U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 368

OPC UNIFIED MARINE DATABASE VERIFICATION SYSTEM

Vera M. Gerald National Meteorological Center

This is an unreviewed manuscript, primarily intended for informal exchange of information among NMC staff members

U. S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION OCEAN PRODUCTS CENTER

TECHNICAL NOTE*

OPC Unified Marine Database Verification System

Vera M. Gerald

THIS IS AN UNREVIEWED MANUSCRIPT, PRIMARILY INTENDED FOR INTERNAL EXCHANGE OF INFORMATION AMONG NMC STAFF MEMBERS

*OPC Contribution No. 43 NMC Office Note No. 368

. W

	OPC CONT	RIBUTIONS SERIES	5			24.	Synoptic Surface Marine Data Monitoring.	V. GERALD	TECH NOTE 11/87 DFF. NOTE 135
-	Development of Forecast Guidance for Santa Ana	L. BURROUGHS	NWA DIGEST	10/87		25.	Estimating and Removing Sensor Induce Correlation from AVHER Data.	L.C. BREAKER	I.OF GEO. RES In press
•	Lake Erie Wave Height Forecasts Generated by Empirical and Dynamical Matheds or Comparison	W. RICHARDSON D.J. SCHWAB Y.Y. CHAO D.H. WRIGHT	TECH. NOTE GLERL CON. 8471	7/86		26.	Infinite Elements for Water Wave Radiation and Scattering.	H.S. Chen	INTERNATIONAL J. FOR NUMERICAL METHODS IN FLUIDS in press
	Determination of Errors	S.J. AUER	OFF. NOTE 313	7/86		27.	A Statistical Comparison of Methods for Determining Ocean Surface Winds.	H.H. GENNILL T.H. YU D.H. PEIT	WEATHER AND 6/88 PORECASTING
	in LFM Forecasts Sufface Lows Over the Northwest Atlantic Ocean.	B B B B	MASA TECH.	4/87		28.	A Review of the Program Product Dev. of the OPC.	D.B. RAO	WEATHER AND Porecasting Vol. 4
•	A Method of Calculating the Total Flow from A Given Sea Surface Topography.	S.D. Steinrod B.V. SANCHEZ	MENO 87799			29.	Infinite Elements for	8.S. Chen	PRESENTED 4/3-7/89 AT 7TH INTERNATIONAL
•	Compendium of Marine Meteorological and Oceanographic Products	D.M. FEIT	NWA TECH MENO	9/86			Combined Diffraction and Refraction.		CONFERENCE OF FINITE Element Methods Flow Problems
	of the Ocean Products Center.	S.J. AUER	OFF.NOTE 312	8/86		30.	An Operational Spectral Wave Forecasting Model for the Gulf of Mexico.	¥.Y. CHAO	2ND INTERNATIONAL WORKSHOP ON WAVE PORECASTING AND
•	Spectral, and ECMWF Numerical Model Forecasts of Despening Oceanic		tech note			31.	Improving Global Wave Forecasts Incorporating	D.C. ESTEVA	2ND INTERNATIONAL WORKSHOP ON WAVE
,	Season. Development of Open Pog	L. BURROUGHS	OFF.NOTE J23	2/87			Altimater Data.	W.S. RICHARDSON	COASTAL ZONE 1/89
۰.	A Technique of Deducing Wind Direction from	Т.Ы. Үй	MON.WEA.REV.	9/87] 2 .	Forecasts.	J.H. NAULT D.H. FEIT Y.Y.CHAO	TECH. NOTE 5/89
	Altimeter Wind Speed Measurements. A 5-Year Climatological	S. J. AUER	J. GEO. RES.	10/87		33.	Wave Forecasting Program Daveloped at the Ocean Products Canter.	T.L. BERTUCCI	OFFICE NOTE 10/89 #361
	Survey of the Gulf Stream and Its Associated Ring Novements.			. (87		34.	Forecasting Open Ocean Fog and Visibility.	L.D. BURROUGHS	PREPRINT PROCEEDING (CPR//WHO)
