GHz(V) and 85.5 GHz(H) channels indicate small but noticeable improvements.
In Table 9 we call the NN with 5 inputs, NN3 (T19H, T85H or T85V as the 5th
input). When both 85 GHz channels are included (i.e., with 6 NN inputs), no
further improvement occurs for the training set and only a slight improvement for
the test set (NN4 in Table 9). Because the sample sizes are relatively small for
the cloudy case (~ 300 matchups in each case), these results must be
considered preliminary. Thus, our results agree with SBB for clear conditions,
but not for the cloudy case, although consistent with their findings, we find no

improvement in either case by including the 19.3GHz channel.
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Table 9. Performance of different NNs with a fifth input on the training

and test sets for cloudy conditions (set # 2).

Algorithm Bias RMS Corr. Coeff. Skewness
Training set
NN3 (T18H) 0.007 2:27 0172 -0.557
NN3 (T85V) 0.09 2.18 0.789 -0.382
NN3 (T85H) 0.003 24 0.793 -0.363
NN4(T85H,V) -0.002 2.23 0.778 0.029
NN2(4 inputs) 0.006 2.30 0.765 -0.496
Test set
NN3 (T19H) 0.05 2.38 0.713 -0.608
NN3 (T85V) 0.07 2.14 0.776 -0.459
NN3 (T85H) 0.09 2.10 0.785 -0.461
NN4(T85H,V) 0.22 2.06 0.799 -0.017
NN2(4 inputs) 0.02 2.38 0.711 -0.578
b. Combined clear and cloudy conditions

As mentioned earlier, SBB employed separate NNs for the clear and cloudy
cases. This piecewise approach implies that the differences in moisture were such
that one NN could not be trained to cover the entire range of atmospheric
conditions encountered. This piecewise approximation also produces a
discontinuity in the region that separates the clear and cloudy cases according to
the definitions employed by SBB. Due to the flexibility of NNs (because they can
be trained to represent complicated nonlinear input/output relationships), we
proceeded to combine the clear and cloudy matchups (subsets #4 = #1 + #2) to
produce data that cover a wider (and continuous) range of atmospheric conditions
in an effort to represent these composite data by a single NN.

Table 10 shows the performance of a single NN (NN5 with 4 inputs) trained
on the combined clear and cloudy matchups for data set #4. Because the high wind
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speed/high moisture cases are so underrepresented in this sample, we have simply
retained the 4:2:1 architecture in the following results. Table 10 shows a
comparison of NN5 with GS for the combined data. NN5 was also applied to the

clear (#1) and cloudy (#2) subsets for further comparisons.

Table 10.  Statistics for different NNs on the training and test set and
their subsets for combined clear and cloudy conditions.

Data set #4 #1 #2
Algorithm GS NN5 NN5 NN1 NN5 NN2
Training set

Bias -0.312 0.001 0.008 0.001 -0.054 0.006

RMS 3,81 1.54 1.39 1.38 2.40 2.30
Corr.Ceff. 0.652 0.874 0.887 | 0.888 0.741 0.765
Skewness 9.787 -0.290 -0.167 -0.219 -0.368 -0.496

Test set

Bias 0.469 -0.027 -0.027 -0.02 -0.026 0.02

RMS 35.6 1,68 1.41 1.40 2.37 238
Corr.Ceff. 0.069 0.876 0.889 0.891 0.721 0.711
Skewness 41.85 -0.266 0.029 0.073 -0.653 -0.587

Application of NN5 to both the clear and cloudy cases show results almost identical
to those obtained earlier using the previous algorithms (NN1 and NN2) which were
trained separately for the low and higher moisture/higher wind speed subsets.
When this single algorithm is applied to the combined data sets, we obtain results
which are more-or-less mid-way between the results obtained for the two separate

cases (excluding the biases). Also, the biases are less than 0.1 m/sec in all cases.
These results indicate that a single NN can be trained to perform as well on

the combined clear and cloudy data sets as separate NNs trained on the clear and

cloudy cases on an individual basis. By using a single NN we have also removed
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any discontinuities in the SSM/I wind speeds in the region that separated the clear

