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’ Abstract

In this note we review the physics of sea ice as a system forced by the atmosphere -
and ocean as they are relevant to the problem of making forecasts of the future state
of the sea ice pack. Statistical analyses [Walsh, 1981; Chapman and Walsh, 1991;
Mysak et al, 1991} and a limited theoretical analysis [Grumbine, 1993] suggest that
the period of predictability may be weeks to months, making sea ice one of the most

predictable components of the climate system. A feature of sea ice physics is that less

is-known about it than related physical systems such as the atmosphere and ocean.

Consequently this review should be taken in the sense of a progress report on the state

of sea ice understandmg A bibliography including sea ice papers not directly quoted is
included at the end to permit the reader to identify groups actively working on aspects
of the problem relevant to the reader’s specific interest.



1 Introduction

The sea ice prediction problem is less well posed than those for the atmosphere and oceans.
This is because less is known about the ice, and because it has been studied for a shorter
period than the more familiar geophysical fluids. In this note we will review the physics
- relevant to the sea ice prediction problem as they are currently understood.

A feature of the sea ice prediction problem is that the items of most interest are not
directly predictable. For most users, the most important fact about the sea ice is the
location of the ice edge. More demanding users might also want to know the concentration
of all ice (though not discriminating between ice 10 cm-and 300 cm thick) behind the ice
edge. Both the ice edge and ice concentration are derivable from the forecast variables.

Before becoming involved in the processes, we should understand what the variables
are. In the atmosphere or ocean, the minimal variables are the three dimensional velocity
field, pressure, density (mass per unit volume), temperature, and concentration of a scalar
(water vapor in the atmosphere, salinity in the ocean). For sea ice, the velocity is a two
dimensional field. Density is a mass per unit area. Pressure is force per unit length.
And temperature, in the thermodynamic sense of a measure of the random component of
velocity of the particles which make up the continuum, has not yet been defined for sea
ice. So far, no scalar field has been identified as important for sea ice forecasting.

An element which appears to be important for sea ice prediction is the ice thickness
distribution. The ice thickness distribution describes the fraction of the continuum area
occupied by ice of a given thickness. It could be considered as being analogous to gas
concentration in an atmosphere where the gasses are not well mixed, and where each gas
has different physical properties (such as the thermosphere). We will discuss the thickness
dependence of the different processes through this note.

The governing equations for the atmosphere and ocean are: conservation of mass, con-
- servation of momentum, conservation of thermodynamic energy, conservation of scalars,
an equation of state, and a rheology. The rheology of a continuum is part of the conser-
vation of momentum and describes the amount of stress (units of pressure) generated by
the degree (elastic) or rate (fluid) of deformation. For sea ice, the conservation of mass is
similar to that for the atmosphere, given that we have multiple thicknesses of ice in our
continuum element and that the thickness distribution can change by means other than:
advection (freezing will. thicken the ice floes, for example). Conservation of momentum

. is also similar to the atmospheric case. Terms are added because sea ice rests on the

‘atmosphere-ocean boundary. Conservation of thermodynamic energy is undefined for sea -
ice, and any scalar conservation has yet to be shown to be relevant. The equation of state
for sea ice is not well understood. We will discuss it at more length in the dynamics section.
The rheology of sea ice is not well known at all, with several different rheologies giving
similar results for ice drift in sea ice simulations [Flato and Hibler, 1992; Ip et al., 1991]. .
This will also be discussed in the dynamics section.

This note will discuss the conservation of momentum, mcludmg the equatxon of state
and the rheology, the conservation of heat energy (in exchange with the atmosphere and
ocean), and the conservation of mass (the evolution of the ice thickness distribution).
Given the physical basis from those discussions, we will examine the sea ice prediction
problem in terms of the accuracy which might be expected given forcing from atmospheric
and oceanic models or climatologies. A later note will examine the coupled problems. A



feature of sea ice as a continuum to bear firmly in mind is that the continuum particles,

ice floes, are macroscopic obJects which have a great ra.nge in thlckness (less than 10 cm

~ to over 10 m) and in area (10 m® to over 100 kmz)

2 C_o‘nser‘vation of vMomexﬂ_;um'.

2.1 ‘Free Drift '-Ice‘Dynamics

The dynainiQS'of the ice pack are most easily ﬁpderstood by considering what forces can

act on an individual floe. If floe-floe interactions are neglected, which we’ll start with, the
approximated dynamics are the free drift. First, since the floe is on the earth, we will

adopt the usual geophysical practice and take an Eulerian coordinate system ﬁ.xed to the

earth. Symbols used in this section are defined in appendix A.

Wind passing over the floe induces a stress on the floe, typically taken to be in the form-

of equation 1. Also, as water moves relative to the ice, a stress is induced, taken to be in

the form of equation 2, as a bulk aerodynamic skin drag. Turning angles are used when the
atmospheric winds or ocean currents are given by their geostrophic values. Given that the
ocean currents and ice velocities may be comparable, a more detailed computation whlch'

. computes the mutual stress balance between the ice, ocean, and atmosphere is probably
desirable, as in Steele et al. [1989]. The form drag (drag due to the shape of the ice floe,
as opposed to the skin drag which is caused by viscous dissipation against the surface area

- of the ﬂoe) 1s an additional term, determined to be important in the marginal ice zone by

* Steele et al. [1989] in the form of equation 3. The sea surface may also be elevated or

depressed relative to the geoid (equipotential surface). If so, the ice floes, which rest on

the sea surface, then attempt to slide to the lower potential level The acceleratlon due to
this is glven in equation 4.
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The resulting dynamical equation is:

—
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= cos(f) sin(6)
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| Ly =Ly(1/4)-1 (8
and h’ is the draft of the ice floes, L is their typical diameter, m is the mass of ice per-
unit area, A is the ice concentration, H is the dynamic topography, and 6, ¢ are constant
" turning angles of 23°, 25° for the atmosphere and ocean, respectlvely When geostrophlc
winds or currents are used : :

If we scale the terms in equation 5 Wlth a typical atmospheric speed of 5 ms™!, ocean
speed of 5 cms™!, ice speed of 10 cms™}, floe draft of 1 m, floe diameter of 100 m, mass
per unit area of 1000 kgm™2 (total ice covcr), dynamic height of 10 cm, length scale of 100
km, coriolis parameter of 107* s™1, C4,, Cg, are 1.2 10~2 and 5.5 10~2 and a time scale of
a week (a typical forecast period) we find that the magnitude of the terms, respectively,

is:

-1

8107521071072 = 3x107%107%1072%10"2 - (9)
Ice accelerations, linear or nonlinear, are the only negligibie terms. The ice velocity is

then a function of the air velocity, ocean velocity, and sea surface topography, shown in
equation 10.

