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ABSTRACT4

Genetic algorithms are a tool for solving problems, particularly where there are many possible5

good solutions and it is relatively easy to tell when you have found one but hard to decide6

what will produce the best solution beforehand. Locating the North Wall of the Gulf Stream7

is such a problem. We demonstrate the application of Genetic Algorithms to this problem,8

as has been applied in NWS operations since 2003 in support of ocean forecasting.9
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1. Introduction10

The location of the Gulf Stream, particularly the northern edge (or ’wall’) is an important11

feature for, among other uses, ocean wave forecasting. Ocean wave models, for example12

NOAA WaveWatch III [Tolman 1991, Tolman et al. 2002], do not yet include ocean current13

fields. The currents are important because when waves are running against the currents,14

they steepen and are more dangerous to shipping [e.g. Phillips, 1977]. Steps in support of15

improving wave forecast guidance in NCEP has been to implement a regional ocean forecast16

system (ROFS) [Rivin et al., 2002] in 2001, and an improved model, the Real Time Ocean17

Forecast System-Atlantic (RTOFS-Atlantic) 13 Dec 2005 [MMAB, 2005 et seq.] which do18

provide guidance for ocean currents.19

Nevertheless, it is desirable to have a more specific description of the location of the Gulf20

Stream north wall because not only is it a region of high currents, it is a region of warm21

water that can lead to unstable boundary layers in a cold air outbreak. Usually, the Gulf22

Stream and its north wall are located by a human analyst, examining satellite sea surface23

temperature observations and possibly other data sources. It is nontrivial for a human24

analyst to locate the Gulf Stream from data, consequently, e.g., it is done only 3 times per25

week by the Navy. Such a process would be difficult to apply to a daily run of a model, and26

for 5 days of forecast. One difficulty for analysis and users is that areas can be cloud covered27

for extended periods – as for cold air outbreaks, which is one of the periods of greatest need28

for such information. A second major drawback is that such analysis is typically only done29

for present observations. For making wave and marine weather forecasts, it is desirable to30

have automated guidance as to where the Gulf Stream north wall is going to be.31

Since NCEP started running in 2001 an ocean forecast system for both nowcast and32

forecast purposes to 48 hours [Rivin et al, 2002] there have been objective fields on which33

algorithms could be run to locate the Gulf Stream north wall. An improved ocean model was34

implemented in December 2005 [MMAB, 2005 et seq.]. The challenge is to find a method35

which can do so in an automated way, which is stable, and which produces reasonable36
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guidance for the intended user community of marine forecasters. While there are many37

approaches to locating the Gulf Stream documented in the literature, a common feature38

they have is reliance on very high resolution inputs – typically the 1.1 km of the AVHRR39

[e.g. Cornillon and Watts, 1987]. While the newer RTOFS model has a higher resolution40

than the ROFS, it is still only 5-10 km in the Gulf Stream region. A further question is how41

well such methods will perform in the event that the input (such as the ROFS model, we’ll42

see below) is biased in some way, or if its biases change through time.43

Rather than tackle the problem of perfecting extant methods, and then have to re-write44

or retune them when the model changes, we encountered and have applied a very different45

approach to the problem. Instead of thinking of a specific analytical method which a priori46

might be expected to locate the Gulf Stream north wall, we have applied genetic algorithms.47

Genetic algorithms are a means of evolving solutions to problems. If one has a general sense48

of a good starting point, the genetic algorithm (GA) can search a large parameter space49

efficiently to produce good solutions.50

We will first describe some elementary aspects of using genetic algorithms. Then, we will51

apply them specifically to the problem of locating the Gulf Stream. Finally, we will discuss52

the results of applying the genetic algorithm in operations within the NWS in its first five53

years.54

2. The Genetic Algorithm55

A good introduction to evolutionary computing is Eiben and Smith [1998]. Genetic56

algorithms are only one such method. Terms are defined in a glossary. For our oceanographic57

and meteorological interests, it is useful to consider the genetic algorithm (GA) to be a58

means of evolving good parameter values. As with, for instance, neural networks, the initial59

inspiration for GAs is biology. The evolutionary process starts with a population – in our60

case, of parameter values. Then fitness is evaluated – the quality of the fit between manually-61