.	Forecasting Wave Con- ditions Affected by Currents and Bottom Topography.	Y. Y. CHAO	TECH. NOTE	1/8/		35.	Local and Regional Scale Wave Nodels.	D.B. KAU	TECH.CONF. ON WAVES in press
1.	The Editing and Averaging of Altimeter	D.C. ESTEVA	TECH. NOTE	1/87		36.	Gulf of Mexico Wave Nodel (approx.).	Y.Y. CHAO DUFFY	
2.	Forecasting Super-	D. M. FEIT	NWA DIGEST	10/87		37.	OPC Product Rev. Summary.	L.D. BURROUGAS	OFFICE NOTE
з.	Alaskan Waters. Tidal Estimation in the Atlantic and Indian Oceans.	B.V. SANCHEZ D.B. RAO S.D. STEINROD	MAR.GEODESY GNASA TECH. MEMO	4/87		38.	Compendium of Marine Meteorological & Ocean- ographic Products of the Ocean Products Center- (rev.1)	D.M. FEIT	NERO. NWS NMC 68
٩.	Performance of Tech- niques Used to Derive Ocean Surface Winds.	W.H. GENNILL T.H. YU D.M. FEIT	TECH. NOTE OFF. HOTE 330	4/87		39.	Directional Wave Spectra for the Labrador Extreme Wave Experimental (Lawex)	D.C. ESTEVA Y.Y. CHAO	APL TECH. REPORT in press
5.	Performance Statistics of Techniques Used to Determine Ocean Surface Winds.	W.H. GE rghill T.W. Yu D.M. Feit	PREPRINT, WORKSHOP PROC. AES/ CMOS 2nd WORKSHOP ON OPER	10/87		40.	An Analysis of Monthly Sea Surface Temperature Anomalies in Waters off the U.S. East and West Coasts.	L.C. Breaker W.B. Campbell	Fisheries 8/89 Bulletin
6.	Determining Equivalent	Т.Ж. YU с	NET. J. OF GEO. RES.	4/88		41.	A Definition for Vector Correlation and its Application to Marine Surface Winds.	D.S. Crosby L.C. Breaker W.H. Genmill	TECH NOTE Office Note \$365
7.	Boundary Layer Over the Ocean. Analysis of the Atsos-	т.н. чи	SAME AS NO. 15			42.	Expert System for Quality Control and Marine Forecasting Guidance.	D.M. Feit W.S. Richards	n
8.	pheric Mixed Layer Heights Over the Oceans. An Operational Forecast	D.M. FEIT	NWA DIGEST	 		43.	OPC Unified Marine Database Verification System.	V.M. Gerald	TECH NOTE NMC OFFICE NOTE #361
	System for Superstructur Icing. Evaluation of Several	D. ESTEVA	J. GEO. RES.	11/88	ta Second	44.	Sea Ice Edge Porecast Verification Program for the Bering Sea.	G.Wohl	TECH NOTE NMC OFFICE NOTE 170
	Experimental Assimilatin Significant Wave Height Estimate into Spectral	ng				45.	An Operational Marine Fog Prediction Model.	D. Feit J. Alpert	
20.	Evaluation of Wave Forecast for the Gulf	Y.Y. CHAO	PRES. ANAHIEM CONFERENCE	2/88		46.	The Circulation of Monterey Bay and Related Processes	L.C. Breaker H.H. Broenkow	
21.	El Nino and Related Variability in See Surf. Temperature Along Centr California Coast.	L.C. BREAKER ace al	PACLIM AGU MONOGRAPH in press				n an an an an Ar The Article Article		
22.	Oceanic Processes Contributing to the Displacement of Oll Spi by the Puerto Rican Tan off San Francisco.	A. BRATKOVICH L.C. BREAKER 11 Ker	J. OF GEO. RESEARCH (submitted)						
23	Open Ocean Pog and Visibility Forecasting Guidance System.	L. D. BURROL	IGHS OFF. NOTE 346 TECH. NOTE	•					