Ta + To+ Tf
‘ m _

This is the free drift governing equation. An empirical simplification is that the ice
drifts at some fraction of the wind speed, and at some angle to its direction. This wind-
drift rule has been used for sea ice since at least the turn of the century [Nansen, 1902].
The thing which has changed in applying this rule are the constants, and the amount of
observation lying behind them. Thorndike and Colony [1982] found that they could explain
70% of the variance in floe velocity by such a rule in the central Arctlc basin, applying to
7937 buoy-days of observation.

fk x U = gVH+ (10)

2.2 Ice Rheology

Ice floes can also collide with each other. These collisions exchange momentum, which
produces (in principal) an isotropic stress (pressure) and a deviatoric stress. The relation
between the displacement or motion fields and the stresses is described by the rheology. As
for air and water, the total stress divergence produces accelerations, as shown in equation
11. The pressure gradient, familiar from atmospheric and oceanic dynamics, is derived
from the leading term in equation 11. The second term is the deviatoric stress. In air or
~water, the deviatoric stress is responsible for the viscosity of the fluid. It is also linearly
related to the rate of strain in the fluid. For sea ice, the deviatoric stress is not apparently
linear, nor is the pressure (equation of state) well-constrained. The most commonly-used
relations are due to Hibler [1979, 1980], the equation of state being given in equation 12,
and the rheology (deviatoric stress to rate of strain relation) is given in equations 13-17.

o = ;P5ij/2 + Ti; : : (11)

P =P*hexp(—C(1— A)) : (12)
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where P is the pressure (1ce strength), is an arbitrary constant ta.ken to be 20, 7;; is the
deviatoric stress tensor, 77 is the shear viscosity, ¢ is the bulk viscosity, e is the ratio of
principal axes in the assumed elliptical plastic yield curve and i is taken equal to 2, and ¢; is
the strain rate tensor. The viscosities have units of kg s™*, and stresses are in N 'm‘l. Stress
divergence is then in units of N m™2, as required for dimensional consistence. Note that
" the deviatoric stress and the isotropic stress are proportional to pressure (strength). As a
consequence, isotropic and deviatoric stresses are comparable, and depend quite sensitively
on the description of pressure for the ice field. P* is approximately 10* Nm™2, which gives
a force of about 0.1 Nm™2 for ice about 1 m thick on length scales of about 100 km. This
is significant compared to wind stresses of 0.03 Nm™2. In practlce the pressure will only
.change over this range near the ice edge or near shore. ,
Including the internal stress field of the ice pack does not change the scahng arguments,
described before, but does add another two order one terms to the dynamic system -
pressure grad.ient and deviatoric stress divergence. Since the pressure is nearly constant
“for a wide range of concentrations (by design, Hibler [1979]), we should reconsider the
stress terms by examining the gradients (or divergence of the deviatoric stress) driving the
floes. The isotropic stress gradient is proportional to (VA/C + CVA)hP*exp(—C(1— A))
This term will be large when:. A is near 1 and either or both the ice concentration or ice
- thickness are varying rapidly. Rapid ice concentration variations are most likely near the
'ice edge. Rapid thickness variations are most probable near the multi-year ice pack in
spring and early winter — when the very thick multi-year pack is fringed by much thinner -
ice. The deviatoric stress in all the formulations is proportional to the gradient of the
pressure dotted with a tensorial function of the strain, plus pressure times the divergence
of the same tensor. The terms in the tensor (primarily proportional to the strain rate) are
 largest and most rapidly varying near coastlines, where boundary constra.lnts are imposed.
physically over short distances [Hibler, 1979].
 The drawback with the Hibler rheology is that it is fundamentally non—physxcal [Smith,
1983]. The failure rests in the fact that the relation between shear strength and dilation is
. specified, rather than derived by experiment from physical postulates [Smith, 1983]. The
successes of Hibler’s rheology are likely due to a good estimate of the physical processes
and tuning.
_ Smith [1983] outlined physmal principals which a proposed ice rheology must obey, and
gave an example of a rheology which satisfied these constraints.- This type of rheology



was used by Hikkinen [1987], and a variant was used by Overland and Pease [1988] in
a regional ice model. The notation in this section is different from that in the original

‘papers. The fundamental postulates are [Smith, 1983):

1) Ice has no equilibrium pressure (i.. no tendency to expand of its own accord)
2) Ice has no ability to support tension — the ice is already cracked in several directions.
3) Resistance to deviatoric shearmg is proportional to the isotropic compressive stress

~ holding the ice floes together, and independent of the strain-rate and ice thickness - this

is analogous to the Coulomb law for granular materials

4) The ice is nearly non-divergent until a critical value of isotropic stress is reached

5) Ice is horizontally isotropic.

Smith [1983] then proposes the Reiner-Rivlin equation as the most general which sat-
isfies constraint 5: :

7(5’1761)02)5:3 +P(S’z;91a92)6m . (18)

Where S; are the state vanables and

JCET- I | | T 9)
b= (e : (20)
Hakkinen’s rheology for 8; < 0'is ’ ‘
oy = —P&;; + ¢1€;; ' (21) |
where: - ' ' ,
P ’=_m,uge"c(1'TA)) ' ' - (22)
$1'= P(u1/po)e™ """ ' (23)

and pois 1 N m kg™?, py is 104 m? 57! ,Cis 15,713 108 =2, For #; > 0 the total stress
is taken to be zero.

. Overland and Pease [1988] modified postulates 3 and 4 in constructlng their rheology,
using: : .
3) Coulomb’s law is valid for compressive stress states near the compressive strength '
limit.