3



drawn analyses and the automated analysis. The least ”fit” parameter values (those which62

produce the poorest scores) are eliminated from the population, while the most fit reproduce63

so as to fill out the allowed population. Reproduction, here, means a descendant parameter64

value inheriting part of the encoding from one parent, and part from another (crossover).65

Descendants may also acquire mutations.66

Then the process is repeated for another generation (iteration): evaluate fitness, select67

the best, reproduce, repeat. What was a good parameter value (or, at least, good enough to68

be carried forward to the next iteration) in one generation may not be in a later generation.69

Not because it is any worse, but because the competition is better. In carrying out the70

generation by generation evaluations, what we’ve described is known as an ’elitist’ scheme71

– the current best values are retained unchanged in the population. This is unlike real72

biological evolution, but can be useful in a computational situation.73

If the parameter space is sufficiently small, we could simply evaluate all possible values74

and select the best one. If the fitness function were sufficiently smooth, we could apply a75

familiar Newton’s or other such method to locate the optimum. The evolutionary methods76

have their greatest value in situations where neither of those applies – a large parameter77

space in which the quality function may not only be unsmooth, but have multiple local78

optima. Given the number of different methods tried for locating the Gulf Stream north wall79

automatically, it seems likely that multiple local optima with unsmooth quality function is80

our case.81

Given, again, that there have been multiple attempts at an automated method, it also

seems likely that this is a difficult problem, and one in which we are likely to be best served

by not presuming much about what the Gulf Stream will look like to the automated finder.

Common elements in attempting to automate finding the location of the Gulf Stream include

looking for critical values (such as 14 ◦C at 400 m [Halkin and Rossby, 1985] for instance),

and applying edge detection algorithms [e.g. Cornillon and Watts, 1987]. We will use a

critical temperature (not in the initial implementation, but added in 2005), the sea surface
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height, its gradient squared and laplacean (which should be related to ’edges’), and let the

GA find optimal weighting parameters for the combined set. We will look, then, for the

weights to a function such that the maxima of the function lie along the north wall of the

Gulf Stream. The first three terms in the trial function are those implemented in the first

operational finder (2001). They are based largely on experiments with sea surface height –

we look for, potentially, a location where the height is perhaps large (depending on the size

of n1), where the gradient in height is large (a typical way of thinking of the Gulf Stream

north wall), or where the laplacean is large (in a geostrophic system, this would correspond

to large vorticity, a different view of the Gulf Stream). The final term is based on searching

for a critical temperature, as has been used previously (e.g. Halkin and Rossby, 1995) but

we do not limit to either the depth or a simple integer value. Our trial function is, then:

f(H) = (HN1 + a∇2(H)N2 + b∇2(H))/(1 + a + b) + d/(0.1 − (T − TC)2) (1)

where H is any scalar. The GA will be searching for values of N1, a, N2, b, and d and TC .82

The division by the sum of the weights is so that the magnitude of the function is limited. In83

some cases it may be desirable to permit the GA to be less bounded. In our case, however,84

we are looking for a relative maximum in f, so that there is nothing gained by having a85

higher maximum. H, (∇H)2 and ∇
2H are scaled to not exceed 1 in the model domain, each86

day.87

For initial operational use, a requirement was to use surface fields only. Sea surface88

height was found to be the best among surface salinity, temperature, and height. A later89

effort found that using surface temperature as well as the sea surface height fields improved90

the analysis by about 10% and was implemented operationally in May 2005. Temperatures91

at depths of 200 and 400 m were also attempted, and gave inferior results.92
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3. An Example93

Let us consider a simple example of a genetic algorithm before moving on to the full94

complexity of the Gulf Stream Finder – locating the maximum sea surface temperature on95

a half degree analysis for a given day [15 June 2006; Gemmill, Katz, Li, 2007]. The genome96

will be a string of bits which represent the i and j coordinates of the maximum. These97

coordinates range from 1 to 720 and 1 to 360 and require 10 and 9 bits, respectively, to98

represent as binary integers. One may work with real numbers instead. Values here over the99

upper limit are folded, such that a bit string which represents, say, 785 for the i coordinate100

is folded to 65.101

The steps after initializing a population are:102

Evaluate fitness103

Select population from which to reproduce104

Reproduce with mutation and crossover105

Repeat106

107

The population is initialized by random assignment of a 0 or 1 to each of the 19 bits in108