and cloudy cases as previously defined by SBB.
C. "All-weather" case

Recause of the importance of being able to retrieve surface wind speeds
under adverse weather conditions operationally where the levels of atmospheric
moisture may be high, we examined the data previously labelled very cloudy
(subset #3) to determine if a NN could be trained to work effectively in this region
and to produce a contnuous wind speed field without gaps. As indicated, subset
 #3 is characterized by the presence of clouds, rain, or high humidity, and so our
expectation was that the surface wind speed signal would most likely be
undetectable. In order to conduct NN training, the entire training and test data sets
were used. The results of the network (NN or "all-weather") trained on the entire
data sets (#5 = #1 + #2 + #3) together with the results of applying this network to
the previous clear (#1) and cloudy (#2) subsets separately (along with the previous
"clear" (NN1) and "cloudy” (NN2) NN results) are presented in Table 11. Results
using the GS algorithm are indicated for comparison. First, we note that NN6
produces results which are similar to the nclear" and “cloudy” NNs (NN1 and NN2)
when applied to the previous clear and cloudy data sets separately. Second, and
most surprising, is that when NN6 was tested on the entire data sets, the biases
remained small (< 0.05 m/sec) and the rms differences increased only slightly (<
10%). This new result suggests that wind speed retrievals may in fact be possible
under higher moisture/wind speed conditions than previously considered.

Figs.16-19 show scatter plots of SSM/I wind speed for the GSW, GS, and
NN6 algorithms versus buoy wind speed for the entire test data set. In these
figures, the line y = x indicates perfect agreement. These plots consistently show

that the NN6 algorithm
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Table 11.

sets and associated subsets (see text for details).

Statistics for the different NNs applied to the training and test

Data set #5 #1 #2

NN # GS NN6 NNG6 NN1 NN6 NN2

Training set

Bias -1.11 0.001 0.009 0.001 -0.054 0.006

RMS 13:5 1.64 1.40 1.38 2.40 2.30
Corr.Ceff. 0.25 0.858 0.885 0.888 0.741 0.765
Skewness | -26.74 -0.047 -0.120 -0.219 -0.368 -0.496

Test set

Bias 0.492 -0.045 -0.035 -0.02 -0.024 0.02

RMS 39.4 1.65 1.42 1.40 2.38 2.38
Corr.Ceff. 0.073 0.863 0.887 0.891 0.744 0.711
Skewness 33.8 -0.165 0.080 0.073 -0.375 -0.587
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Fig. 16. Scatter plot for GSW algorithm
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Fig. 17. Scatter plot for GS algorithm

produces less scatter and a bettér fit to the observed wind speeds than the
other algorithms. Fig. 20 shows the error density distribution for wind speed for the
NNS8, the GSW, and the GS algorithms. NN6 produces a tighter fit to the ordinate

and a smaller tail than the other algorithms, indicating better performance overall.
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Table 12 presents the means and standard deviations for the entire training and
test data sets for the buoy observations and for the algorithms indicated. Note
that the clear and cloudy NNs (NN1 and NN2) have been applied only to the
clear and cloudy subsets. Of particular note is the close agreement between the
observed means and standard deviations and those reproduced with NNB for the
entire data sets. Finally, wind speed distributions for the observed buoy data
together with the algorithm-derived distributions for GSW and NN6 are shown in
Fig. 21. NN6 reproduces the observations far better than GSW at wind speeds

above 8 m/sec.
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Table 12. Means and variances for entire training and test data sets for
the algorithms indicated.

Data #5 #1 #2

sets

NN # Set GS NNG Set NN6 | NN1 Set NN6 | NN2
TrainingLset

Mean | 6.75 | 786 | 6.72 | 6.41 | 6.40 | 6.41 | 889 | 891 8.88

o 319 | 139 | 273 | 3.01 | 262 | 267 | 357 | 273 | 2.71

Test set

Mean | 682 | 632 | 686 | 6.46 | 6.49 | 6.48 | 9.04 | 9.07 9.02

o 305 | 3905 | 285 | 3.08 | 275 | 277 | 3.39 | 2.64 | 2.61
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Table 13. Statistics for the various algorithms for the training and test
data subsets #3 (very cloudy conditions).
GSW GS NN1 NN2 NN5 NN6
Training set
Bias -29.6 -21.4 -6.2 -2.7 -3.0 -0.13
RMS 39.4 66.6 8.6 8.7 7.0 3.19
Test set

Bias -30.4 1.2 -7.3 -1.7 2.9 -0.34
RMS 37.6 98.6 0.5 7.4 6.6 3.2
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Fig. 21. Wind speed distributions for the "all-weather" case. Buoy winds (solid), NN
(dashed), and GSW (dotted) produced winds.