4) Compresswe strength limit is a function of ice thickness and compactness.
The motivation of the change was to obtain a more reasonable limit for the v1scos1ty as

the strain rate approached zero [Overland and Pease, 1988]
'The Overland and Pease [1988] rheology is:

d;j = —P(A‘, h)/\/ﬁé‘” + ¢(é;j — é,','&,'j) 6, <0 ‘ ' o (24)

oi;j=0 620 _ (25)

where



P= p.uhzexp( ca-a e

: ’ ¢ 8, + 92 :

and 91, 0, and € are as al.ready noted. P is the ice strength ¢ controls the dewatonc, '
stress and D is related to the Coulomb strength of the material. The tensor multiplying
¢ in equation 24 is zero when i does not equal j. The preferred constants used are C=15, -
D=0.6, §, = 5%10° 5™, and p =1.6 ng —1, for a resolution of 1 km. The rheology is
_scale dependent in that D, 02, and p are functlons of length scale [Overland and Pease,
1988). Note that in this rheology, the ice pressure (strength) is proportional to the square
of the thickness, rather than linear as for Hibler’s {1979, 1980] equation of state. This was
motivated by the observation that the Hibler equation of state gave excessive near shore _
- ridging [Pease, personal communication]. The difficulty is that the equation of state (the -
~dependence of pressure on other thermodynamic properties of the ice pabk) for the ice pack
has not been derivable from first principals, and apparently that differing assumptlons can
lead to comparably good results away from the coast.

(27) -

'3 Thermodynamics

Although formally it would be possible to write an ice model which included only the
dynamical processes — but included all of them, including the ice interactions —.this has
not apparently been done outside of model tests by Hibler [1979]. An explanation is that
- the ice interaction processe are so complex and uncertain, adding thermodynamics as well
" is a realistic and not relatively expensive procedure The thermodynamics, since they are
better known, also provide a skilled ‘element to the model ~which inhibits solutions from
becoming extremely unrealistic. ' :
Ice thermodynamics are also complicated by the heterogeneous nature of the ice pack' :
-and the floes themselves. The ice pack is usually composed of floes of varying thicknesses.
The heat flux through floes is a strong, nonlinear, function of thickness. The heat flux -
between floes and the ocean and atmosphere i is also dependent on the amount of snow
cover. The snow acts to insulate the ice. The snow can also cause ice formation at the
surface of the floes by adding sufficient weight to depress the ice surface (only 10% of the
ice thickness is above the water line in the absence of the snow) below the water line.-In the
melt season, particularly in regions of thick ice, ice floes can melt from the top, and collect
the melt water into ponds. This again affects the floe thermodynamics, as well as the
microwave signature of the pack. The latter is the reason that melt season 1de;1t1ﬁcatlon
of ice is difficult with passive microwave techniques [c.f. Parkinson, et al., 1987 _
‘ The principal terms in the thermal balance of an ice floe are: sensible heat flux from
the ocean, sensible heat exchange with the atmosphere, latent heat exchange with the
atmosphere, short wave radiation absorption from the atmosphere, long wave absorption
from the atmosphere, long wave emission to the atmosphere, and thermal conduction. In
the presence of a snow cover, shortwave absorption from the atmosphere, conduction, and -
a sensible heat flux from the ocean are retained. The snow layer keeps each of the terms
. mentioned for. the ice-only case. The approximate magnitudes of the terms are given in



_ table 1. Symbols.used in this section are defined in appendix B. There is some overlap with
the dynamics section, but it should be easy to distinguish the cosine of the solar zenith
angle from viscosity (both denoted by p in the approprlate section).

Table 1. Magmtude of thermodynamic terms over the ocean a.nd over sea ice.
In unlts of Wm~™

Term 7 Size - Ice Size - Water

SW | 0-350 0-350
SW1T 200 35
LW 1] 250 . . 250
Internal SW 0-150 0-315
H 2-200 . 200
‘Conduction ~ 2-300 = 2-30
FW 1 2-30 2-30

LE 1 27 27

The thermal energetics of ice floes (or rather, small homogeneous patches) may be di-
‘vided into three classes of terms: those with no direct dependence on the ice/ocean/snow
surface, those with a direct dependence, and those that are internal to the material. Vari-
ables with no direct dependence on the surface material include the downwelling longwave
and heat flux from the lower ocean into the mixed layer. Internal variables are the con-
ductive heat flux and the internal absorption of shortwave energy. Directly dependent
variables are the latent and sensible heat fluxes, outgoing longwave radiation, outgoing
shortwave radiation, and incoming shortwave radiation.

The downwelling shortwave energy depends on the surface when multlple reflection
between surface and cloud is permitted. This term can account for 30-50% of the total
shortwave flux [Shine, 1984]. The relation developed by Shine [1984] for cloudy skies is

R (5354 1274.5u)u%5(1 — 0.996a)
| N 1+ 0.1397(1 - 0.93450)]

Where « is the albedo of the i ice, 7 is 3/2 LWP /re, with r. being the equivalent drop size.
in the clouds, and g is the cosine of the solar zenith angle. For clear sky, Shine [1984]

reconsidered the relation developed by Zillman {1972] and adjusted the parameters to fit
his more detailed radiative transfer model: '

(28)

Sop(1 — a)
1.2p + (1.0 + p)e, 1073 + 0.0455
where S, is the solar constant and e, is the water vapor pressure in millibars.
. The albedo of sea ice is obviously an important parameter, because of its direct role in
- controlling the surface energy budget for both the atmosphere and the sea ice. Unfortu-
nately, there are limited observations of the albedo. This would not be such a concern if it
weren’t also for the fact that the albedo is highly variable, reaching 0.8 with a fresh snow

layer, and as low as 0.5 when there are large melt ponds present [Shine and Henderson-
-Sellers, 1985]. The full albedo parameterization used by Shine and Henderson-Sellers [1985]

Fy = (29)

10



is reproduced in table 2a. A different albedo scheme, ‘w'hich was developed by Ross and
Walsh [1987] for use in comparing an ice model to observed albedoes, is given in table 2b.
_ The albedo of bare puddled ice appears to be particularly important in controlling whether
' jce is seasonal or multi-year [Shine and Henderson-Sellers, 1985]. . S

Table 2a. Albedb representation for different sea ice and snow states
' (Shine and Henderson-Sellers, 1985). '