the genome, for each member of the population (200 of these genomes – the figure may be109

varied). For simplicity, we will let fitness be the temperature itself, in Celsius. So to evaluate110

fitness, the first 10 bits are transcribed into an integer representing the i coordinate of the111

point to be examined, the next 9 transcribed to the j, and then the SST for that location is112

read out. The SST itself is the fitness score in the example.113

The candidate genomes are those whose fitness is greater than the average of the whole114

population. This is an adjustable parameter in evolutionary computing. One can be much115

more selective [Eiben and Smith, 1998]. If it should happen that more than half the genomes116

have a higher fitness than the average, the median score is used instead. Again, this can be117

adjusted.118

The selection scheme used here, for the simple example, and the Gulf Stream north119
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wall finder, is elitist. All of these most fit (highest scoring) genomes are preserved intact120

into the next iteration (generation). Reproduction, then, only generates new genomes for121

the difference between the total population of 200 and the reproducing population. In this122

implementation of elitist strategy, this could be as few as 100 new genomes in the next123

iteration (generation).124

Given a population from which to reproduce (generate new genomes), we must still125

decide how reproduction shall be done. There are many possible methods, see Eiben and126

Smith [1998]. Here we use roulette weighting – the probability that a genome from the127

parent population is used is proportional to its score divided by the total score of all parent128

candidates. More fit genomes, therefore, reproduce more often.129

In analogy to reproduction like that for humans, two parents are used (diploidy). The130

resultant genome is identical to the first parent (selected by the roulette-weighting) for the131

first N bits, and the second (another roulette selection) for the remainder. N itself is a132

uniformly random variable from 1 to 19 (in this case – it ranges across the entire length of133

the genome in general). This procedure is known as crossover. It need not be applied to134

generate every possible descendant. Instead, some fraction of the time, one may generate a135

completely random new genome. In our case, the crossover proportion is 0.5. Half of the136

new genomes are random. The random genomes help provide a continued source of new137

genes (diversity), so as to help avoid premature convergence to a local optimum.138

The other diversity-preserving measure is that after new genomes are created, they are139

subject to mutation. The probability of mutation is 1 in 19 in this case, more generally 1140

in N where N is the number of bits in the genome. This is a common value in evolutionary141

computing [Eiben and Smith, 1998]. Some genomes, therefore, will be unmodified, while142

others will receive multiple mutations. We expect 1 mutation per genome.143

Then we repeat the process, from evaluation through generating descendants until a144

sufficiently good result is found, or we reach a limit in number of iterations. For the example,145

we used a limit of 20 generations. At all times, we have a list of currently best genomes.146
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Consequently, we have a running estimate of the best locations. This is something of a147

(computational) biological counterpart to ensemble methods.148

In the first generation, the results are as for strictly random search. The warmest tem-149

perature seen is 30.00 ◦C, at 14.25 ◦N, 117.75 ◦E in the South China Sea. The 15th best is150

28.49 ◦C. Given that warm waters cover much of the ocean area, it is unsurprising that there151

is little falloff in score. After 20 generations (and 1918 evaluations, it turned out), the best152

(warmest) water is found to be 32.38 ◦C (vs the actual maximum of 32.59 found by looking153

at all 259,200 grid points), at 56.25 ◦E, 24.75 ◦N in the Persian Gulf. Table 1 gives the top154

15 score and their locations.155

Though the genetic algorithm did not find the absolute maximum, it did locate several156

areas of warm water on the global ocean. This points to a couple of features. One is, as with157

other optimizers, one may arrive at a local optimum rather than the global optimum. On the158

other hand, one could also combine the genetic algorithm with a local gradient climber. This159

would then bear some resemblance to simulated annealing [Metropolis et al., 1953] except160

that the random stage would be evolved. Another is that we may often want to know the161

many locations in the parameter space in which there are high scores (warm SST in this162

case, but in a moment it will mean good ways of locating the north wall of the Gulf Stream).163

Figure 1 and 2 show the population evolution through 400 generations of selection, dis-164

playing generations 1, 50, 75, 200, and 400. In the first generation, candidates are all over165

the globe. The search did not exclude land points, though that could have been done, be-166

cause the sea surface temperature analysis fills in land points. In later generations, we see167

increasingly many points are focused to the Pacific warm pool, the Red Sea, and the Persian168