To further explore the possibility of making wind speed retrievals under adverse
weather/high moisture conditions, we go one step further and apply the NN6 algorithm
(plus previous networks) separately to the very cloudy data subsets (#3) bearing in mind
that these samples are extremely small (75 matchups in the training set and 68 matchups
in the test set) and so any conclusions we draw at this point must be strictly tentative. To
more fully interpret the results, it would be important to examine the synoptic conditions
that prevailed for these various "very cloudy" matchups. From Table 13, only the NN6
algorithm produces results which might be considered acceptable, yielding biases of < 0.4
m/sec, and RMS values of 3.2 m/sec. These values are only slightly higher than the
previous values and are consistent between the training and test data sets, suggesting that

at least a weak signal from the ocean surface remains in the SSM/I TBs. Table 14 shows
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how well the various algorithms reproduce the sample statistics, with NN6 again clearly

coming out on top.

Table 14. Means and variances for training and test data subset #3 for the
various algorithms indicated.

Set GSW GS NN1 NN2 NN5 NN6
Training set
Mean 8.03 37.6 29.4 14.2 10.8 11.1 8.2
o 3.19 25.4 B3.5 4.8 7.8 5.1 1.0
Test set
Mean 7.86 38.2 8.4 15.2 8.8 107 8.2
o 3.55 21.1 99.6 4.4 6.4 4.7 1.7

Figs. 22 and 23 are scatter plots for the NN6 and the GSW-derived wind
speeds versus buoy wind speed observations. As expected, the NN6-derived wind speeds
match the observed wind speeds far better than GSW. We also note from Table
14 and Fig.24 that the actual wind speeds in this subset are all less than 17 m/sec,
indicating the expected result that high moisture conditions do not necessarily imply high
wind speeds. Fig. 24 further supports the improvement achieved using NNB (vs. GSW)

in reproducing the wind speed distribution for this subset.
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Only the standard four channels were used in deriving the results for the last case.
Based on our earlier results, we did not expect much improvement in the performance of
our "all-weather" NN when the additional 85 GHz(H) and 85 GHz(V) channels were
included. To verify this result, we constructed and trained one more NN with 6 inputs
(NN7). This network was trained on the entire training and test data sets. The results of
applying both the 6 (NN7) and the 4-input (NN8) NNs to all of the previous data sets are
shown in Table 15. From this table, NN7 only outperforms NN6 for the cloudy and very
cloudy cases. However, it must be remembered that approximately 90% of the entire data

sets (see Table 1)correspond to clear conditions and thus are
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GSW (dotted) - produced winds.

disproportionately represented in this overall sample. This once again emphasizes the
need for matchup data where all atmospheric conditions and wind speeds are more
uniformly represented. With respect to the third subset, we have applied several TB
discriminants to this sample to determine if we could establish a region beyond which
retrievals were meaningless but below which useful retrievals might still be obtained. It
is important to note that the only criteria we found applicable was the one given by SL,
where 5K < (TB85V - TB37V) < 55K. When this discriminant was applied to the third

subset, about 30% of the data were rejected.
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Statistics for various NNs for entire training and test sets and

Table 15.
subsets.
Data set #5 #1 #2 #3
NN # NN6 | NN7 NN6 NN7 NN6 NN7 NNG6 NN7
Training set
Bias 0.001 | 0.001 0.009 | 0.011 .0.024 | -0.085 | -0.128 | -0.071
RMS 1.64 1.64 1.40 1.42 2.38 2.32 3.19 3.11
Corr.Ceff. | 0858 | 0858 | 0.885 | 0.881 0.744 0.760 0.257 0.239
Skewness | -0.047 | -0.102 | -0.120 | -0.126 ] -0.375 ] -0450 0.633 0.532
Test set
Bias -0.045 | -0.053 | -0.035 | -0.04 -0.025 | -0.063 | -0.340 | -0.332
RMS 1.65 1.62 1.42 1.42 2.32 2.20 3.20 3.08
corr.Ceff. | 0.885 | 0.867 | 0.887 | 0.887 0.730 0.759 0.435 0.498
Skewness | -0.120 | -0.165 | 0.080 0.135 0569 | -0.654 | 0.134 0.034

However, the matchups that remained revealed about the same scatter as before.