© Albedo Class ‘Symbol Value -

Dry Snow . o ag 0.80
Thick Melting Snow ay, 0.65 _
Thin Melting Snow = omp = o+ (hs/0.10)(am — ap)
Bare Puddled Ice ay 0.53 S ,
Bare Frozen Ice oy - 0.72 , ' .
Thin Forming Ice - Qpef Qi ' s » 0.0<h; <10
- o 0.472 + 2.0(as; — 0.472)(h; — 1.0) 10<h; <15
Thin Melting Ice Qptm . 0.472 + 2.0(ap — 0.472)(h; —1.0) 10 h; <15
: S 0.2467 + 0.7049h; — 0.8608A3 -+ 0.3812h% 0.05 < h; < 1.0
| o 0.1+3.6h; | h; <005
Thin Snow On Frozen Ice ag *  ag v : : h, > 0.05
L ' ap s+ (h5/005)(08 — abtf) B h, <0.05
c : : : “h; <15
 apy + (hs/0.05)(0.08 — ayy h, <0.05
o : . h,‘ >1.5
Table 2b. Albedo representation from Ross and Walsh [1987].
Qlgnow - 0.80 - T, <-5°C
© 0.65+ 0.03(-T,) -5<T,<0°C
065 T,=0
Qjce 0.65 ' ‘T, <0°C
| 0.45 +0.04T, 0<T,<5
0.45 T, >5°C

Total outgoing longwave radiaﬁion is composed of the reflection of downwelling (pro-
portional to 1-¢;, where ¢; is the longwave emissivity of the surface), and thermal emission.
The combined effect is: v : :

(1-&)IW | +oeT; o L (30)

The latent and sensible heat fluxes to the atmosphere require, in principle, a coupled

“boundary layer analysis. The coupling is between the oceanic boundary layer, the ice
boundary, and the atmospheric boundary layer. Such models are being developed [ef.

- Stossel, .1991] for ice modelling use, but lie outside our present-scope. ‘A commonly used
scheme is the bulk formulation: SR ’

H=pGCalUnlT.~T) O

11



Lg = PaL CEang‘(qmm s) - b. (32)

- 'Where p, is the air density, C, is the specific heat of air at constant pressure, Cy is the
sensible heat. transfer coefﬁc1ent L, is the latent heat of vaporization, Cg is the latent
heat transfer coefficient, qiom is the specific humidity at 10 m, q; is the saturation specific
humidity of the atmosphere at 10 m. Note that the typical sea ice modelhng practice has
been to use the geostrophic 10 m Wmds rather than actual winds. -

Downwelling longwave also depends on the nature and presence of clouds Greater

cloudiness leads to increases in the thermal blanketmg effect. An approx1mat10n to this
flux is [Maykut and Church, 1973]

FL|= (0 7855 + 0. 223202 YT o (33)

where C is the cloud cover fraction.

The flux of heat from below the mixed 1ayer into the mixed layer (Fyw) is difficult term
to quantify. Ice models have been run with a fixed flux of 2 W m™2 in the arctic [Hibler,
1979; Parkinson and Washington, 1979]; that figure being derived from a modelling study
of Maykut and Untersteiner [1971] which gave (assuming the many other parameters-and
parameterizations to be correct) the best equilibrium central arctic i ice pack thickness for
the heat flux. Later studies with an ice model coupled to an ocean model [Hibler and Bryan,
1987, 1984; Semtner, 1987], though not including a mixed layer, did include a heat flux

“which depended on oceanic conditions and transports. These models found much improved

agreement with observations even for the simple heat transfer included, as compared to
results with a fixed heat flux. Finally, an increasing number and type of coupled ice-mixed
layer models have been developed [cf. Tkeda, 1985, Hikkinen, 1986, Mellor and Kantha,
1989, Lemke, et al., 1990, Stossel, 1991] which confirm the importance of spatlally and
temporally varying heat fluxes to the mixed layer for modelling sea ice.

The internal variables, conductive heat flux and shortwave transmission control the.
~ temperature profile within the ice and snow layers. These processes are complicated near
the melting point by the formation of brine pockets [Maykut and Untersteiner, 1971].
In the heterogeneous process of ice floe formation, local portions of the floe can have
elevated salinity, so depressed melting point. Consequently, these sections melt first. Once
melted, they act as thermal reservoirs within the ice. They will also affect the radiative
transmissivity of the ice. The thermal conductance and heat capacity through the ice,
allowing for brine, may be modelled as [Maykut and Untersteiner, 1971] '

(pC): = (o) + (T—“’_% (34)
. BS(2)
k; = ki + m (35)

where c is the specific heat of ice, v gives the dependence of the specific heat of ice on
- salinity, k is the thermal conductivity of the ice, B is the dependence of the thermal
conductivity on salinity, and S is the salinity of the ice. Subscript i refers to saline ice, and
subscript ip refers to pure ice. It is common to ignore the brine pocket effect, in which
case the conductance and heat capacities are taken as the1r values for a reference salinity,
usually 5 parts per thousand.
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Includlng radiative transfer through a geophysmal sohd is an unusual and counterin-
tultlve idea. It turns out to be an important process, however, particularly for relatively -
- thin ice (less than 1 meter) [Grenfell, 1991] as is found in the Bering Sea, the Eurasian
continental shelf, and most of Antarctica. The significance lies in the fact that radiation
which penetrates into the snow and ice is unavailable for causing melting of the surface, '

- thus delaying the melt process. Further, for thin ice, some of the radiation penetrates . - '

through the ice and into the ocean, warming the ocean. This warmed ocean can then
sensibly contribute to basal and lateral melting of the floes. The model developed by

Grenfell [1991] is a full radiative transfer computation within the snow and ice. A simpler

treatment would be to use an extinction coefficient (Beer’s law) derivable from work such
as Grenfell’s, which would provide a vertically-varying internal energy source. This has
not yet been done. Maykut and Untersteiner [1971] did take the first step in this direction -
by considering the ice to have two layers: a thin layer where most of the radiation was
absorbed, and the rest of the ice where the rest.of the radiation was absorbed. The current
procedure is to invoke a heat storage within the ice (without a corresponding change in
temperature) up to some limit point representing the point at which is is presumed that '
the internally-melted water would escape the floe [Semtner, 1976]