Abstract

This Office Note provides general information about the capabilities of the unified marine database verification system at the Ocean Products Center. It also describes the data format and the procedures for accessing the data by the users.

INTRODUCTION

The Marine Prediction Branch(MPB) of the National Meteorological Center(NMC) and the Ocean Products Center (OPC) is responsible for producing objective analysis and forecast products on various marine meteorological and oceanographic variables. These analyses and forecasts are provided directly to the marine community for use in weather forecasting guidance and as boundary conditions to ocean models.

An important activity of MPB involves evaluating and monitoring the performance of these models. To address this matter a unified marine products verification database system was designed to provide easy access to marine information from NMC's diverse database system. This common database matches analyses and forecasts of wind speed and direction, fog and visibility, air and sea surface temperature, wave height and direction, relative humidity and mean sea level pressure with the observed data reported by ships, fixed and drifting buoys, and other marine platforms.

Monthly verification statistics, such as, root mean square error, bias, and correlation coefficient, are used in monitoring and evaluating these analyses and forecasts. Statistical results from selected marine models are presented and discussed each month during the OPC's products performance review. For a complete

summary of the monthly performance evaluation of selected operational marine products see Burroughs(1989).

METHOD

A. Model Outputs

The analyses and forecasts monitored within the unified marine database verification system come from the NMC's regional(RGL) and aviation(AVA) models, the MPB's models, and Fleet Numerical Oceanographic Center's (FNOC) Global Spectral Oceanographic Wave Model(GSOWM).

In general, output fields from these models are saved at 12-hour increments out to 72 hours. Table I. gives complete details of all fields extracted during the 00z GMT cycle.

B. VERIFICATION DATA

The observed data, Table II, come from NMC's synoptic surface marine datasets. These datasets contain real-time marine observations reported by Volunteering Observing Ships (VOS), Navy and NOAA research vessels, fixed and drifting buoys, ocean weather stations (OWS), and marine reporting stations (MARS). NMC receives these reports via the Global Telecommunication System (GTS), the Geostationary Operational Environmental Satellite (GOES) network, and Coastal radio station transmissions.

DATA MATCH-UP

A. Record Format

All analysis and forecast fields verifying with the current 00z and 12z ship data are extracted from an 8-day circular file. For each report a value of the gridded field at the observed position(latitude,longitude) is generated by quadratic interpolation. Table III depicts the unified marine verification database 164 indexed array/record format.

The daily match-up of the observed data and the model outputs are written to a 17-day circular file called, NWS.WD21.OPC.UNF-DATA.CYC00. Approximately 1800 records are processed daily. Each record is packed and blocked with format control. At the end of a 15-day cycle the dataset is transferred from disk to tape.

B. Statistical Evaluations

The boundary layer wind model is verified against fixed buoy data. Statistics of bias and root mean square(RMS) error are used to evaluate the analyses and forecasts. Figure 1 shows the 24hr forecast RMS and bias errors in meters/second for the OPC and FNOC boundary layer winds for June 1989 - January 1990. Figure 2 displays OPC wind analysis and forecast errors of bias and RMS in meters/second for Sept 1989 - Jan 1990.

The OPC wave model is verified against 14 offshore deep water

fixed buoys. The evaluation of the OPC wave model performance is based upon statistics of bias(m), RMS(m) error, and correlation coefficient. Figure 3 shows the statistical comparison between the OPC and GSOWM wave models.

Figure 4 depicts statistical verification of air and sea surface temperature analyses, air/sea temperature differences, and mean sea level pressure with fixed buoy data.

SUMMARY

The development of the unified marine verification database system allows statistical evaluation and comparison of selected operational marine products in a timely fashion. These performance statistics(RMS error, bias, and correlation coefficient) are presented and discussed each month during the OPC products performance review.

ACKNOWLEDGEMENT

The author would like to thank Dr. D. B. Rao, Mr. W. Gemmill, and Mr. D. Feit for their suggestions and guidance during the writing of this office note. Thanks to Susan Hubbard for the typing.

Table I: Parameters saved for verification from models.

ANALYS FCST(12 24 36 48 60 72)

OPC W W P P W F B S	ind Speed ind Dir ave Hgt eriod Prim eriod of Sec ave Dir og/Vis lended SST atellite SST	X X X X X X X X X X	X X X X X	X X X X X X X	X X X X X	X X X X X X X	X X X X X X	X X X X X X X
NMC RGL	Bdyu Bdyv 1000mb rh 1000mb T 1000mb u 1000mb v MSLP	X X X X X X X	X X X X X X X X	X X X X X X X	X X X X X X X X	X X X X X X X X		
NMC AVA	Bdyu Bdyv 1000mb rh 1000mb T 1000mb u 1000mb v MSLP	X X X X X X X	X X X X X X X X	X X X X X X X	X X X X X X X	X X X X X X X X	X X X X X X X	X X X X X X X
FNOC	SST Bdyu Bdyv Wave Hgt Prd Prim Prd Sec Wave Dir	X X X X X X X X	X X X X X X X	X X X X X X X	X X X X X X X	X X X X X X X		X X X X X X X

Q,

Table II: Measurements of verification parameters (and units).

Mean Sea Level Pressure Wind Direction Wind speed Air Temp Dew Point Dep Sea Surface Temp Present Weather Past Weather Horizontal Visibility Period of Wave Height of Wave Period of Swell Height of Swell Direction of Swell Tenth of MB Degrees Knots Tenth deg C Tenth deg C Tenth deg C Code Figure* Code Figure* Code Figure* Seconds 1/2 yards Seconds 1/2 Yards Code figure*

* World Meteorological Organization(WMO) coded Standard

Table III: The unified marine database record format.