Gulf. Nevertheless, even in later generations, some points appear far from these high quality169

locations. These are the points which result from larger mutations, or large effect crossover.170

In more general cases than this simple example, they prevent premature convergence to local171

optima, and ensure sampling of remote points which might also be highly fit. Figure 2 is as172

for figure 1, but focuses on the Arabian Peninsula, which is where the warmest water is.173

8



If we disable the mutation and crossover, giving us a purely random search, but otherwise174

leave the evolutionary program alone (so that it does retain most fit genomes), in 20 gener-175

ations and 2659 evaluations, the best found is 32.20 ◦C and 15th is 30.42 ◦C. This problem176

has a large fraction of the search space giving very high scores, and evaluates a large fraction177

of the search space, so random searching can do relatively well.178

The model here demonstrates some of the language and character of genetic algorithm179

(GA) methods, rather than to demonstrate its superiority to other methods. Nevertheless,180

it is a reminder that in some problems random selection may be valuable, or that exhaustive181

searching may be appropriate. In the case at hand, arriving at a good answer after searching182

1% of the parameter space (approx 2500 samplings vs. 259,200 grid points) is no great183

savings as the fitness evaluation is extremely inexpensive. Further, this is a rather high184

portion of the parameter space to be searching.185

In the real problem of interest, the north wall finder, the parameter space is one of 42186

bits, or 4·1012 values. Sampling 1% of that space is extremely expensive, the more so as187

evaluating the fitness is a much more expensive proposition than a mere memory lookup.188

In practice, the finder evaluates fitness about 25,000 times, about 6·10−9 of the space, in 3189

minutes on a current desktop computer. Exhaustive evaluation would require approximately190

900 years at that pace.191

4. Representing the Genetics for the North Wall Finder192

We will let the 4 parameters, N1, N2, a, and b be represented by floating point numbers193

in the range [-4:4) with 8 bits precision (steps of 1/32), d is 6 bits in the range 0 to 1 and TC194

is given 4 bits, in the range 16 to 20. This is the genome. Even steps this small are already195

distinguishable in the fitness score. This gives us a parameter space of approximately 4196

trillion members, in excess of what can be explored profitably by brute force. The fitness197

function is also non-smooth and contains many local optima.198
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Parents are selected with roulette weighting. The probability that the ith potential parent199

is selected is proportion to Pi

ΣPj
, where the sum is over all parent scores Pj.200

The crossover rate is 0.5. If the random number (uniform on [0:1) ) is less than this, we201

cross genomes between the selected parent and another.202

The mutation rate is 1/42 – given the 42 bits in the genome, we expect 1 bit to flip203

within each genome. After new genomes are generated, we step through each genome and204

test whether to mutate (flip a 1 to a 0 or vice versa) each bit, with this probability of doing205

so.206

All parents survive in to the next generation (complete elitism).207

The population size is 100. The limiting number of generations is 200. One could set an208

earlier stopping criterion, such as the best fit being better than some tolerance. But in this209

case, running to the limit number of generations was more satisfactory.210

Population size, generations, stopping criteria, crossover rate, mutation rate, and parent211

selection rules are all things which can themselves be experimented with. See Eiben and212

Smith [1998] and references therein for some considerations. The fitness score is the inverse213

of rms distance between the Navy manual north wall Gulf Stream and the maximum in the214

GA. For initial simplicity, the maximum was sought separately along each line of longitude215

in the model output. A result of this is that eddies and other local features disconnected216

from the main body of the Gulf Stream sometimes are identified instead of the Gulf Stream.217

Discussion with the Ocean Prediction Center [Sienkiewicz, pers. com. 2002] lead to the218

conclusion that this was a constructive feature. The OPC interest is in correcting wave219

model guidance for current interactions, and these other points are definitely active and in220

need of wave forecaster correction. Consequently this method was continued for this utility,221

though it did result in limiting the degree to which the automated method could reproduce222

the manual analysis.223

We must also select a range of longitudes along which to assess the quality of the analysis.224

The eastern boundary is set by the analysis, which stops a 65 ◦W. (Analysis by the finder,225
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however, is extended to the eastern boundary of the domain.) The western boundary is226

set at 77 ◦W, where the Gulf Stream begins significant eastward motion. West of this, the227