The temperature profile through the ice is needed in order to accurately model the onset
of melting and the heat exchange with the atmosphere. Maykut and Untersteiner [1971]
used a highly detailed numerical scheme in their study. That scheme had the drawback of
requiring a large amount of computation, and converging to its equ111br1um quite slowly,
prompting the development of a simpler model [Semtner, 1976]. The three layer version
of Semtner’s [1976] thermodynamic model is quite widely used in ice modelling due to its
simplicity. The scheme is to solve the thermal evolution equations for snow (1f present)
’ and ice in a reduced number of layers v

T . BT o
(pc)s—-—at = Icﬁ—-——az2 - (36)
or . oT o
(po)igy =kigz | @7

where the subscnpts i, s refer to the ice and snow propertles respectlvely This is solves
subject to the boundary conditions: '
flux balance at the air-ice interface

’C 'g—:r' =0 T(Zatm) < Tmelt | : . (38)
aT 1 OH; : Ca S
AT = T ar n) 2 Tme :
0 T nly ot T(sam) 2 Toct - )
flux contmmty at the snow-ice 1nterfa.ce
at Z = Zg, k,a—a? 2y = k,%l-}lzﬂ. (40)

freezing and meltingbat the ice—oeean boundary

atvz=zw, .k,a —Fw—Tgay"' | ‘ ) 4 (41)
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where Zgim, Zsi, Zw mark the boundaries between the ice floe and the atmosphere, snow

and ice, and ice and water respectively. Fyy is the heat flux from the ocean to the ice floe.

The penetrative radiation is accumulated in a reservoir Fi. ‘Whenever the upper layer

ice temperature would otherwise be below freezing, heat is released from this reservoir to

. maintain the temperature at the freezing point. The particular savings of the method is .
 that there is only a single point in the snow layer, and only two in the ice layer.

4 ConservationA of Mass

We now step back from considering individual floes to examine properties of the ice pack.
In considering an individual floe, we saw that the thickness was quite important both in
heat fluxes and dynamic processes. When we broaden our focus to include many floes, we
cannot speak of the ice thickness, but of a thickness distribution instead. Another feature
we notice from a broader vantage is that the sea ice cover is not always continuous; the
ice is only a fractional (though often a large fraction) cover on the sea. Symbols from this
_section are defined in appendix C. Note that contrary to common mathematical usage, the
delta function carries units here, m~!. Our presentation follows Thorndike et al. [1975].
Both the ice thickness distribution and areal coverage may be represented by g(h;x,y,t),
where g is the fraction of an area centered at x,y at time t, which is covered by ice between
thickness h and h4-dh [Thorndike, et al,, 1975). The evolution of g is governed by:

dg Ofyg

‘E+V'(Ug)+79—i7-=¢+FL : - (42)

where U is the velocity field, f is the growth rate of ice (f=f(h)), ¢ is a function which .
describes the mechanical redistribution of ice from one thickness class into another class,
and F is the lateral growth of ice of thickness h (added by Hibler [1980]). U is determined
by ice dynamics while f and Fy, are controlled by ice floe thermodynamics. ‘
The redistribution function, ¥, is determined by the mechanics of floe interaction,
subject to global constraints. The first constraint is the floe interaction must not change
the total volume of ice per unit area (i.e. the mean thickness is conserved): '

/0°°¢hdh=0' s

3 must also compensate for ice convergence/divergence by creation or destruction of leads,
" and possibly ridging thinner ice into thicker:-

'/0°°¢dh=_v-z7 (44)
A conservation of enefgy can also be stated [Hibler, 1980} o
C f Wdh = oy (45)
0 ,
where C relates the potential energy change (the integral) to the amount of work done

(the right hand side, with terms as defined in the dynamics discussion).
For pure divergence, lead formation:

b= 6WV-T I 46)
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Under convergence, ice ridging:

= Wi(h,g)V- T = DR (47)

W, is constramed to conserve volume per unit area a.nd to match the dlvergence

I Wr,(h,g)dh=—1" A (48){

| fo " W.(h,g)hdh =0

The r1dg1ng kernel, W,., may be specified in several Ways ‘Thorndike et al. [1975] used S

the mathematically simple, but physically questionable [Hibler, 1980] assumption that,

‘ridged into stacks k times thicker than the initial thlckness with k selected as 5. H ler:

[1980] outlmed a more genera.l ndgmg kemel
—P(R)g(h) + 5 1(h, )P (h')g(h')dh’

Wb 9) = TP (h) — o 1(h, FYPURg(RNRNTR)
- Where P is the probab1l1ty that ice of thickness h ridges [Thorndike et al., 1975].
R P(h): max(1 ~ /0 .g(-h)-c;, 0) - (1)
 ‘where ¢, is taken to be 0.15
7(h1, hz) = ‘5(h2 = khy)/k » _ - (52) |

~and k= 5 for Thorndike et al. [1975]

(hl,h2) = Sy < hy < 2\/H*h1 : (83) -

_ 0 otherwise

and H*=100 m for H1bler [1980].

The ice thickness distribution will change most rapidly when: the flow is strongly: S
divergent or convergent (as under a strong storm system), the thickness distribution is SR
rapidly varying in space (as near the marginal ice zone or in spring and fall near the":f'y.?” C
multiyear pack) or when the growth rate (f) is strongly thickness dependent (winter). ‘As