Record(1)	Report Type
2. 2 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	YYMM
" 3	DDHH
! 4	Latitude
" 5	Longitude
" 6	Mean Sea Level Pressure
1 7	Wind Direction(deg)
" 8	Wind Speed(s)
" 9	Air Temperature(tenth deg C)
" 10	Dew Point Depression(tenth deg C)
" 11	Sea Surface Temperature (tenth deg C)
" 12	Present Weather
. " 13	Past Weather
" 14	Visibility
n 15	Period of the Wave(s)
II 16	Wave Height $(1/2 \text{ vd})$
II 17	Period of the Swell(s)
10 II 10	Height of the Swell(3)
10	Direction of the Swell
19	Direction of the Swell Direction of the Swell
	Blended Sea Surface Temp(Lenth deg C)
" 21	-999
" 22	
" 23	-999
" 24	-999
" 25	-999
2 6	-999
11 27	-999
28	-999
II 29	Bdy Wind Direction (00hr) RGL
" 30	" " Speed " "
" 31	1000mb Rh " "
" 32	" Temperature " "
" 33	" Wind Direction " "
" 34	" " Speed " "
" 35	MSLP " "
" 36	Bdy Wind Direction (00hr) AVA
" 37	" " Speed " "
" 38	1000mb Rh " "
" 39	" Temperature " "
u 40	" Wind Direction " "
# 41	" "Speed " "
# 42	MSLP ""
" 43	Bdy Wind Direction (00br) NVV
" 44	" " Speed " "
I 45	Hat of Wave ""
	Drd Dri Navo II II
40	LTU LTT MUAC

	47	an the area of	" Sec "	11	18 -
11	48		Way Dir	11 1	HT
11	49		-999		
11	50		Wnd Spd	(00hr)	NOW
11	51		" Direction	11	IT
	52		Hot of Wave	18 1	It
11	53		Dir " "	**	17
: 11	54		Prd " "	11 1	1
11	55		-999		
11	56		-999		
10	57		-999		
11	58		-999		
11	59		-999		
n	60		-999		
H	61		-999		
H ·	62		-999		
H	63		-999		
11	64		Bdy Wind Direction	(24hr)	RGL
**	65		" " Speed	11	Ħ
**	66		1000mb Rh	19	11
11	67		" Temperature	11	11
11	68		" Wind Directio	n "	11
H ·	69		" " Speed	11	11
11	70		MSLP	11	11
11	71		Bdy Wind Direction	(24hr)	AVA
11	72		" " Speed		11
18	73		1000mb Rh	#1	11
48 .	74		" Temperature	11	H., .
11	75		Wind Direction	n "	. 11
18 :	76		" " Speed	11	11
18	77		MSLP	11 11	14
19	78		Bdy Wind Direction	(24hr)	NVY
19	7.9		" " Speed		
19	80		Wave HGT		
11	81		Prd Pri Wav		
11	82		" Sec "		
19	83		Dir Wav		
H	84		-999		NOLI
11	85		Bay Wind Speed	(24nr)	NOW
11	86		" " Direction		
11	87		Wav Hgt		
. [1]	88		" Dir		
18 -	89		" pra		••
	90		-999		
11	91		-999	(00hm)	ODC
	92		FUG/VIS	(00000) (0115-5)	
11	93			(24111)	
#1 #2	94		······································	(40111) (70hr)	11
••	95			(72111)	
23 84 -	96	· · · ·			
11	98			(10h)	DCT
11	99		Bay Wina Direction	(48nr)	КСГ

H	100	" " Speed	<mark>.</mark> 11	
Ħ	101	1000mb Rh	H :	11
11	102	" Temperature	. . .	11-
Ħ	103	" Wind Direction	H	11
#1	104	" " Speed	8 1 - 1	ST.
11	105	MSLP	11	88
11	106	Bdv Wind direction	(48hr)	AVA
11	107	" " Speed	11	
11	108	1000mb Rh	Ħ	11
	109	" Temperature	11	. 11
11-1	110	" Wind Direction	11	11
. 11	111	" " Speed	11	
11	110	MGID	· · · · · · · · · · · · · · · · · · ·	11
11	112	Bdy Wind Direction	(19hr)	MUV
18		Buy Wind Direction	(40111)	11
1	115	Waw Hat	11	11
	110	Nav nyt Drd Dri Mari		. 11
	110	Pru Pri wav		
18		" Sec "		
15	118	DIF Wav		••
	119		((0))	MOLT
	120	Bay wind Speed	(48nr)	NOW
	121	" " Direction		
17	122	Wav Hgt		
10 .	123	Wav Dir		
18	124	Wav Prd	11	. I
	125	-999		
	126	-999		·
	127	-999		
11	128	-999		
	129	-999		
H	130	-999		
	131	-999		
	132	-999		
	133	-999		
11	141	Bdy Wind Direction	(72hr)	AVA
n	142	" " Speed	II .	11
11	143	1000mb Rh	11	- 11 -
	144	" Temperature	19	
46	145	" Wind Direction		11
11	146	" " Speed	11 - A 11 - A 14 - A	44 -
18	147	MSLP	11	11
11	148	Bdy Wind Direction	(72hr)	NVY
. 11	149	" " Speed	11	11
11	150	Wav Hgt	. 11	11
H	151	Prd Pri Wav	11	11
11	152	" Sec "	H I	tt
11	153	Dir Wav	H	, 11 .
11	154	-999		
11	155	Bdy Wind Speed	(72hr)	NOW
H.	156	" " Direction	H	11
91. ···	157	Wav Hgt		н
11	158	" Dir	5 H	Ħ