Because rain was most likely present in some (or most) of these data, this result is not

surprising in view of the large inrease in TB variability that rain produces.

The weights, biases, and scaling parameters for the "all-weather" neural network

(NN6) are presented in Table 16 below.

Table 16.  Coefficients for the "all-weather" neural network (NN6).
Q11 Q12 021 sz Q'3.1 Qaz 041 qu
6.618-2 | 7.075-2 | -2.031-2 | -6.488-3 | -1.109-1 } -3.573-2 4.503-2 | 8.020-3
W, W, B, B, B a b
9.272-1 | -3.839-1 8.508 -7.223 | -7.585-1 17.52 10.64

.




8. OPERATIONAL RESULTS

The motivation for the work presented up to this point has been to develop an
improved NN algorithm for retrieving surface wind speeds from SSM/! satellite data for
operational use at NMC. In addition to improved retrieval accuracy, expanded coverage,
particularly in areas where significant weather is occurring has been a primary objective.
Based on the results which have been presented, NN6 has been implemented on the
experimental basis at NMC to provide additional estimates of surface wind speed over the
ocean. This algorithm has been run in parallel with the presently operational GSW
algorithm for the past few months and has shown significant improvement. Because the
samples which have been acquired are still relatively small, we do not include guantitative
results at this time.

As an indication of the qualitative improvement that can be achieved using NNB
versus GSW, maps of surface wind speed applying each algorithm to the same data are
shown (Figs. 25 and 26) together with the corresponding NMC surface analysis (Fig.27)
for 6 May, 1994. The NMC surface analysis depicts a surface low pressure system
centered at approximately 43° N, 66° W, with corespondingly higher surface winds in the
surrounding regions. Wind speeds as high as 45 knots are reported at 43° N, 60.5°W, but
the other reports tend to be in the range of 20-30 knots. Due to the TB restrictions for
GSW, the region of higher winds and moisture that surround the surface low are excluded
from consideration. However, no similar restrictions have been applied to NN6 and, as a
result, the gap that arises in using GSW is completely filled when NN6 is applied.
Although the NN6-produced wind speeds are somewhat lower than the model-produced
wind speeds in the area surrounding the low, they do show slightly higher winds in the

area of low pressure indicated in the NMC analysis.
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Fig. 25. GSW map of surface wind speed for May 6, 1994.
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As better training sets become available, it will be a relatively simple matter to
retrain NN to yield better wind speed estimates under higher wind speed conditions. Also,
although no rain flag criteria were applied to these data using NNB, it is our expectation
that rain flag criteria will most likely be required under very adverse atmospheric
conditions. As more experience is gained in applying this algorithm to high moisture/high

wind speed situations, we should be able to arrive at appropriate TB discriminants.
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8. DISCUSSION AND CONCLUSIONS

Most of the work that has been accomplished in developing wind speed retrieval
algorithms for SSM/I satellite data has focussed primarily on low moisture/low wind speed
conditions. Clearly, the wind speed signal from the ocean surface is much easier to
identify and retrieve in these cases. Operationally, it is also important to be able to
retrieve surface wind speeds under adverse atmospheric conditions as well. For example,
it is important to acquire surface winds associated with oceanic low pressure systems and
in the vicinity of fronts. Unfortunately, these synoptic-scale and mesoscale features are
often accompanied by clouds and rain.

In support of the above, it should be possible to derive better rain flag criteria for
high moisture situations by giving closer attention to the moisture conditions that prevail
in each case. It is reasonable to expect that the rain flag criteria which apply for light rain
at mid-latitudes may be quite different from the rain flag criteria that apply for high humidity
conditions in the tropics. Similarly, the appropriate rain flag criteria for deep convective
activity and heavy cumulus will most likely be quite different from either of the above.

The results presented earlier plus the work of others (e.g., Black and Swift, 1984)
suggest that a detectable wind speed signal may, in some cases, exist under very adverse
atmospheric conditions. Based on the aircraft measurements of Black and Swift (1984)
it may be possible to measure wind speeds up to 70 m/sec. To confirm these results and
to make further improvements to the algorithm presented here, a new SSM/l/wind speed
matchup database is needed which places greater emphasis on high moisture/high wind
speed conditions.