for the times and places of most difficult dynamic forecast, the times of most difficult
thickness distribution prediction are those where the mterest is greatest — in the fall a,nd
spring, and always in the marginal ice zone. :
The partition of thermal energy between the ice and ocean is another feature of the
ice pack at larger scales. Deterxmmng the fraction of energy received by the ocean which
_ is used for warming the ocean, causing sidewall ice melting, or causing basal ice melting
. is the difficulty [Maykut and Perovich, 1987]. Ocean temperatures as high-as 10 °C have
been observed in ice-surrounded water regions (polynyas) [Maykut and Perovich, 1987].
In the short term there is no difference in melt rate between sidewall and basal melting,.
- The longer term effects can be quite different because sidewall melting increases the fraction
.«.of the surface which is covered by low.albedo water. -Modelling' the-difference between
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sidewall and basal melting requires a coupled ocean-ice model. The techniques used in an
uncoupled mode completely ignore this element. The difference between sidewall and basal
melting shows up geophysically as an enhanced or decreased, respectively, sensitivity to
the ice albedo feedback [Maykut and Perovich, 1987]. An important parameter identified
by [Maykut and Perovich, 1987] is the floe size distribution; small floes expose relatively
* more sidewall to the ocean, so should be more prone to lateral melting than large floes. '
: The momentum partitioning between floes is even less well understood. It is known.
[Rothrock, 1975] that at length scales much below 100 km, the ice pack ceases to behave
as a continuum. One element of this failure is that local averaged floe velocities differ sig-
nificantly from areal average velocities. This results in sub-regions of the ice pack colliding
with each other (and then ridging or fragmenting floes) or separating (producing leads and
_polynyas) at rates not directly derivable from the large-scale ice flow field. It appears that
the ice pack, even when examined at scales small compared to the continuum scale, often
- flows as a solid unit [Lepparanta and Hibler, 1985]. This has been the justification for ap-
plying large-scale ice rheologies to problems with much smaller length scales [Lepparanta
and Hibler, 1985]. It is also the probable reason that such uses have had some success [c.f.
Hibler, 1979, 1980; Walsh et al., 1985; Lepparanta and Hibler, 1984; Hibler and Ackley, v
1983; Walsh and Zwally, 1987; Semtner, 1987]. At other times and regions, the differential
motions may be quite important [Preller et al., 1989]. The current operational practice is
to ignore the non-continuum effects. o

5 Desirable‘AcCuracieS for Prediction

5.1 Dynamics

The dynam1c features of greatest operational interest are the ice edge location and ice
motion field. Ice concentration and thickness are also desirable. The ice edge is forecast
weekly by the Navy/NOAA Joint Ice Center for 7 days ahead for the Arctic and Antarctic
[Feit, 1989]. The ice motion field is currently not forecast, but is of interest to users such
as offshore drilling companies. The desirable precision for the ice edge forecast is the
resolution limit (or better of course) of the analyses. :
In cloudy areas, the analysis accuracy is approximately 25 km, improving t6 about 1 km
~ in cloud-free areas [Fe;t 1989]. Over one week, these precisions correspond to speeds of 4.1
and 0.17 cms™! réspectively. The cloudy region precision can be reached by a-mesoscale ice
model on an Eulerian grid [c.f. Preller et al.; 1989]. But the cloud-free analysis precision of
1 km would require approximately 10* times the present computing load, suggesting that
other schemes will merit consideration as the models become more skilled.

The precision required in the speeds imposes some constraints on the precision of the
forcing. The ice velocity from the Thorndike and Colony [1982] drift rule is approximately
0.008 times the wind speed So a 0.17 cms™! ice velocity precision requirement corresponds
to approximately 0.2 ms™ in the wind speed The correspondmg limit for a 25 km ice
edge location precision is 5 m/s. »

Sea surface topography (balanced by the Coriolis force on ice) at 100 km oceanic
resolution is needed to 0.22 cm for the 1 km ice edge precision, or 5.3 cm for 25 km
precision. Variations in the Coriolis parameter, the beta effect, can probably be neglected

-for 25 km precision, but will need to be retained for 1 km precision.” The constraint is

16



. 1mposed by.. reqturmg the error. in f(y)*u to be less than the. allowable error in u, glven a

- reference ice velocity of 10 cm/s. The 25 km precision corresponds to a 40% error, while
1 km precision requxres f accurate to about 2% The constraints noted here are hsted in
table 3. :

Ta.ble 3 Premsmn requlred in forcmg terms for desxred a.ccuracy in forecast ice motion.

Precision (1 wk) Hiopo .(cm) f UA (5 m/s) Uo (10 cm/s)
1 km 0.22 2% +0.02 - £ 0.08
~25km- 53 40% - £0.40 +23

5.2 Ice Floe Thermodynamlcs

The fields' computed by considering ice floe thermodynarmcs are the ice and snow thlckness
and the vertical temperature profile within the ice. The ice temperature is not operationally
" useful, but is required in predicting thickness. Ice thickness is an operational interest, since -
sh1ps which may pass safely through thinner (10-cm) ice cannot attempt the passage if the

ice is thick. Ice thickness is not currently analyzed or forecast as such. Instead ice type -

(young, thin, first year, multiyear).is used as a proxy.
 The precision requirement for ice thickness prediction is set by the thickness at whlch
ice first becomes reliably detectable by satellite passive microwave observing systems, and
- the thickness which. may hamper ship operations. For both cases, the thinnest ice is 10
cm [Zwally et al., 1983, Callahan, 1991, respectively]. We will consider time scales of one
week, one month and a year. Forecasts are issued for a week and a month, while the
year time scale corresponds to climatic simulations. The required precision in Wm™2 for
predicting the growth or melt of 10 cm and 1.0 m ice at each of these time scales is given in
" table 4. The table also casts this precision in terms of the relative precision needed in each
‘of the thermal forcing terms. The table 1ncludes the present observatlon and modelling
_ precisions. - : :

Table 4. Required accuracy in thermodynarmc fluxes to predlct the growth of thm (10
cm) and thick ice (1 m) in W m~? and the relative magnitude of this flux compared with
the size of individual elements in the total flux. a is the albedo, LW is the longwave flux,.

FW is the ocean-supplied heat flux, Ky, is the thermal conduction through thin ice,

Kick is the thermal conduction through thick ice, and Sypin thick is the thermal
conduction through thin or thick ice with a 10 cm layer of snow..

Time Thin Thick omnn LWThin' FWrhin Krhin © Krhick SThin. '.STﬁick ,

Week 50 500 014 025 — 0125 — 10 —
Month 11 110 0032 005 10 0025 — 02 . —

Year 1 10 - 0.003 0005 01 00025 025 0.02 04

The precision required to predict the growth of 10 cm of ice in a week, about 50 Wm=2,

“is quite modest relative to the magnitude of the forcing terms, about 10% of the largest.