Gulf Stream flows nearly northwards (hence introducing artefacts to the algorithm searching228

along lines of longitude for a maximum in the genetic function; Auer [1985] refers to this as229

the non-orthogonality problem). Parameter sets which work well to the east also work well230

to the west, but the converse is not necessarily, or even often, the case.231

5. Performance of the Finder232

The original north wall finder was implemented operationally in NCEP on 24 January233

2003. The improved version, including the surface temperature in the fitness function, was234

implemented operationally 20 May 2005. The discussion here has included the full function,235

and certain coding improvements and population changes. For this paper, we re-ran the236

finder with consistent (current) parameters for the genetics. As the finder is computationally237

inexpensive, this provides a consistent scoring, and demonstration of the current method’s238

skill.239

Figure 3 shows the quality of the best found north wall, as inverse rms grid point differ-240

ences, on those days which had Navy analyses for comparison. The horizontal axis is days241

since 31 January 2003. Since the finder is permitted to locate eddies and active areas away242

from the Gulf Stream itself, the score will not be as good as it might be. Conversely, some243

portions of the North Wall are not observable in every analysis, so that the error may be244

in the analysis. Nevertheless a lower rms error gives more confidence in the procedure. We245

see in this figure that the median rms error is 35 km, satisfying the original design criterion246

of 50 km. Somewhat troubling is that the scores worsened through time with the ROFS,247

approaching 50 km late in 2006. The ROFS model was retired from operations in late 2007.248

Figure 4 displays an ensemble of the 15 best north walls and the Navy analysis they were249

evolved to fit. The analysis extended only to 65 W. Matches were quite close from 77 to 72250
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W, but as the Gulf Stream curves and recurves more actively, the fit declines. We see that251

the different members mostly make the same errors between 65 and 69 W, which suggests252

a model bias that the algorithm could not overcome. Outside the region, 77 to 65 W, in253

which the evolution was applied, the different members diverge more from each other. Some254

members apparently picking up on Gulf Stream recirculation.255

In another offline run, searching for critical temperatures at depth (in correspondance256

with methods like Halkin and Rossby [1985]), we find that there is a trend in model tem-257

peratures with time, and that the ROFS model is increasingly cold. Rather than 14 ◦C at258

400m [Halkin and Rossby 1985] for the Gulf Stream axis, the best (median) for the north259

wall is 10.2 ◦C at 400m, and this figure becomes colder as time moves towards the present.260

We expect, then, that the reason for worsening scores in the North Wall finder is that ROFS261

is experiencing climate drift. While the finder remains useful in spite of the climate drift,262

there are obviously limits to which the method can adapt to drifting input.263

6. RTOFS-Atlantic Version264

The advent of a new, higher resolution, real time ocean forecast system for the Atlantic265

ocean (RTOFS-Atlantic [MMAB 2005 et seq.]) at NCEP made it possible and necessary266

to re-examine the genetic algorithm method used for locating the Gulf Stream north wall.267

If evolutionary computing, of which genetic algorithms are an example, is to live up to its268

promises, it must be able to adapt to a new situation easily. As we also wish to expand269

capabilities with the advent of more capable models, we want the system to be easily modified270

without either great computational cost or programming effort. Finally, as our concerns271

evolve, it is necessary that we be able to readily change the fitness definition(s) used by the272

algorithm to represent more accurately the desired features of the analysis.273

Evolutionary methods rely critically on what the user decides is the best result, the274

’fitness’ function which we will discuss again. With the new model, RTOFS-Atlantic, for275
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input to the North Wall finder, we again defined fitness to be inverse (inverse so that higher276

score is better) rms distance between the north wall line as found by the automated system277

and the Navy analysis. But now the automated analysis, rather than sweeping along lines of278

longitude in search of maxima, traces down the spine of maxima in the evolved ’north wall279

function’. This enables it to follow recurving stretches of the north wall. The initial points280

on the north wall are found by scanning for maxima along lines from 82 ◦W 28.2 and 28.0281

◦N, to 77 ◦W 28.2 and 28.0 ◦N. These then define points on the north wall, and a line of282

travel along which to look for maxima. The direction of travel can be reversed to find an283

estimate for the location of the Loop Current in the more extensive model domain of the284