NNs have produced better results than those obtained using conventional fitting
techniques for several reasons. First, NNs are essentially nonlinear because they contain
a nonlinear (squashing) function in each processing element. Thus, NNs are able to
reproduce input/output relationships which are inherently nonlinear. Also, no specific
analytic representation for such nonlinear relationships must be assumed in constructing

the network: therefore, NNs can be used as general nonlinear transfer functions. They
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should also perform satisfactorily when the functional form of the input/output relationship
changes over the dynamic range of the measurements. This may be particularly important
for the SSM/I TB/wind speed relationship (Swift, 1990). Second, NNs have been shown
to work well in low signal-to-noise environments (Kerlirzin and Vallet, 1993; Feng and
Schulteis, 1993). This characteristic may be important in the present application when rain
and/or other forms of atmospheric moisture are present.

One of the characteristics of the NNs presented here is that they consistently
produced lower measures of variability than that actually contained in the observations
themselves, a characteristic shared by regression models as well. Although this behaviour
may be characteristic of NNs, it should be possible to modify the error or cost function in
such a way that this variability is not suppressed but rather is amplified according to the
manner in which the cost function is parameterized.

In the future, there are additional steps that can be taken to further improve surface
wind speed retrievals from the SSM/I. First, errors in the buoy observations themselves
should be taken into account. Also, improvements can be made to the way in which the
SSM/I/buoy wind speed matchups are produced. For example, weights can be assigned
to the surrounding SSM/I data that depend on the distance between the SSM/I reports and
the buoy.

It may be possible to improve SSM/I wind speed retrieval accuracy by using the raw
radiances from the SSM/I versus the microwave TBs which are now used. This
improvement in accuracy would occur through the elimination of the intermediate step of
calculating brightness temperatures.

It was shown that a slight improvement in NN retrieval accuracy could be achieved
by including the 85 GHz H or V channel inputs. This improvement, however, occured only
for the cloudy and very cloudy cases. This improvement is most likely due to the higher
spatial resolution of the SSM/I at 85 GHz (12.5 km vs. 25 km at the lower frequencies)
which should help significantly in resolving fine scale patterns of rain and moisture when

and where they occur.
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Finally, based on the work of Wentz (1992), it may be possible to estimate wind
direction as well as wind speed from SSM/I data. Because the relationship between TB
and wind direction is undoubtedly complicated, NNs may again be well-suited to the task
of establishing this relationship. In this regard, we note that Thiria et al. (1991) have
successfully applied NNs to the wind direction (and speed) retrieval problem for
scatterometer data acquired from the ERS-1 scatterometer.

We have reproduced the results of Stogryn et al. using the same SSM/I/buoy wind
speed matchups and the same NN architecture. In some cases, even slightly better results
were obtained which we attribute to differences in the NN training process. The NN
yielded significantly better accuracy in retrieving surface wind speeds from the SSM/I than
can be achieved using the currently operational algorithm of GSW (30% improvement
under clear conditions and ~250% improvement under cloudy conditions).

We have extended the technique, developing a single "all-weather” NN which was
applied over the entire range of weather conditions available in the matchup database.
This NN produced continuous wind speeds without gaps over the entire range of wind
speeds encountered. The accuracy of the "all-weather" NN for the clear and cloudy cases
equals the accuracy of the separate NNs of Stogryn et al. (1994) for these specific
conditions. Rain flag criteria will most likely be required under certain atmospheric
conditions but they have yet to be determined.

We have shown that the NN algorithm presented here, in addition to producing a small
bias and relatively small rms errors, reproduces the mean, standard deviation, and
distribution of the observed sample wind speeds better than any of the other algorithms
that were considered.

These results indicate that it may be possible to obtain SSM/I wind speed retrievals
under more adverse atmospheric conditions than were previously considered using NNs
as a basis. However, it will be important to (i) first create an SSM/I/buoy wind speed
matchup database with a far greater number of matchups under high wind speed/high

moisture conditions, and (i), establish the range of atmospheric conditions (through the
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appropriate TB discriminants) over which this extended algorithm will provide operationally
useful results.
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