17



For a one month forecast, the relative precision is still only about 3%. Integration over an
annual cycle to predict ice to an accuracy of 10 cm thickness requires 1 W m~? accuracy, or '
about 0.3% relative precision. Note, though, that the requirement for predicting 1 meter
thick ice for a climatic (year) simulation is only several percent. This is likely the reason
that models have been more successful at predictirig mean thicknesses than ice edges. Note
too that the thermal conduction and snow blanketing are thickness dependent. The thicker
snow blanket reduces the required thermodynamic precision in the ice forecast, :

The ability of the thermodynamic model to predict ice thickness is more Importa,nt
than may seem. There are no data available on a regular basis for large areas on ice
thickness. Ice type is available, but only at fairly low accuracy [Cava.lieri et al., 1984] for
the present, and is not the same feature as thickness. There is hope that synthetm aperture
radar will improve the spatial resolution of the ice type analysis. The operational FNOC
model consequently uses an ad hoc means of initializing the ice model thicknesses when
~ the areal concentration of ice is different from the predicted. If the analysis shows no ice
where the model had ice, then the ice thickness is set to zero [Preller and Posey, 1989].
If the analysis has ice where the model does not, for ice concentrations of 0.15 to 0.5, ice
thickness is set to 0.5.m, and for ice concentrations greater than 0.5, the ice thickness is
set to 1.0 m [Preller and Posey, 1989]. It is unclear what is done when the concentrations
 differ, but are not zero in the model or the observations. If the model is able to simulate
the ice growth and decay well, the effect of the ad-hoc adjustments for 1n1t1a,1 conditions
_W111 be relatively minor.

6 Recommendations

We have discussed the physics of ice and its modelling in isolation from the ocean and
atmosphere to the greatest extent possible. This has permitted us to examine the behaviour
of the ice in relatively simple context. This simplification nonetheless retains many of the
~ difficulties which remain (or are aggravated) on coupling into the fuller climate system.
Consequently, there are certain directions of research or operational implementation which
are evident, and which remain important in the fuller system.

Dynamics is paradoxically the easiest and hardest element of the sea ice forecast prob-.
lem. It is the easiest in that quite simple models — including a drift rule - can account
for much of the variance that quite complex physical models can explain. It is the most -
difficult in that the proper rheology, equation of state, and conservation of random motion
(continuum energy) have yet to be derived rigorously. Consequently, any model of these
elements should be viewed as an approximation to some unknown rheology.

That various models have similar skill in predicting ice velocity suggests that ice velocity
is not a good measure of skill. A feature of the ice velocity field which does discriminate
more between models is the divergence [Hibler, 1990]. Convergence also induces ridging
and creates the thickest ice. Thick and ridged ice are particular hazards, so are important
quantities to forecast well. So, divergence, rather than velocity should be used whenever.
possible as the parameter for verifying dynamic models. :

Since there is no rigorous derivation of the proper rheology or equation of state for sea
ice, we should prefer one which is most easily tuned, and which never makes physically.
unrealistic forecasts. The Hakkinen [1987] and Overland and Pease [1988] rheology is
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. more apparently tuneable fthan-»the-ﬁibler._ [1979].’ Thisl-deﬁvesA- from the fact that the o

Hibler rheology includes branch points (maximum and minimum pressures and viscosities), . -
while the other rheologies are are more nearly continuous functions. The Hibler rheology
is also at root nonphysical [Smith, 1983}, while the other rheologies represents an exact
physical rheology, though one not yet rigorously proven for sea ice. Finally, the Hibler-
equation of state permits unrealistic ridging near coasts [Pease, personal communication].
In spite of these differences between rheologies, it is not clear that the other rheologies -
actually leads to better hemispheric sea ice forecasts over week to month time scales. Qur -
preference is based on the belief that that rheology can be improved more rea;dilyf'-thdh _
Hibler’s. Between the two alternate rheologies to Hibler’s, Hakkinen’s [1987] appears the
" most readily modified. ' : . o ' TR =
' It is clear from coupled ice-ocean studies that the ocean-ice stress needs to be modelled
in the framework of a coupled system, rather than as ice simply being advected by the
‘ocean currents. The ice-ocean .stresses represent a nontrivial momentum source/sink for
the ocean and the surface mixed layer. Consequently, we should migrate away from using
simply the geostrophic winds and currents with turning angles as is currently common.
For ice thermodynamics it is even more obvious that uncoupled models will not produce
satisfactory results. It is also clear from experiments [c.f. Hibler 1980] that different
thermodynamic representations can lead to substantially different results, even under the
same apparent forcing. Three boundary layers, air-ice, ice-ocean, and radiative, occur with
respect to the sea ice, all of which need some degree of coupling eventually. The ocean
‘mixed layer has received the most work. The high spatial and temporal variability of
heat flux from the mixed layer to the ice in the marginal ice zone has been shown to be
‘important to accurate prediction of the ice pack edge. | ‘ ' '
The atmospheric thermal boundary layer over the ice can also exert strong influence
over the ice edge location. So far, it has appeared sufficient to force the ice with an
atmosphere which is aware of ice parameters (roughness, thickness, fractional cover) rather
than fully coupling the models. o v ' , : R
The existance of the third boundary layer, a radiative ‘boundary layer, is now being -
recognized as important. Again, in this layer it appears most important to ensure that the -

‘atmosphere is aware of ice parameters (albedo, fractional coverage) rather Atha,n to make a-

fully coupled model. v B _
In addition to the atmospheric and oceanic thermodynamic effects, the thermodynam- . '

ics of the ice itself can be better represented. The classic work on this subject was by

Maykut. and Untersteiner [1971], and included non-equilibrium temperature profiles, ice
' salinity, and penetrative radiation. Most of the extant sea ice models use Semtner [1976] -
thermodynamics instead. This scheme was developed by Semtner for use in general cir-
culation models, and was optimized to be the simplest scheme which preserved the sense
- of Maykut and Untersteiner’s [1971] results. Present computational power makes this
simplification unnecessary, and the improvement in thermodynamic properties possible by
returning to the original scheme appears to be significant for ice models. : ~

The conservation of mass (ice thickness distribution) includes a problematic term, ridg-
ing. The other terms are reasonably well understood. Two significantly different ridging
~ models have been proposed, Thorndike et al. [1975] and Hibler [1980]. Hibler’s is more
physically based, at the cost of greater complexity. Consequently, we shall use the Hibler
(1980] ridging. An area to research is an alternative formulation which would be simpler
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but still physically based.
‘ The heart of the NMC interest in sea ice is to make predictions of the ice cover.
Key variables are the ice edge, concentration, and thickness. Unfortunately, only two of
~ these, ice edge and concentration, are observable directly on global scales. Consequently,
a data assimilation scheme which uses observations of ice concentration to infer the ice
 thicknesses should be developed. This will also permit better tests of the ice forecasts, as
ice concentration is forgiving of errors in model formulation [Hibler, 1990]. o
' Tools for forecast verification need to be developed. It is common currently to verify
only large scale, long term variables, such as mean annual ice thickness or total ice ex-
tent. The only smaller scale verification variable is the local ice velocity where buoys are
available. As already mentioned, ice velocity is not very discriminatory between forecast
schemes. What is needed are forecast variables which differ significantly between models,
and Whlch are local rather than global
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T App_ehdix' A