RTOFS(Atlantic).285

The distance is then computed between each point on the automated analysis’ line and286

the nearest point on the manual analysis line. The manual analysis line is first examined to287

find the point (call it point N) which is nearest to the automated analysis point in question.288

Then the distance between the automated analysis and the lines formed by points (N,N-289

1) and (N,N+1) are computed and the minimum taken. If one examines all line segments,290

distances between automated points and the manual analysis line segments can be extremely291

small as the recurved segments of the Gulf Stream project lines through much of the ocean292

even far from the Gulf Stream. Evolutionary systems are very good at locating loopholes293

in definitions, so that the implementation of this simple concept was elaborated after some294

very bad (to human eyes) analyses were given very good scores by that loophole.295

A different change made for the RTOFS(Atlantic) version of the north wall finder was296

to work on the model’s native horizontal grid. This model, as was the case for ROFS297

[Rivin et al., 2002] uses a variably-spaced grid. In conducting the initial work on the north298

wall finder, the precision of the manual analysis (0.1 degree digitization) and operational299

forecast concern (to be better than 50 km analysis – approximately the width of lines on300

mariner guidance maps [Sinekiewicz, 2001]) were such that the ease of working with a regular301

latitude-longitude grid was significant. In the present case, now that the prior generation302
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of finder had established a typical rms error of only about 35 km in spite of the artefacts303

noted above, it was decided to attempt all possible precision. The RTOFS(Atlantic) grid304

varies from approximately 5 to 10 km spacing over the Gulf Stream region [MMAB 2005305

et seq.]. Locations are reported to 0.01 degree by interpolation from these grids. As future306

generations of model improve resolution, this precision will become more meaningful. In the307

mean time, it ensures that the closeness of fit between manual and automated analysis is308

not limited by the grid spacing (which alone guaranteed a 0.05 degree minimum difference309

between manual and automated analysis in the ROFS version as the manual is rounded to310

0.1 degree, and automated grid was staggered such that points were on x.05, x.15, ... degrees311

latitudes and longitudes).312

In the ROFS version of the finder, sea surface height, its gradient squared, and its313

laplacean were each rescaled every day to fit the range [-1,1]. The hope was that this would314

lead to a series of weights in the north wall function (equation 1) which would become315

slowly varying in time, as the relative magnitude of the Gulf Stream signal (in these terms,316

compared to farther afield values) would be relatively slowly varying, versus the detailed317

values themselves. Such was not the experience. So in this edition, values for gradient318

squared of sea surface height, laplacean of sea surface height, and gradient squared of sea319

surface temperature are scaled (multiplied) by constant values (105, 109, 103), sufficient that320

each is of approximately the same order of magnitude. The sea surface heights used are321

the 25 hour averages centered on the valid time (nowcast, 1 day forecast, etc.), except for322

the final forecast date when the last 25 hours of the forecast period are used. This provides323

improved tide suppression over the ROFS version, where only 24 hour averages were possible.324

The variations in parameters then are attempting to find universal parameters descriptive of325

the north wall in the model, irrespective of far field behavior of the ocean. Our initial scaling326

of the fields to approximately equal magnitudes lets the GA decide the relative importance327

easily. We could leave the fields unscaled, but if it turned out (as it does) that the relative328

contributions are within a factor of 10 of each other, we would need to permit the GA to329

14



search over ranges of plus or minus 106 as opposed the factor of 10 we do permit. This gives330

us a much more rapid convergence in the evolutionary process.331

As in the ROFS version of the finder, we defined a function which will constructed to

have a maximum along the north wall of the Gulf Stream, then seek parameters to that

function which will make this be the case. For the RTOFS version, with a vastly larger

model grid (approximately 2 million points, vs. 63 thousand), we use a function simlar to

ROFS version, but computationally faster to evaluate over the grid:

a(∇H)2 + b∇2(H) + c(∇T )2 (2)

where H is the sea surface height, and T is the sea surface temperature. a, b, c are all332

represented with 8 bits. c is in the range [0:10), a and b are in the range [-10:10).333

The genetic algorithm now searches for the best weights a, b, c, with best defined as334

producing the minimum rms error in location. The population size is 100, and 50 generations335

are evaluated. Crossover rate and mutation rate are unchanged, at 0.5 and 1/N (1/24).336