11	159	" Prd	¥1
11	160	-999	
18	161	-999	
11	162	-999	
18	163	SST ANL	(00hr)

NVY

N,

Comparision of OPC & FNOC Boundary Layer Winds 24hr FCST

OPC Boundary Layer Winds ANL & FCSTS

CORRELATION COEF IN SWH FOR +24Z (GLOBAL, 14 DEEP WATER BUOYS) INCR → OPR

Figure 3

Comparision of OPC & FNOC GSOWM Wave Models

NH STAT ANALYSIS MEAN OF OBS MEAN OF MOD MODEL BIAS RMS CORREL	AVA 1000M AUG 20.3 21.9 1.65 2.47 0.97	B AIR T SEPT 19.9 21.9 2.00 2.62 0.97	VS FIXED OCT 17.3 18.9 1.67 2.33 0.97	BUOYS NOV 14.3 15.6 1.34 2.08 0.98	DEC 11.0 12.2 1.17 1.88 0.98	JAN 10.3 11.9 1.60 2.47 0.97	FEB 12•2 13•7 1•46 2•47 0•97	MAR 13.0 14.3 1.31 2.52 0.97	APR 15.2 16.7 1.54 2.51 0.96
NH STAT ANALYSIS MEAN OF OBS MEAN OF NOD MODEL BIAS RMS CORREL	OF OPC BL AUG 20.5 20.4 -0.1 1.11 0.98	DSST VS SEPT 20.5 20.8 0.28 1.24 0.98	FIXED 30 OCT 18.7 19.4 0.70 1.43 0.98	NOV 16.3 17.2 0.82 1.54 0.98	DEC 14.0 14.8 0.82 1.71 0.98	JAN 12.1 13.9 0.64 1.75 0.98	FEB 14.2 14.7 0.51 1.92 0.98	MAR 14.4 14.7 0.28 1.62 0.98	APR 15.9 16.0 0.09 1.35 0.99
NH STAT ANALYSIS MEAN OF OBS MEAN OF MOD MODEL BIAS RMS CORREL	$\begin{array}{c} \text{OF A IR/SE} \\ \text{AUG} \\ -0.2 \\ 1.6 \\ -1.79 \\ 2.53 \\ 0.54 \end{array}$	A (T) DI SEPT -0.7 1.1 1.72 2.41 0.56	FF (NODE) OCT -1.4 -0.4 0.91 2.01 0.69	L = OBSV) NOV -2.1 -1.5 0.51 1.83 0.88	DEC -3.0 -2.6 0.36 2.01 0.91	JAN -2.1 -1.2 0.95 2.16 0.87	FEB -1.9 -1.0 0.94 2.10 0.85	MAR -1.5 -0.4 1.03 2.22 0.83	APR -0.7 0.7 1.44 2.41 0.68
NH STAT ANALYSIS MEAN OF OBS MEAN OF MOD MODEL BIAS RMS CORREL	OF AVA MS AUG 1015.6 1015.0 -0.55 1.19 0.99	LP VS FI SEPT 1016.3 1015.7 -0.57 1.24 0.99	XED BUOY: OCT 1015.2 1014.9 -0.30 1.27 0.99	5 NOV 1014.9 1014.6 -0.34 1.30 0.99	DEC 1014.9 1014.2 -0.64 1.55 0.99	JAN 1013.5 1013.1 -0.36 1.66 0.99	FEB 1017.3 1016.9 -0.48 1.41 0.99	MAR 1017.3 1016.9 -0.42 1.25 0.99	APR 1016.4 1016.1 -0.33 1.14 0.99

Figure 4

 σ^{2}

ų,

ş