Symbols - Dyn‘famibtl:‘sr -

Symbol - - Value - . Parameter
A IR Ice cover fraction LT
c 20 - Parameter in Hibler [1979] equation of state
” 15 Parameter in Overland and Pease [1988] equatxon of state
Cic ‘1.21073 Air-ice drag coefficient
Cao " 5.51073 " Ocean-ice bulk drag coefficient
D - 0.6 Coulomb strength in Overland and Pease [1988] rheology
e 2 Ratio of principal axes in stress rule for Hibler [1979] rheology
f 20 sin(latitude) ~Coriolis parameter
g ' 9.81 m s~? Acceleration due to grawty
h m Mean ice thickness
h’ m Ice draft
H m . " Ocean dynamic topography
- L ‘m ~~ Mean radius of ice floes in region
m kgm™2 . Ice surface density
. 2700 - Arctic typical value
: 600 ~ Antarctic typical value
P Nmt Ice pressure
p* 10* Nm~2? - Failure strength of ice
R , Rotation matrix =~
U, ms! Wind velocity
U, ms~!  Ice velocity
U, _ ms~!  Ocean velocity
L« -Angle of repose for Coloumb material limit

in Overland and Pease [1988] rheology

6y ’ o - Kronecker delta tensor B
7 1.7 10'2 kg s™* - Maximum ice shear viscosity in Hibler [1979] rheology :
&ij s~! Rate of strain tensor : w0
v 310%s?  In Hakkinen [1987] rheology ‘
[T 1.6 N kg? Related to strength in Overland and Pease [1988] equatlon of state
po - 1.ONmkg? Related to strength in Hakkinen [1987] equat1on of sta.te '
p1 10°m?s' = Hakkinen [1987] v1scosxty : _
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Symbol Value ~ Parameter

é : 1In Overland and Pease [1988] rheology
Q- 7.292 10-% s~ Rotation rate of earth
o - 25° - Ocean current turning angle
P 1.29 kg m™3 - Density of air
po . 1027.8 kg m™3 Density of ocean -
oy © Nm™? Total ice stress tensor
Ta - N m~? Air-ice stress
To N m™ Ocean-ice surface stress
T4 -~ Nm™? Ocean-ice form drag -
Tij Nm™* Deviatoric ice stress tensor
0 23° Atmospheric winds turning angle
6 :  €kk First stress invariant
0, o éij ?J5 ~ Second stress invariant
8, 51073 s71 Reference strain rate in Overland and Pease [1988] rheology
¢ 6.9 102 kg s~ Ice bulk viscosity in Hibler [1979] rheology
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8 ‘Appendix‘ B ) |
o | Symbols - Théfﬁiqdjnamicsi ,

Symbol | Value Parameter

c '~ Cloud cover fraction

C; g 2 Specific heat of ice
CCip 1880 J kg~! °’K~!  Specific heat of pure ice

¢, 690Jkgl°K™!  Specific heat of snow '

Ceg 1.75 1072 ‘Bulk transfer coefficient for latent heat
- Cy 1.75 1073 ~ Bulk transfer coefficient for sensible heat
- C, 1004 J kg7* K™ Specific heat of air at constant pressure
e, o hPa ' Vapor pressure of water vapor at 10 m
“FLy Wm? Downwelling long wave radiation

Fy - Wm? Downwelling short wave radiation

H . - Wm™? ~ Sensible heat transfer between ice and atmosphere -
ki 2.2 Wm™! K™ Thermal conductivity of ice v v
ki ~ Wm™K! . Thermal conductivity of pure ice

k, - 031 Wm?!K?!  Thermal conductivity of snow

Ly 3.3410°J kg~ °  Latent heat of fusion

L. 25108 J kg™ Latent heat of evaporation

L, 2.834 108 J kg™! Latent heat of vaporization -

LW| - Wm? - Downwelling long wave radiation

qom . - gkg? - Water vapor mixing ratio at 10 m

qs - gkg! Water vapor. mixing ratio at T,

Te . m ‘Equivalent drop radius

S(z) gkg! Salinity of the ice

So 1367 Wm~2 - Solar constant |

T K Ice/snow temperature versus depth

T, K Air temperature at 10 m , | S %“)

T, K Ice/snow surface temperature ' i

Uqg ms™! Geostrophic air velocity at 10 m

Zatm m Air - floe surface boundary

Zsi m Snow - ice boundary

Zy m Ice - ocean boundary

@ R | : Albedo , ' .

g . Dependence of thermal conductivity on salinity -

& - 097 Long wave emissivity of ice '

5 ' Dependence of specific heat times density on sa.hmty

7 - Cosine of the solar zemth angle

Pa 1.29 kg m™3 " Density of air

o 567108 Wm2K _4 Stefan-Boltzman constant

T ' Optical depth
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9 Appehdix C

-~ Symbols - Mass Conservation

Symbol . Value Parameter .
¢y 0.15 ,
f m s~!  Freezing rate
Fr m~!s™! Increase in ice cover due to lateral freezing
g m~!  Ice concentration per unit thickness interval
h m Thickness
h, m Thickness of thinner ice in rldglng
h, m Thickness of ridged ice
H* 100 m  Limiting thickness of ice in Hlbler [1980] ridging
k 5 = Thorndike et al [1975] ridging parameter
ice ridges to form new ice k times thicker than original
P Probability that ice of thickness h ridges
t- "8 Time
U ms~! Ice velocity
W, m~'  Redistribution kernal under convergence
) m~!  Delta function (units from Thorndike et al. [1975])
(hl, hg) Probability that ice with thickness h; that ridges to form
~1ce with thickness h, '
P m~' s7! - Ridging function
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