Recent results available show rms error of about 8 grid points, approximately 45 km,337

and originally on implementation it was about 35 km. Given the number of changes in338

how errors are computed, this figure is not strictly comparable to that from the ROFS339

finder. Nevertheless, it is reassuring that the differences are comparable to the ROFS system,340

and within the tolerances required for operational use even with this much more stringent341

comparison to the analysis. The system for this vastly larger model output is slower, about342

10 minutes for the RTOFS version versus 3 for the ROFS version. But this compares quite343

favorably to the 100-fold increase in grid points between the two systems.344

7. Conclusions345

This paper introduced two topics: genetic algorithms and the NCEP operational auto-346

mated Gulf Stream north wall finder.347
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Genetic algorithms have shown their utility and flexibility in our specific application.348

While remaining computationally tractable, they search a large parameter space to locate349

objective functions which can be used to trace the Gulf Stream’s north wall. The compu-350

tational requirement is 3 (ROFS) or 10 (RTOFS) minutes on recent desktop computers for351

those days which have an analysis for comparison. They further managed to produce meri-352

torious results in spite of a significant model drift in the ROFS. The technique also satisfied353

our requirement that it be readily applicable to new models as they become available.354

A feature of this automated method, versus manual analyses of observations, is that it355

can be applied to forecast fields as well, and without any signficant further cost (the main356

cost is in developing the latest genomes; evaluating the North Wall location once the genomes357

have been found is a negligible cost). Further, in working from the model, there are never358

observation gaps.359

8. Glossary360

Crossover : Inheritance process in which two parents are selected and the first N bits of361

the first parent are used in the descendant, and the remaining genes are from the second362

parent. n.b. there are many other crossover methods363

Descendant : A genome which is developed by crossover and mutation from some other364

(parent) genome365

Elitism : Retaining into a subsequent generation the parents of the current generation366

Encoding : The translation process between the bits in the genome and the parameter367

values.368

Evolutionary Computing : EC; The collection of methods, of which GAs are one, which369

use evolutionary methods and approaches to solve problems.370

Fitness : The quality of the result Fitness function : a function which assesses the quality371

of a parameter set (genome)372
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Fitness landscape : The magnitude of the fitness function displayed, or considered, over373

all parameter values (dimensions)374

GA : Genetic Algorithm; a method of using evolutionary processes to develop improved375

parameter sets376

Generation : A complete iteration of evaluating the fitness of a population, selecting par-377

ents, and replacing by descent from the selected parents those genomes which were rejected378

for parenthood.379

Gene : A collection of one or more bits which represent a value380

Genome: A collection of one or more Genes, a parameter set381

Inheritance : The process by which genes are passed from parents to descendants382

Mutation : Flipping a bit from 1 to 0 or vice versa.383

Parent : A genome used as a basis for developing more genomes (descendants)384

Population: The set of all genomes under consideration385

Reproduction; The process by which new genomes are generated from old386

Source codes used for the RTOFS and ROFS North Wall finders is available at387

http://polar.ncep.noaa.gov/mmab/models/tnXXX/388
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Table 1. Temperature (Score), i,j coordinate of point on grid, and Latitude-Longitude of
the location

Temperature Longitude Latitude
◦C I J ◦E ◦ N

32.38 112 130 56.25 24.75
32.14 105 131 52.75 24.25
30.97 200 162 100.25 8.75
30.87 86 151 43.25 14.25
30.76 93 148 46.75 15.75
30.64 285 169 142.75 5.25
30.57 196 184 98.25 -2.25
30.56 292 172 146.25 3.75
30.54 107 138 53.75 20.75
30.48 210 160 105.25 9.75
30.44 216 146 108.25 16.75
30.43 274 165 137.25 7.25
30.42 312 182 156.25 1.25
30.42 210 169 105.25 5.25
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Fig. 1. Figure 1: Population of evolutionary candidates, by generation
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Fig. 2. Figure 2: Population of evolutionary candidates, by generation. Focused in area of
highest temperatures
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Fig. 3. Figure 3: RMS difference in north wall location in the ROFS model as diagnosed
by the genetic algorithm as compared to manual analysis of satellite data. Days since 31
January 2003
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Fig. 4. Figure 4: Ensemble plot of the 15 best fit genetic algorithm north wall edges
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